高三数学课件 圆锥曲线定义在高考中的应用
- 格式:ppt
- 大小:2.46 MB
- 文档页数:26
圆锥曲线在高考数学中的应用圆锥曲线在高考数学中的应用是一个广为人知的话题。
圆锥曲线是数学中非常重要的一个概念,它在几何、代数、物理等多个领域中都有着广泛的应用,同时也是高中数学中的重要知识点之一。
在高考中,圆锥曲线不仅是数学选择题中常出现的题型,而且在解析几何中也有重要的应用和指导意义。
一、圆锥曲线的定义和分类在空间直角坐标系中,对于任意给定的两个定点 F1 和 F2 ,以及一个正实数 e(离心率),设点 P(x, y,z) 在平面 F1PF2 上,且点 P 到 F1、F2 两点的距离之比为 e,则称 P(x, y,z) 所在的曲线为椭圆,当 e=1 时,称为双曲线。
以直角坐标系中的 x 轴为对称轴,离心率为 e 的曲线称为扁平椭圆,离心率为 1 的曲线称为各向同性圆;以直角坐标系中的 y 轴为对称轴,离心率为 e 的曲线称为长圆,离心率为 1 的曲线称为抛物线;直角坐标系中过 y 轴的某一条直线称为对称轴,离心率为 e 的曲线称为双曲线,当 e=1 时,曲线即为平行于对称轴的两条渐进线的双曲线。
二、圆锥曲线在高考中的应用1. 选择题中的圆锥曲线圆锥曲线作为数学中重要的知识点之一,也是高考数学试卷中出现频率较高的题型之一。
在选择题中,考生通常需要根据所给出的条件来确定所求函数方程的类型,根据曲线的性质推算出符合条件的答案。
例如:已知点 A(2,0)、B(0,1) 和抛物线 C:y=mx^2+mx-1 的顶点在直线AB 上,且交点为 D。
则一个满足 D(-2,-3) 的曲线方程式为(A)双曲线(B)椭圆(C)抛物线(D)圆这道问题主要考察考生对于曲线类型的判断能力和对于直线方程、抛物线特征等知识点的掌握能力。
2. 解析几何中的圆锥曲线在解析几何中,圆锥曲线是几何学中不可或缺的内容之一。
其中,椭圆、双曲线和抛物线最为常见,它们的数学模型、特征方程以及轨迹方程等知识点在高考中都有一定的出现概率。
例如:已知椭圆的中心在坐标原点,长轴为 10,短轴为 6,曲线经过点(8,0)和(-8,0),则该椭圆的方程是:(A)x^2/25+y^2/9=1(B)x^2/100+y^2/36=1(C)x^2/36+y^2/100=1(D)x^2 /9+y^2/25=1这个问题主要考察考生通过已知条件推导出椭圆的方程的能力,需要对于椭圆的中心、坐标轴长度等特征有较为准确的掌握。
解析高考数学中的圆锥曲线及应用近年来,高考数学中的圆锥曲线部分一直是考生们的重点之一,也是不少学生难以攻克的难点。
在这篇文章中,我们将对圆锥曲线进行较为全面的解析,并探讨其在实际应用中的具体意义。
一、圆锥曲线的概念和基本形态圆锥曲线,是指在平面直角坐标系中,由一个固定点F(焦点)与一条固定直线l(准线)所确定的点P的轨迹。
这个点P与焦点的距离PF与P到直线l的距离PL之比始终相等,该比值称为偏心率,用字母e表示。
具体而言,圆锥曲线可以分为四类:椭圆、双曲线、抛物线和直线。
1. 椭圆椭圆是由一个固定点F1(焦点)和另外一个固定点F2(F2≠F1)到平面上的所有点P距离之和为定值的轨迹。
该定值等于两焦点距离之和的一半,用字母2a表示。
对于一个椭圆来说,它的中心点是两焦点的中点O,偏心距离e=OF1/OF2,长轴长度为2a,短轴长度为2b。
2. 双曲线双曲线是由一个固定点F1(焦点)和另外一个固定点F2(F2≠F1)到平面上的所有点P距离之差为定值的轨迹。
该定值等于两焦点距离之差的绝对值,用字母2a表示。
对于一个双曲线来说,它的中心点是两焦点的中点O,偏心距离e=OF1/OF2,距离焦点较远的那一部分曲线称为“远焦双曲线”,距离焦点较近的那一部分曲线称为“近焦双曲线”。
3. 抛物线抛物线是由一个固定点(焦点)F和一条固定直线(准线)l到平面上所有点P的距离之比为定值的轨迹。
该定值等于距离焦点F最近的点到准线l的距离,用字母p表示。
对于一个抛物线来说,它的中心点是准线l上的中点O,焦距f=2p。
4. 直线直线可以看作是一个非常特殊的圆锥曲线,它的两个焦点在无穷远点,准线可以看作是无穷远处的一条直线。
因此,直线的偏心率为0。
二、圆锥曲线的方程及参数表示圆锥曲线可以用不同的方程和参数表示,常用的有标准方程、参数方程和极坐标方程。
1. 椭圆的方程和参数表示椭圆的标准方程为:(x/a)^2+(y/b)^2=1。
圆锥曲线的定义及应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
二、圆锥曲线的方程。
1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)X围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)X围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)X围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。
解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。
案例:圆锥曲线定义浙江省洞头县第二中学/陈展(325701)教学背景《圆锥曲线》一章是高考的重要内容。
基于普通中学学生数学基底薄弱的典型特征与新课程课时安排的结构要求,《圆锥曲线定义的应用》被安排在高考第一轮复习中,可以体现承前启后的目的。
高中学生已经非常适应多媒体辅助教学,因此,本节课也体现了这一特点。
课前仅要求学生复习圆锥曲线的定义及性质。
教学目标1.探索应用圆锥曲线定义解决问题的思维形成过程,体会代数与图形之间的联系,熟练掌握数形结合的数学思想方法。
2.体会数学的应用价值,注重探索,逐步获得建构数学模型,并创造性解决问题的知识经验,提高、深化学生对定义的理解与感悟, 激发学生对定义概念的学习兴趣,进一步培养学生的创新精神及学以致用的实践能力。
设计依据完形趋向律认为良好的连续结构易被知觉成一个整体,有利于保证数学知识的系统性,有利于知识的迁移。
教学流程一、创设情境 感受定义应用T :已知椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点。
今有一个水平放置的椭圆形台球盘,点A 、B 是它的两个焦点,长轴长为2a ,焦距为2c 。
当静放在点A 的小球(小球的半径不计)从点A 沿直线击出,经椭圆壁反弹后再回到点A 时,求小球经过的路程。
S :小球经过的路程为4a 。
T :为什么?S :根据椭圆的第一定义得出。
T :很好,如果增加一个条件:小球必须经过椭圆内部的定点P ,则满足条件的路线可能有几条?学生思考了一会儿。
S :定点可以是焦点吗? T :是的。
S :答案分两类:定点如是焦点则有无数条;定点不是焦点则仅有一条(如下图)。
T :那么,第2类中的定点P 又有什么特点呢?请看例1。
这个情境设计使学生不知不觉中体验到定义应用解题的乐趣。
二、逐步深入 浮现数学模型 例1已知P 为椭圆x 225 +y 216 =1上任一点,F 为椭圆的左焦点,A(2,1)为椭圆内一点,求|PF|+|PA|的最大值(多媒体显示)。
高考数学圆锥曲线详解与实例现代数学是应用数学和纯粹数学两大分支的结合,其中纯粹数学又包含了数学的许多分支,例如代数学、几何学、拓扑学等等,而几何学更是涉及到了各种图形的研究。
圆锥曲线作为几何学中的一种非常基础的图形,在高中数学中就已经开始进行系统的学习,而在高考中也是经常出现的考点。
本文将详细讲解圆锥曲线的基本概念及其应用实例,帮助大家更好地理解和掌握这一知识点。
一、圆锥曲线的概念圆锥曲线指的是通过按一定规律割圆锥而得到的曲线,其中包括圆、椭圆、双曲线和抛物线。
以割圆锥的方式命名的原因是因为,圆锥曲线最初是通过圆锥割切而得到的。
圆锥曲线的基本定义为平面上满足二次方程的点集,其中二次方程的形式为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C不全为0。
二、圆的特点圆是一类非常基础的圆锥曲线,通常用来描述一些圆形问题。
圆的特点是,它是由平面上所有到某一点距离相等的所有点组成的。
这一点通常被称作圆心,而到圆心距离的长度则被称作半径。
圆的一些基本性质包括面积公式πr²以及周长公式2πr,其中r为半径长度。
三、椭圆的特点椭圆是圆锥曲线中比圆复杂的一种曲线,它的定义为平面上满足二次方程x²/a² + y²/b² = 1的点的集合,其中a和b分别是椭圆的半长轴和半短轴。
椭圆的一些基本性质包括离心率e=sqrt(1-b²/a²)以及面积公式πab。
椭圆还可以被视为一个圆沿着其周长不断拉伸而成的。
四、双曲线的特点双曲线是圆锥曲线中比椭圆更为复杂的一种曲线,它的定义为平面上满足二次方程x²/a² - y²/b² = 1的点的集合(或者换为y²/b² -x²/a² = 1)。
双曲线和椭圆的一个重要区别在于它们的离心率。
_l圆锥曲线的定义尽管简单,但很重要,是推导标准方程和研究几何性质的基础和根源。
高考常常涉及,2008高考试题中有七套考察了定义。
回归定义和有意识利用定义是高三学生需要加强的一个意识。
把握圆锥曲线的定义从两个方面入手即可:定义表达式和限制条件。
现归纳1.求曲线的轨迹,即定义法。
2.涉及椭圆和双曲线上的点和两个焦点的“焦点三角形”问题,常利用定义表达式结合余弦定理解决。
3.研究曲线上的点和定点间距离的最值问题(和抛物线的焦点弦问题)。
这里分别讲述:一.椭圆的定义及应用 1.定义的把握:题组训练:⑴.若动点M (x,y )到定点F1(-4,0)和F2(4,0)的距离的和为10,则动点M 的轨迹为( )A.椭圆B.双曲线C.线段D.无图形⑵.若动点M (x,y )到定点F1(-4,0)和F2(4,0)的距离的和为8,则动点M 的轨迹是 。
⑶.若动点M (x,y )到定点F1(-4,0)和F2(4,0)的距离 的和为6,则动点M 的轨迹是 。
⑷.方程()104)4(x 2222=-++++y x y ,表示的曲线是答案: ⑴. A ⑵. 线段21F F⑶.不存在⑷.焦点为F1(0,-4),F2(0,4),长轴长为10的椭圆2.定义的应用例1.如图,圆O 的半径为定长r ,A 是圆O 内一个定点,圆上任意一点,线段AP 的垂直平分线l 和半径OP Q ,当点P 在圆上运动时,点Q 的轨迹是什么? 解答:连接AQ ,QO+QP=QO+QA>AO ,所以点Q 的轨迹是 以A 和O 为焦点半径r 为长轴长的椭圆。
例2.M 是椭圆14922=+y x 上的任意一点,F 1、F 2是椭圆的左右焦点,21MF MF ⨯则的最大值是 . 分析:621=+MF MF ,21MF MF ⨯≤2212⎪⎪⎭⎫⎝⎛+MF MF =9 ∴答案是9二.双曲线的定义及应用1.定义的把握: 题组训练 ⑴. 方程()()855x 2222=+--++y x y 的表示的曲线是⑵. 若动点M (x,y )到定点F1(-5,0)和F2(5,0)的距离的差为6,则动点M 的轨迹为( )A.双曲线B.双曲线的一支C.一条射线D.无图形 ⑶. 方程()()12552222=+--++y x y x 表示的曲线是 。