三年级奥数春季班第二讲鸡兔同笼.pdf
- 格式:pdf
- 大小:634.79 KB
- 文档页数:6
第二讲:鸡兔同笼一、基本型已知:总头数、总腿数求:鸡兔各多少方法:(一)画图法(略,请同学们回忆画图法,并以此牢记假设法的步骤注意:先画头)(二)假设法(核心方法,牢记)1、假设全是鸡,算总腿数2、找总差3、找单位差4、总差÷单位差,得兔的只数。
(如果先假设全是兔,除法就得到鸡的只数)(三)马戏法1、口令“收腿”:腿数÷2=半腿数(为什么这么做?因为收起一半的腿后,一只鸡1条腿,一只兔2条腿,如果全是鸡,腿数和头数应该相等,如果有一只兔子,那就多1条腿,有2只兔子,就多2条腿……所以看这时候的腿比头多多少,就知道有多少兔子了)2、半腿数-总头数=兔数3、总头数-兔数=鸡数注意:“收腿”的目的及意义,程老师建议同学们在计算2条腿和4条腿的鸡兔同笼问题时用这种方法。
例1 鸡兔共35只,每只鸡2条腿,每只兔4条腿,共有100条腿,请问几只鸡?几只兔? 假设法:假设全是鸡,总腿数为:2×35=70(条)……假设全是鸡,应该有70条腿总差: 100-70=30(条)……实际和假设的有差距,实际多出来30条腿单位差: 4-2=2(条) ……那就给鸡多安腿,让它变成兔,但1只鸡只能再安2条腿兔: 30÷2=15(只)……30条腿要安在15只鸡上,这15只就变成兔了 鸡: 35-15=20(只)……剩余的才是鸡假设全是兔:总腿数为:4×35=140(条)……假设全是兔,应该有140条腿总差: 140-100=40(条)……实际和假设的有差距,实际少了40条腿单位差: 4-2=2(条)……那就给兔拔腿,让它变成鸡,1只兔只能拔2条腿 鸡: 40÷2=20(只)……30条腿要从15只兔拔下来,这15只就变成鸡 兔: 35-20=15(只)……剩余的才是兔马戏法:收腿:100÷2=50(条)兔:50-35=15(只)鸡:35-15=20(只)二、“鸡兔”变型“鸡兔同笼”本质1、有两种东西(鸡、兔)2、这两种东西有相同点(都是1个头)3、这两种东西有不同点(鸡2条腿,兔4条腿)做题找关键1、什么是“鸡兔”2、什么是“头”——即画图时什么一个圆圈代表的是什么3、什么是“腿”例2 荣荣宝宝平时有储存零花钱的好习惯,打开存钱罐一数,有5角和1元的硬币共25枚,总钱数为19元,这两种硬币各有多少枚?解析:1、两种东西——5角硬币,1元硬币2、相同点(头)——都是1枚1枚的(1枚相当于1个头)3、不同点(腿)——5角, 10角(5角硬币长5条腿,1元硬币长10条腿)假设法:假设全是5角,总钱数:5×25=125(角) 总差:190-125=65(角) 单位差:10-5=5(角)1元:65÷5=13(枚)5角:25-13=12(枚) 假设全是1元,总钱数:1×25=25(元)总差:25-19=6(元)单位差:1-0.5=0.5(元)5角:6÷0.5=12(枚)1元:25-12=13(枚)(尖子)学案3 张老师和班上的50名同学一起吃月饼,张老师吃了5块月饼,男生每人吃4块,女生每人吃2块,最后一共吃了135块月饼,求有几名男生,几名女生?解析:题目问的是男女生,跟张老师没关系,所以我们一定想到先把张老师减出去,然后 两种东西——男生、女生相同点(头)——都论“名”,1名相当于1个头不同点(腿)——男生4块,女生2块(男生4条腿,女生2条腿)思考:2条腿和4条腿的在一起,可以用马戏法!男女生共吃:135‐5=130(块)收一半:130÷2=65(块)男生:65‐50=15(名)女生:50‐15=35(名)例3 燕兴小学举行数学竞赛,共20道试题,做对一题得5分,没有做一题或做错一题都要倒扣2分,张丽得了79分,问她做对了几道题?解析:两种东西——对题,错题相同点——1“道”就相当于1个头不同点——对题+5分,错题-2分(注意,扣2分和得2分一样吗)假设法:假设全对,总分:5×20=100(分)总差:100‐79=21(分)单位差:5+2=7(分)……单位差是单位量的差距,一个题做对与做错相差7分。
鸡兔同笼1
1.笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?
2.笼中有若干只鸡和兔,它们共有38个头和120只脚,问鸡兔各有多少只?
鸡兔同笼2
1.买3角与5角的邮票共24张,总值9.6元,问两种邮票各买了几张?
2.买3角与5角的邮票共32张,总值15元,问两种邮票各买了几张?
鸡兔同笼3
1.动物园里养了一些梅花鹿和鸵鸟,共有腿84条,鸵鸟比梅花鹿多6只,梅花鹿和鸵鸟各多少只?
2.有一堆化肥,大卡车每辆运4吨,小卡车每辆运2吨,共运142吨化肥,大卡车比小卡车多4辆,问大小卡车各几辆?
答案
鸡兔同笼1
1.20只兔,30只鸡
2.22只兔,16只鸡
鸡兔同笼2
1.3角12张,5角12张
2.3角5张,5角27张
鸡兔同笼3
1.鸵鸟18只,梅花鹿12只
2.大卡车25辆,小卡车21辆。
鸡兔同笼一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤1.砍足法(金鸡独立):解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只)了.-=(只).显然,鸡的只数就是351223这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,还有“鸡兔同笼”问题的经典思路“假设法”.2.假设法:假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数3.鸡兔关系当头数一样时,脚的关系:兔是鸡的2倍;当脚数一样时,头的关系:鸡是兔的2倍一鸡一兔1.鸡兔同笼,头共46,足共128,鸡兔各几只?【解析】(假设法或砍足法均可)假设46只都是兔,一共应有446184⨯=(只)脚,这和已知的128只脚相比多了18412856-=(只)脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228-=÷=(只)鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818(只).当然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.2.鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【解析】⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算18010080-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240-=(只)兔子.÷=(只)鸡被当作了兔子,所以共有40只鸡,有45405注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑴“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250-=,÷=(条)腿,比头数多50455所以有5只兔子,另外40只是鸡.3.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【解析】由于每只动物有两只眼睛,由题意知:动物园里鸵鸟和大象的总数为:36218÷=(只),假设鸵鸟和大象一样也有4只脚,则应该有41872⨯=(只)脚,多了725220-=(只)脚,由假设引起的差值:422÷=-=(只),则鸵鸟数为20210(只),大象数为18108-=(头).4.动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【解析】假设梅花鹿和鸵鸟的只数相同,则从总脚数中减去鸵鸟多的20只的脚数得:-⨯=(只).这168只脚是梅花鹿的脚数和鸵鸟的脚数(注意此时梅花208202168鹿和鸵鸟的只数相同)脚数的和,一只梅花鹿和一只鸵鸟的脚数和是:246+=(只),所以梅花鹿的只数是:168628+=(只) (本÷=(只),从而鸵鸟的只数是:282048题也可给学生讲成“捆绑法”,一鸡一兔一组,这个怎么分组是由倍数关系得到的)5. 一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【解析】 已知鸡比兔多36只,如果把多的36只鸡拿走,剩下的鸡兔只数就相等了,拿走的36只鸡有23672⨯=(只)脚,可知现在剩下79272720-=(只)脚,一只鸡与一只兔有6只脚,那么兔有7206120÷=(只),鸡有12036156+=(只).6. 鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【解析】 这道例题和前面的例题有所不同,前面的题是已知头数之和和脚数之和求各有几只,而这道题是已知头数之和和脚数之差,这样就比前面的例题增加了一点难度.我们用两种方法来解这道题.(方法一)考虑如果补上鸡脚少的56只的话,那么就要增加56228÷=(只)鸡.这样一来,鸡、兔共有10728135+=(只),这时鸡脚、兔脚一样多.已知一只鸡的脚数是一只兔的一半,而现在鸡脚、兔脚相同,可知鸡的只数是兔的2倍,根据和倍问题有:兔有:135(21)45÷+=(只),鸡有:135452862--=(只)或者1074562-=(只)(方法二)不妨假设107只都是兔,没有鸡,那么就有兔脚:1074428⨯=(只),而鸡的脚数为零.这样兔脚比鸡脚多428只,而实际上只多56只,这说明假设的兔脚比鸡脚多的数比实际上多:42856372-=(只).现在以鸡换兔,每换一只,兔脚减少4只,鸡脚增加2只,即兔脚与鸡脚的总数差就会减少426+=(只).鸡的只数:372662÷=(只)兔的只数:1076245-=(只)7. 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【解析】 假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多20020180-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而(只)180630÷=,因此有兔子30只,鸡1003070-=(只).8. 每只完整的螃蟹有2只鳌、8只脚。
大尾巴图老师抓到了一些鸡和兔子。
数数脚有46只,数数头有20只。
请问:大尾巴先生抓住了多少只鸡,多少只兔子?【拓展】 大尾巴先生去非洲大草原旅行,在一片草场上发现了他不认识的鸵鸟和斑马。
数数头有32个,数数脚有74只。
请问这这片草场上有鸵鸟和斑马各多少只?停车场上有三轮车,汽车共50辆,共有轮子168个。
请问三轮车和汽车各有多少辆?【铺垫】和尚吃馒头,小和尚每人吃1个,大和尚每人吃3个。
现在共有42个馒头正好分给24个和尚,不多也不少。
请问:大小和尚各有多少人?和尚吃馒头,小和尚3人吃1个,大和尚每人吃3个。
现在共有42个馒头正好分给46个和尚,不多也不少。
请问:大小和尚各有多少人?(★★★) (★★★) (★★★) (★★★) (★★★★)【铺垫】鸡兔同笼,鸡和兔的数量一样多,共有48条腿,求鸡和兔各有几只?鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?同学们去春游,大船每船坐6人,小船每船坐4人。
全班共有46人,刚好租借10条船。
请问:大船小船各有几条?【超常大挑战】 东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣 3分。
小明得了60分,问他做对了几道题?【知识大总结】鸡兔同笼1.基本类型(鸡飞法)⑴先按脚少动物的脚数抬脚;⑵地面上剩下的脚都是____的脚;⑶每只兔子还剩下____只脚。
2.和差倍型鸡兔⑴当只数一样多的时候,___是___的2倍;⑵当脚数一样多的时候,___是___的2倍。
3.小明考试⑴假设法:假设小明全对;⑵小明把一道题由对改错将会被减掉____分。
(★★) (★★★) (★★★) (★★★)。
三年级奥数春季班鸡兔同笼第二讲鸡兔同笼基本概念:鸡兔同笼是我国古代着名趣题之一。
大约在1500 年前,《孙子算经》中就记载了这个有趣的问题。
鸡兔问题又称为置换问题,通过假设统一成一种动物,再把假设错的那部分在置换出来。
一、基本型(告诉头和、腿和)(一)假设法(核心方法,同学们可通过画图来帮助理解)1、假设全是鸡(兔子投降法)2、假设全是兔(鸡拄双拐法)做题步骤:①假设全是鸡,算总腿数②找总差(共少算腿数)③找单位差(一只兔子少算腿数)④总差÷单位差=兔子数(如果假设全是兔,则先算出的是鸡的数量)(二)砍腿法(不通用)1、砍去一半腿:总腿数÷2=半腿数2、半腿数-总头数=兔子数(只鸡1条腿,一只兔2条腿,如果全是鸡,腿数和头数应该相等,如果有一只兔子,就多1条腿,有两只兔子,就多2条腿……所以,腿比头多多少,就有多少兔)3、总头数-兔子数=鸡数例1、鸡兔共35只,每只鸡2条腿,每只兔4条腿,共有100条腿,请问几只鸡几只兔假设法:假设全是鸡,……35 只假设总腿数:35×2=70(条)与实际相比腿少算总数:100-70=30(条)一只兔子少算腿:4-2=2(条)被少算腿的兔子:30÷2=15(只)鸡:35-15=20(只)假设全是兔,总腿数:35×4=140(条)与实际相比腿多算总数:140-100=40(条)一只鸡多算腿:4-2=2(条)被多算腿的鸡:40÷2=20(只)兔子:35-15=20(只)砍腿法:半腿数:100÷2=50(条)兔子:50-35=15(只)鸡:35-15=20(只)【注意】砍腿法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,六级下·基础-提高-尖子 1 / 6多简单!能够这样算,主要利用了兔和鸡的脚数分别是4 和2, 4 又是2 的2 倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4 和2,上面的计算方法就行不通。
三年级奥数第二阶段辅导——典型应用题(8)鸡兔同笼问题典例分析:【类型1:一鸡一兔】:鸡兔同笼,头共46,足共128,鸡兔各几只?【巩固1】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【巩固2】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【类型2:一鸡一兔条件变形】:动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【巩固1】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【巩固2】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【巩固3】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【类型3:一鸡一兔变形1】:在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?【巩固1】体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?【巩固2】100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组。
问:高、低年级学生各多少人?【巩固3】三(1)班有象棋、飞行棋共14副,恰好可供全班40名同学同时进行活动.象棋要2人下一副,飞行棋要4人下一副,则飞行棋和象棋各有几副?【巩固4】某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【类型4:一鸡一兔变形2】:工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【巩固1】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【巩固2】某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
鸡兔同笼变例知识结构一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:(1)如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲【例 1】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】做错(52079 ) (52)3⨯-÷+=(道),因此,做对的20317-=(道).【答案】17道【巩固】 一次口算比赛,规定:答对一题得8分,答错一题扣5分。
鸡兔同笼1 .鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?2 .鸡、兔共100只,共有脚280只。
鸡、兔各多少只?3 .鸡、兔共50只,共有脚160只。
鸡、兔各几只?4 .鸡、兔共45只,鸡的脚比兔的脚多60只。
鸡、兔各多少只?5 .鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?6 .鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?7 .买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?8 .鸡兔共有脚48只,如果将鸡的只数与兔的只数互换则共有脚42只。
鸡、兔各几只?9 .某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?10 .某小学进行英语竞赛,每答对一题得10分,答错一题倒扣4分,共15题,小华得了102分。
小华答对几题?11 .运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?12 .某车间生产一批服装共250件,生产1件可得25元,如果有1件不符合要求,则倒扣20元。
生产后得到费用5350元,有几件不符合要求?13 .水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?14 .小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
原来苹果有多少个?15 .某商店有些红气球和黄气球,红气球的只数是黄气球的4倍。
每天卖出2只红气球和1只黄气球,若干天后,红气球剩下12只,黄气球刚好卖完。
红气球原来有多少只?16 .四(3)班有彩色粉笔和白粉笔若干盒,白粉笔是彩色粉笔的7倍。
每天用去2盒白粉笔和1盒彩色粉笔,当彩色粉笔全部用完时,白色粉笔还剩10盒。