有关电力系统三种潮流计算方法的比较.docx
- 格式:docx
- 大小:21.99 KB
- 文档页数:3
简介几种潮流计算电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。
同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。
因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。
在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算,下面简单介绍三种潮流计算方法。
一、基于多口逆向矩阵的并行潮流计算方法多口逆向矩阵方法是求解线性方程组的普通并行方法,它只是修改了串行方法的几个部分,并且非常适用于从串行到并行的编程。
该方法已用于一些电力系统并行分析方法,比如说机电暂态稳定分析和小信号稳定性,并且并行效率高。
基于多口逆向矩阵方法,本文提出了一种并行牛顿潮流算法。
对一个划分几个网络的大型互联系统模型的仿真结果表明这种并行算法是正确的并且效率很高。
关键词:并行潮流计算,串行潮流计算,多口逆向矩阵方法,线性方程组,电力系统分析随着电力系统规模的扩大,尤其是区域互联网络,人们要求速度更快效率更高的功率计算,传统的串行计算越来越难满足要求,特别是对实时控制。
作为电力系统的基本计算,它的效率的提高会使其他为基础的计算速度都得到提高。
因为传统串行计算变的越来越难满足要求,并行计算成为提高潮流计算效率的需要。
潮流计算的主要步骤是求解稀疏线性方程组,因此对并行方法的研究主要集中在线性方程组的并行求解。
根据不同的实现方案,并行算法分为多因子方法、稀疏向量方法等等。
多口逆向矩阵方法在各种问题中是一种求解线性方程组的通用方法。
在这篇论文中,通过最常见的电力系统中的节点电压方程来说明这种方法。
多口逆向矩阵法不需要在矩阵中集中调整边界点,我们根据子网的密度把矩阵分裂并且把边界节点集中在顶部,整个网络的节点电压方程组如下:消去上矩阵中对应子网的部分,只保留边界部分。
经过网络分割,边界矩阵TT Y 注入电流向量T I 被分为主控制网和各个子网。
电力系统潮流计算的比较方法与分析探究董克文摘要:目前,如果要想使计算结果比较精确,那么应该采用牛顿--拉夫逊直角坐标法进行计算;如果要想使系统的运行速度达到最快,那么最好采用P-Q分解法;高斯―赛德尔法进行大规模的系统潮流计算时候,由于它所需的计算时间比较长,因此只适合在小规模系统中使用,但是,随着电力系统的发展,如今的小规模系统已经越来越少了,因此,这种计算方法也逐渐被淘汰了。
关键词:潮流计算;牛顿--拉夫逊直角坐标法;P-Q分解法;高斯―赛德尔法电力系统的规模在日益扩大,针对扩大的电力系统规模,我们并不能仅仅运用某种数学方法就能保证得出正确答案,所以,这就要求电力系统研究人员进行不断的创新,从而研发出更具可信度的潮流计算方法。
本文以C语言为依据,编写出牛顿--拉夫逊直角坐标法、P-Q分解法以及高斯―赛德尔法的潮流计算程序,并对这几种潮流计算程序进行对比,从而总结出这几种潮流计算程序的优点以及它们合适的应用场合。
一、电力系统潮流计算模型的原理根据节点导纳矩阵可以知道,在一个n节点的电力网络中,n节点电力系统的潮流方程中一般包含着4个变量,即P、Q、V、δ。
由电力系统的实际运行情况可知,在通常情况下,可以将节点分为三种形式:第一种是PQ节点。
在这种节点中,一般有功功率P与无功功率Q是已知的,而节点中的电压值是未知的[1]。
一般情况下,在变电所里基本都选用的是这种形式的节点,由于变电所没有发电设备,因此,它的发电功率通常是零。
有一些发电厂,在固定的时间之内,送出的功率往往也是固定的,因此这种发电厂母线也称为PQ节点,所以,目前来说,电力系统中大多数节点基本都是PQ节点。
第二种是PV节点。
在这种节点中,一般节点P与节点V都是已知的,而Q与δ是需要通过计算求出的。
由于这种形式的节点,只有在充足的可调无功功率之下,才能够维持给定的电压幅值,所以,这种节点又被称作电压控制节点。
一般情况下,选用PV节点的是有一定无功储备的发电厂与具有可调无功电源设备的变电所,而在电力系统中这种形式的节点应用很少见。
电力系统三种潮流计算方法的比较电力系统潮流计算是电力系统分析和运行控制中最重要的问题之一、它通过计算各节点电压和各支路电流的数值来确定电力系统各个节点和支路上的电力变量。
常见的潮流计算方法有直流潮流计算方法、高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
以下将对这三种方法进行比较。
首先,直流潮流计算方法是最简单和最快速的计算方法之一、它假设整个系统中的负载功率都是直流的,忽略了交流电力系统中的复杂性。
直流潮流计算方法非常适用于传输和配电系统,尤其是对于稳定的系统,其结果比较准确。
然而,该方法忽略了交流电力系统中的变压器的磁耦合和饱和效应,可能会导致对系统状态误判。
因此,直流潮流计算方法的适用范围有限。
其次,高斯-赛德尔迭代法是一种迭代方法,通过反复迭代计算来逼近系统的潮流分布。
该方法首先进行高斯潮流计算,然后根据计算结果更新节点电压,并再次进行计算,直到收敛为止。
高斯-赛德尔迭代法考虑了变压器的复杂性,计算结果比直流潮流计算方法更准确。
然而,该方法可能发生收敛问题,尤其是在系统变压器的串联较多或系统中存在不良条件时。
此外,该方法的计算速度较慢,尤其是对于大型电力系统而言。
最后,牛顿-拉夫逊迭代法是一种基于牛顿法的迭代方法,用于解决非线性潮流计算问题。
该方法通过线性化系统等式并迭代求解来逼近系统的潮流分布。
与高斯-赛德尔迭代法相比,牛顿-拉夫逊迭代法收敛速度更快,所需迭代次数更少。
此外,该方法可以处理系统中的不平衡和非线性元件,计算结果更准确。
然而,牛顿-拉夫逊迭代法需要建立和解算雅可比矩阵,计算量相对较大。
综上所述,电力系统潮流计算方法根据应用需求和系统特点选择合适的方法。
直流潮流计算方法适用于稳定的系统,计算简单、快速,但适用范围有限。
高斯-赛德尔迭代法适用于一般的交流电力系统,考虑了变压器复杂性,但可能存在收敛问题和计算速度较慢的缺点。
牛顿-拉夫逊迭代法适用于复杂的非线性系统,收敛速度快且计算结果准确,但需要较大的计算量。
电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。
它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。
本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。
一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。
潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。
潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。
二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。
直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。
迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。
牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。
三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。
首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。
其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。
此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。
四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。
传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。
因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。
此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。
一、潮流计算方法之间的区别联系高斯-赛德尔法:原理简单,导纳矩阵对称且高度稀疏,占用内存小。
收敛速度很慢,迭代次数随节点数直接上升,计算量急剧增加,不适用大规模系统。
牛顿-拉夫逊法:收敛速度快,迭代次数和网络规模基本无关。
相对高斯-赛德尔法,内存量和每次迭代所需时间较多,其可靠的收敛还取决于一个良好的启动初值。
PQ 分解法(快速解耦法):PQ 分解法实际上是在极坐标形式的牛顿法的基础上,在交流高压电网中,输电线路等元件的R<<X ,即有功功率主要取决于电压相角,而无功功率主要取决于电压幅值,根据这种特性对方程组进行简化,从而实现了有功和无功的解耦。
两大条件:(1)线路两端的相角相差不大(小于10°~20°),而且||||ij ij G B ≤,于是可以认为:cos 1;sin ij ij ij ij G B θθ≈≤; (2)与节点无功功率相对应的导纳2/i i Q U 通常远小于节点的自导纳ii B ,也即2i i ii Q U B <<。
1. PQ 分解法用一个1n -阶和一个1n m --阶的方程组代替牛顿法中22n m --阶方程组,显著减少了内存需量和计算量。
2. 计算过程中B '、B ''保持不变,不同于牛顿法每次迭代都要重新形成雅可比矩阵,因此显著提高了计算速度。
3.雅可比矩阵J 不对称,而B '、B ''都是对称的,使求逆等运算量和所需的存储容量都大为减少。
4. PQ 分解法的迭代次数要比牛顿法多,但是每次迭代所需时间比牛顿法少,所以总的计算速度仍是PQ 分解法快。
在低压配电网中PQ 分解法不适用。
交流高压电网的输电线路的元件满足R<<X ,PQ 分解法正是基于此条件简化而来;而低电压配电网络一般R/X 比值很大,大R/X 比值病态问题也正是PQ 分解法应用中的一个最大障碍。
系统的潮流及三相短路电流计算班级:电气1班学号:94姓名:杨鹏摘要潮流计算,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。
是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。
通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。
待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。
牛顿-拉夫逊法是电力系统潮流计算的常用算法之一,收敛性好,迭代次数少。
本文基于MATLAB 计算系统的潮流及三相短路电流。
关键词:潮流计算 matlab 牛顿-拉夫逊1电力系统的潮流计算电力系统常规潮流计算的任务是根据给定电网机构、发电计划及负荷分布情况,求出整个电网的运行状态,其中包括各节点母线电压、相角、线路传输的有功功率和无功功率等。
在电网的潮流计算中,一般给定的运行参数有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。
待求的参数包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。
节点的功率方程对n节点电力系统,节点i注入的有功功率Si:极坐标形式的节点功率方程:直角坐标形式的节点功率方程:节点分类:根据实际运行条件,节点可分成三类:PQ节点、PV节点和平衡节点PQ节点:节点注入的有功P和无功Q皆为给定量的节点。
一般负荷节点,联络节点和给定有功和无功的发电机节点在潮流计算中都视作PQ节点,PQ节点的节点电压(其幅值U和相角θ,或其实部e和虚部f)为待求变量。
PV节点:节点注入的有功P和无功Q皆为给定量的节点。
一般负荷节点,联络节点和给定有功和无功的发电机节点在潮流计算中都视作PQ节点,PQ节点的节点电压(其幅值U和相角θ,或其实部e和虚部f)为待求变量。
平衡节点:平衡节点的节点电压是给定值,对极坐标形式的节点功率方程,平衡节点的电压幅值一般情况下取作U=,相角取作00.θ=,对直角坐标形式的节点功率方程,平衡节点的实部和虚部一般分别取作e=和 f=。
电力系统三种潮流计算方法的比较 一、高斯-赛德尔迭代法:以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 改写为 不能直接得出方程的根,给一个猜测值 得 又可取x1为猜测值,进一步得:反复猜测则方程的根优点:1. 原理简单,程序设计十分容易。
2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系。
缺点:1. 收敛速度很慢。
2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路(如某些三绕组变压器或线路串联电容等)的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短线路的长度比值又很大的系统。
3. 平衡节点所在位置的不同选择,也会影响到收敛性能。
二、牛顿-拉夫逊法:求解 设 ,则按牛顿二项式展开:当△x 不大,则取线性化(仅取一次项)则可得修正量对 得: 作变量修正: ,求解修正方程()0f x =()0f x =10()x x ϕ=迭代 0x 21()x x ϕ=1()k k x x ϕ+=()x x ϕ=()0f x =k k x x lim *∞→=0x x x =+∆0()0f x x +∆=23000011()()()()()()02!3!f x f x x f x x f x x ''''''+∆+∆+∆+=00()()0f x f x x '+∆=()100()()x f x f x -'∆=-10x x x =+∆00()()f x x f x '∆=-1k k k x x x +=+∆牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。
自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。
电力系统的潮流计算电力系统潮流计算电力工程的潮流在电力工程中,“潮流”还特指电网各处电压(包括幅值与相角)、有功功率、无功功率等的分布。
潮流的分布是运行调度单位和维修部门所必须知道的事项。
而潮流计算,是指给定电网中一些参数、已知值和未知值中假设的初始值,通过重复迭代,最终求出潮流分布的精确值,常用方法有牛顿-拉夫逊法和PQ分解法。
电力系统中的潮流在发电机母线上功率被注入网络;而在变(配)电站上接入负荷;其间,功率在网络中流动。
对于这种流动的功率,电力生产部门称为潮流(POWER FLOW)。
潮流:电力系统中电压(各节点)、功率(有功、无功)(各支路)的稳态分布潮流计算---电力系统分析中的一种最基本的计算,根据给定的运行参数确定系统的运行状态,如计算网络中个节点的电压(幅值和相角)和各支路中的功率分布及损耗。
电力系统潮流计算是电力系统最基本的计算,也是最重要的计算。
所谓潮流计算,就是已知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、各支路电流、功率及网损。
对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。
对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。
潮流计算还可以为继电保护和自动装置整定计算、电力系统故障计算和稳定计算等提供原始数据。
百科名片电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。
它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。
目录潮流计算的意义潮流计算的发展史潮流计算的发展趋势编辑本段潮流计算的意义(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。
简介几种潮流计算电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。
同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。
因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。
在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算,下面简单介绍三种潮流计算方法。
一、基于多口逆向矩阵的并行潮流计算方法多口逆向矩阵方法是求解线性方程组的普通并行方法,它只是修改了串行方法的几个部分,并且非常适用于从串行到并行的编程。
该方法已用于一些电力系统并行分析方法,比如说机电暂态稳定分析和小信号稳定性,并且并行效率高。
基于多口逆向矩阵方法,本文提出了一种并行牛顿潮流算法。
对一个划分几个网络的大型互联系统模型的仿真结果表明这种并行算法是正确的并且效率很高。
关键词:并行潮流计算,串行潮流计算,多口逆向矩阵方法,线性方程组,电力系统分析随着电力系统规模的扩大,尤其是区域互联网络,人们要求速度更快效率更高的功率计算,传统的串行计算越来越难满足要求,特别是对实时控制。
作为电力系统的基本计算,它的效率的提高会使其他为基础的计算速度都得到提高。
因为传统串行计算变的越来越难满足要求,并行计算成为提高潮流计算效率的需要。
潮流计算的主要步骤是求解稀疏线性方程组,因此对并行方法的研究主要集中在线性方程组的并行求解。
根据不同的实现方案,并行算法分为多因子方法、稀疏向量方法等等。
多口逆向矩阵方法在各种问题中是一种求解线性方程组的通用方法。
在这篇论文中,通过最常见的电力系统中的节点电压方程来说明这种方法。
多口逆向矩阵法不需要在矩阵中集中调整边界点,我们根据子网的密度把矩阵分裂并且把边界节点集中在顶部,整个网络的节点电压方程组如下:消去上矩阵中对应子网的部分,只保留边界部分。
经过网络分割,边界矩阵TT Y 注入电流向量T I 被分为主控制网和各个子网。
电力系统潮流分析—基于牛拉法和保留非线性的随机潮流姓名:***学号:***1 潮流算法简介1.1 常规潮流计算常规的潮流计算是在确定的状态下.即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。
常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法.当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛.下面简要介绍该方法。
1.1。
1牛顿拉夫逊方法原理对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。
'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J 。
12(,,,)01,2,,i n f x x x i n ==(1-1)(0)'(0)(0)()()0f x f x x +∆=(1—2)由修正方程式可求出经过第一次迭代之后的修正量(0)x ∆,并用修正量(0)x ∆与估计值(0)x 之和,表示修正后的估计值(1)x ,表示如下(1—4).(0)'(0)1(0)[()]()x f x f x -∆=-(1—3)(1)(0)(0)x x x =+∆(1-4)重复上述步骤.第k 次的迭代公式为: '()()()()()k k k f x x f x ∆=-(1—5)(1)()()k k k x x x +=+∆(1-6)当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式:i i i ij ij ijV e jf Y G jB =+=+ (1-7)假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下.n n n V e jf =+(1-8)除了平衡节点以外的所有2(1)n -个节点是需要求解的量。
电力系统三种潮流计算方法的比较 一、高斯-赛德尔迭代法:以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 改写为 不能直接得出方程的根,给一个猜测值 得 又可取x1为猜测值,进一步得:收敛到一个非常精确的解。
而且其迭代次数与所计算网络的规模基本无关。
2. 具有良好的收敛可靠性,对于前面提到的对以节点导纳矩阵为基础的高斯一塞德尔法呈病态的系统,牛顿法均能可靠地收敛。
3. 牛顿法所需的内存量及每次迭代所需时间均较前述的高斯一塞德尔法为多,并与程序设计技巧有密切关系。
缺点:牛顿法的可靠收敛取决于有一个良好的启动初值。
如果初值选择不当,算法有可能根本不收敛或收敛到一个无法运行的解点上。
解决方法:对于正常运行的系统,各节点电压一般均在额定值附近,偏移不会太大,并且各节点间的相位角差10()x x ϕ=0x ()x x ϕ=()0f x =也不大,所以对各节点可以采用统一的电压初值(也称为“平直电压”),“平直电压”法假定:︒==0100i i U θ 或 );,...,2,1(0100s i n i f e i i ≠===这样一般能得到满意的结果。
但若系统因无功紧张或其它原因导致电压质量很差或有重载线路而节点间角差很大时,仍用上述初始电压就有可能出现问题。
可以先用高斯一塞德尔法迭代1-2次;以此迭代结果作为牛顿法的初值,也可以先用直流法潮流求解一次以求得一个较好的角度初值,然后转入牛顿法迭代。
三、P-Q 分解法:电力系统中常用的PQ 分解法派生于以极坐标表示的牛顿—拉夫逊法,其基本思想是把节点功率表示为电压向量的极坐标形式,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为m 阶不变速度, 原理:a) 当i b) 当i 在以认为 δij cos ≈ ⎭∆''=∆V B Q 原P —Q 分解法的修正方程的简化形式为: ⎪⎭⎪⎬⎫∆''=∆∆'=∆V B V Q V B V Pδ PQ 分解法的修正方程式的特点:1. 以一个(n-1)阶和一个(m-1)阶系数矩阵B B '''、替代原有的系数矩阵J ,提高了计算速度,降低了对贮存容量的要求。
电力系统分析潮流计算电力系统分析是对电力系统运行状态进行研究、分析和评估的一项重要工作。
其中,潮流计算是电力系统分析的一种重要方法,用于计算电力系统中各节点的电压、功率和电流等参数。
本文将详细介绍电力系统潮流计算的原理、方法和应用。
一、电力系统潮流计算的原理电力系统潮流计算是基于潮流方程的求解,潮流方程是描述电力系统各节点电压和相角之间的关系的一组非线性方程。
潮流方程的基本原理是基于电力系统的等效导纳矩阵和节点电压相位差的关系,通过潮流计算可以得到电力系统各节点的电压和功率等参数。
电力系统潮流方程的一般形式如下:\begin{align*}P_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\cos(\theta_i-\theta_j)+B_{ij}\sin(\theta_i-\theta_j))) \\Q_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\sin(\theta_i-\theta_j)-B_{ij}\cos(\theta_i-\theta_j)))\end{align*}其中,$n$为节点数,$P_i$和$Q_i$表示第i个节点的有功功率和无功功率。
$V_i$和$\theta_i$表示第i个节点的电压和相角。
$G_{ij}$和$B_{ij}$表示节点i和节点j之间的等效导纳。
二、电力系统潮流计算的方法电力系统潮流计算的方法主要包括直接法、迭代法和牛顿-拉夫逊法等。
1.直接法:直接法是一种适用于小规模电力系统的潮流计算方法,它通过直接求解潮流方程来计算电力系统的潮流。
直接法的计算速度快,但对系统规模有一定的限制。
2.迭代法:迭代法是一种常用的潮流计算方法,通常使用高尔顿法或牛顿法。
迭代法通过迭代求解潮流方程来计算电力系统的潮流。
迭代法相对于直接法来说,可以适用于大规模电力系统,但计算时间较长。
3.牛顿-拉夫逊法:牛顿-拉夫逊法是一种高效的潮流计算方法,它通过求解潮流方程的雅可比矩阵来进行迭代计算,可以有效地提高计算速度。
第4章电力系统潮流的计算机计算一、填空题1.用计算机进行潮流计算吋,按照给定量的不同,可将电力系统节点分为节点、PV 节点、平衡节点三大类,其中,P0节点数目最多,PV节点数目很少、可有可无,平衡节点至少要有一个。
二、选择题1•若在两个节点i、j之间增加一条支路,则下列关于节点导纳矩阵的说法正确的是(C)A.阶数增加1B.节点i的自导纳不变C.节点i、j间的互导纳发生变化D.节点j的自导纳不变2•若从节点i引出一条对地支路,则下列关于节点导纳矩阵的说法正确的是(B)A.阶数增加1B.节点i的自导纳发生变化C.节点i和其余节点间的互导纳均发生变化D.节点导纳矩阵的所有元素均不变3.若从两个节点i、j之间切除掉一条支路,则下列关于节点导纳矩阵的说法正确的是(C)A.阶数减少1B.节点i、j间的互导纳一定变为0C.节点i、j间的互导纳发生变化,但不一定变为0D.节点i、j的自导纳均不变4.若网络中增加一个节点k,且增加一条节点i与之相连的支路,则下列关于节点导纳矩阵的说法正确的是(A)(1)阶数增加1(2)节点k的自导纳等于题干中所述支路的导纳(3)节点i的自导纳等于题干中所述支路的导纳(4)节点i、k间的互导纳等于题干中所述支路的导纳A. (1) (2) B. (2) (3) C. (1) (4) D. (2) (4)三、简答题1.节点导纳矩阵有些什么特点?其自导纳和互导纳元素各自的物理含义和计算方法分别是什么?2.潮流计算有哪些约束条件?四、综合题1..如图所示,四节点简单电力系统中各线路的阻抗标幺值已列于表中,而各线路対地导纳忽略。
支路电阻电抗1-20.050.151-30.100.302-30」50.452-40」00.303-40.050」5(a)求该系统中无虚线所示线路时的节点导纳矩阵;(b)如杲虚线支路被接入系统,那么,原节点导纳矩阵应作哪些修改?解:根据阻抗和导纳互为倒数的原理,求出各支路的导纳标幺值列入下表:支路电导电纳1-22・61-31・32-30.67■22-41■33-42■6(a) 根据网络接线图,计算出无虚线所示线路时的节点导纳矩阵中各元素,女口下:Y u=y i3=l-j3 Y22 = y23 + j24 = (0.67 - J2) + (1 - ;3) = 1.67 - j5Y33 = y l3 + 儿 3 + =d-J3) + (0.67 - J2) + (2 — J6) = 3.67 - jll 抵=J24 + J34 =d-J3) +(2-J6)=3-J9Yn =-Ji2= 0 Y l3 = r31= -J I3= -1+ J3Y]4 = 丫41 = _J14= °丫23 =丫32 = _『23= -0・67 + /2Y24 = Y42=-J24=-I+j3 r34 = r43 = -儿产-2+J6写出节点导纳矩阵如下(阶数为4X4):「1-庐0-1 + /3Y =0 1.67-J5-0.67 + J2-1 + J3 -1 + /3-0.67 + j2 3.67-jll-2 + /6 0一1 + /3一2 + /63-J9(b) 在系统中接入支路1・2后,节点1、2的自导纳和节点1、2间的互导纳会发生改变,原节点导纳矩阵中《、岭2、畑和孑22的值应作以下修改:^I=^U+J I2=(1-J3)+(2-J6)=3-J9Y22 =丫22 + 儿二(167 - J5) + (2-/6)二3.67 - J11丫;2 = y21=y i2-y12=0-(2-j6) = -2 + j6写出修改以后的节点导纳矩阵如下:_ 3-j9-2 + /6-1 + /301 Y =-2 + J6 3.67-jll-0.67 + /2-1+ J3 -1 + /3- 0.67 + jl 3.67-jll-2 + J6 0-1 + J3-2 + J63-j92.写出下图所示网络的节点导纳矩阵。
电力系统潮流计算与分析概述:电力系统潮流计算与分析是电力系统运行中的重要步骤,它涉及到对电力系统的节点电压、线路潮流以及功率损耗等进行精确计算和分析的过程。
通过潮流计算和分析,电力系统运行人员可以获得关键的运行参数,从而保持电力系统的稳定运行。
本文将从潮流计算的基本原理、计算方法、影响因素以及潮流分析的实际应用等方面进行论述。
潮流计算的基本原理:潮流计算的基本原理是基于电力系统的节点电压和线路潮流之间的平衡关系进行计算。
在电力系统中,电源会向负载供电,而线路损耗会导致电压降低。
潮流计算就是要确定电力系统中各个节点的电压和线路潮流,以保持系统的稳定运行。
通过潮流计算,可以得到节点电压、线路潮流以及负荷功率等关键参数。
潮流计算的方法:潮流计算可以分为迭代法和直接法两种方法。
1. 迭代法:迭代法是潮流计算中最常用的方法,它基于电力系统的牛顿—拉夫逊法(Newton-Raphson method)来进行计算。
迭代法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程建立节点电流方程组;c. 利用牛顿—拉夫逊法迭代求解节点电压;d. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。
2. 直接法:直接法是潮流计算中的另一种方法,它基于电力系统的潮流松弛法(Gauss-Seidel method)来进行计算。
直接法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程,按照节点顺序逐步计算节点电压;c. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。
影响潮流计算的因素:1. 负荷:电力系统中的负荷是潮流计算中的重要因素之一,负荷的变化会导致节点电压和线路潮流的波动。
因此,在进行潮流计算时,需要准确地估计各个节点的负荷。
2. 发电机:发电机是电力系统的电源,它的输出功率和电压会影响潮流计算中的节点电压和线路潮流。
电力行业的电力系统潮流计算与分析电力系统是一个复杂的能源交互网络,其潮流计算与分析对于电力行业的运营和规划至关重要。
本文将介绍电力系统潮流计算的基本原理、方法以及应用,并对一些常见的电力系统问题进行分析和解决。
一、电力系统潮流计算原理电力系统潮流计算是指通过建立和求解电力系统的节点电压和支路潮流等参数的方程组,来分析电力系统中各个节点和支路的电压、功率等参数。
其基本原理是基于电力系统中的潮流方程和节点电压平衡方程。
电力系统潮流方程是描述电力系统节点之间潮流传输关系的基本方程。
在潮流计算中,常用的潮流方程有M端潮流方程、PQ端潮流方程和PV端潮流方程。
这些方程反映了电力系统中不同类型节点的潮流传输特性,是潮流计算的基础。
节点电压平衡方程是电力系统潮流计算中的重要方程。
它根据电力系统的拓扑结构和能量守恒原理,描述了电力系统中各个节点的电压平衡关系。
通过求解节点电压平衡方程,可以得到电力系统中各个节点的电压值,从而确定电力系统的潮流分布情况。
二、电力系统潮流计算方法电力系统潮流计算方法包括迭代法、直接法和混合法等。
其中,迭代法是最常用和最经典的方法。
1. 迭代法迭代法是通过反复迭代计算来逼近电力系统的潮流计算结果。
常用的迭代法有高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。
高斯-赛德尔法是一种基于节点顺序更新的迭代法,通过交替更新节点电压和支路潮流,逐渐逼近潮流计算结果。
牛顿-拉夫逊法是一种基于牛顿迭代法的改进方法,通过利用电压-节点功率雅可比矩阵的特性,加快了潮流计算的收敛速度。
快速潮流法是一种针对大规模电力系统的高效迭代法,通过合理的迭代策略和加速技术,提高了潮流计算的效率和准确性。
2. 直接法直接法是一种通过求解线性方程组来直接得到电力系统的潮流计算结果的方法。
常用的直接法有节点导纳矩阵法和母线导纳矩阵法等。
节点导纳矩阵法是一种基于电力系统拓扑结构的直接法,通过建立节点导纳矩阵和节点电流矩阵,求解节点电流和支路潮流。
电力系统的潮流计算与分析引言电力是现代社会不可或缺的能源,电力系统的稳定运行和高效管理对整个社会经济发展起着重要作用。
而电力系统的潮流计算与分析是电力系统运行和管理的重要工具。
本文将探讨电力系统潮流计算与分析的原理、方法以及应用领域,旨在增进读者对该领域的了解。
一、电力系统潮流计算的原理电力系统潮流计算是指在给定电网拓扑结构、负荷需求和发电机输出等条件下,通过数学模型计算各节点的电压幅值和相位角,以获取电网各元件的电流分布和功率流向。
潮流计算的核心是建立电力系统的节点电压和传输功率的联立方程组,并通过求解方程组得到节点电压和功率流向的数值解。
潮流计算的基本原理是基于电力系统的各节点之间存在有功功率平衡和无功功率平衡,即电力系统各节点的有功功率和无功功率之和等于节点的负荷功率和发电机输出功率之和。
通过对电力系统进行潮流计算,可以得出各节点的电压、功率因数、功率损耗等参数,为电力系统的运行和管理提供依据。
二、电力系统潮流计算的方法1. 直流潮流计算方法直流潮流计算方法是一种较为简化的计算方法,适用于较小规模的电力系统以及初步的潮流计算。
该算法假设电力系统中各节点电压的相角都为零,即所有节点电压相位角均取0°,从而简化了潮流计算的计算量。
然而,直流潮流计算方法无法考虑电网的无功功率平衡,无法准确得到节点的功率因数和无功功率分布。
2. 迭代法潮流计算方法迭代法是一种常用的潮流计算方法,其基本思路是通过反复迭代计算节点电压和功率分布,直到达到收敛条件为止。
迭代法潮流计算方法常用的算法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
迭代法潮流计算方法能较好地考虑电网的无功功率平衡,可以获得较为准确的节点电压和功率分布。
3. 双切迭代法潮流计算方法双切迭代法是一种相对较新的潮流计算方法,其基本思路是通过分析电力系统的分割区域,将电力系统划分为多个小区域进行潮流计算,并通过切割和迭代的方式逐步求解整个电力系统。
电 力 系 统 三 种 潮 流 计 算 方 法 的 比 较
一、高斯 -赛德尔迭代法:
以导纳矩阵为基础, 并应用高斯 -- 塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 f ( x ) 0 改写为 x
( x )
不能直接得出方程的根,给一个猜测值
x 0 得 x 1( x 0 )
又可取 x1 为猜测值,进一步得:
x 2 ( x 1 )
反复猜测
x k 1 迭代
则方程的根
( x k )
优点:
1. 原理简单,程序设计十分容易。
2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包
含的节点数成正比关系。
缺点:
1. 收敛速度很慢。
2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负
荷系统、包含有负电抗支路 (如某些三绕组变压器或线路串联电容等 )的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短 线路的长度比值又很大的系统。
3. 平衡节点所在位置的不同选择,也会影响到收敛性能。
二、牛顿 -拉夫逊法: 求解 f ( x ) 0
设 x x 0 x ,则 按牛顿二项式展开:
当 △x 不大,则取线性化(仅取一次项) 则可得修正量
对 得:
作变量修正:
x k 1x
k x k ,求解修正方程 20 世纪 牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。
自从
60 年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。
优点:
1. 收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭
代 4—5 次便可以收敛到一个非常精确的解。
而且其迭代次数与所计算网络的规模基本无关。
2. 具有良好的收敛可靠性, 对于前面提到的对以节点导纳矩阵为基础的高斯一
塞德尔法呈病态的系统,牛顿法均能可靠地收敛。
3. 牛顿法所需的内存量及每次迭代所需时间均较前述的高斯一塞德尔法为多,
并与程序设计技巧有密切关系。
缺点:
牛 法的可靠收 取决于有一个良好的启 初 。
如果初 不当, 算法有可能根本不收 或收 到一个无法运行的解点上。
解决方法:
于正常运行的系 , 各 点 一般均在 定 附近, 偏移不会太大, 并且各
点 的相位角差也不大,所以 各 点可以采用 一的 初 (也称 “平直 ” ),“平直 ”法假定:
1
0 0
0 1
(i 1,2,..., n;i s)
U i
i
或
e i
f i
一般能得到 意的 果。
但若系 因无功 或其它原因 致 量很差或有重 路而 点 角差很大 ,仍用上述初始 就有可能出 。
可以先用高斯一塞德 法迭代 1-2 次;以此迭代 果作 牛 法的初 ,也可以先用直流法潮流求解一次以求得一个 好的角度初 ,然后 入牛 法迭代。
三、 P-Q 分解法:
力系 中常用的 PQ 分解法派生于以极坐 表示的牛 —拉夫 法, 其基本思想是把 点功率表示 向量的极坐 形式, 以有功功率 差作 修正 向量角度的依据, 以无功功率 差作 修正 幅 的依据, 把有功和无功分开 行迭代其主要特点是以一个 (n-1) 和一个 m 不 的、 称的系数矩 B , B 代替原来的( n+m-1) 化的、不 称的系数矩 M ,以此提高 算速度,降低 算机 存容量的要求。
P-Q 分解法在 算速度方面有 着的提高, 迅速得到了推广。
原理:
P H N
修正方程 :
Q
K L
V V
雅克比矩 元素的表达如下:
a) 当 i ≠j
b) 当 i =j
修正方程的第一个 化是:
上式可分 写成以下两式
在一般情况下, 路两端 的相角差是不大的
(不超 100~200),因此可
以
cos ij
1,
G ij
sin
ij
《
B
ij
因此可得: H ij
V i V j
B ij
(i ,j=1 ,2,⋯, n-1)
L ij
V i
V j
B ij
( i ,j=1,2,⋯, m )
P B
经一系列化简得P—Q 分解法的修正方程式:
Q B V
P
B V
V
原 P—Q 分解法的修正方程的简化形式为:
Q B V
V
PQ 分解法的修正方程式的特点:
1.以一个 (n-1)阶和一个 (m-1)阶系数矩阵 B 、 B 替代原有的系数矩阵 J,提高了
计算速度,降低了对贮存容量的要求。
2.以迭代过程中保持不变的系数矩阵 B 、B 替代原有的系数矩阵 J,显着的提高
了计算速度。
3.以对称的系数矩阵 B 、 B 替代原有的系数矩阵 J,使求逆等运算量和所需的储
存容量都大为减少。
P-Q 分解法两个主要特点:
1. 降阶在潮流计算的修正方程中利用了有功功率主要与节点电压相位有关,无
功功率主要与节点电压幅值有关的特点,实现 P-Q 分解 ,使系数矩阵由原来的2N×2N 阶降为 N×N 阶,N 为系统的节点数 (不包括缓冲节点 )。
2.因子表固定化利用了线路两端电压相位差不大的假定,使修正方程系数矩阵
元素变为常数 ,并且就是节点导纳的虚部。
由于以上两个特点 ,使快速分解法每一次迭代的计算量比牛顿法大大减少。
P-Q 分解法只具有一次收敛性 ,因此要求的迭代次数比牛顿法多 ,但总体上快速分解法
的计算速度仍比牛顿法快。
快速分解法只适用于高压网的潮流计算,对中、低压网,因线路电阻与电抗的比值大 ,线路两端电压相位差不大的假定已不成立 ,用快速分解法计算 ,会出现不收敛问题。