纳米材料的基本理论
- 格式:pptx
- 大小:489.91 KB
- 文档页数:39
纳米材料课程基本情况面向全校本科学员开设的、自然科学与工程技术系列本科公共选修课;关于纳米材料的入门课程。
纳米材料是当今材料科学的研究前沿和热点,内涵丰富,应用潜力大,知识更新速度快,有必要进行系统讲授。
通过学习纳米材料相关知识,可了解其在武器装备中的应用前景,拓展知识面,激发对科技前沿领域的兴趣,培养创新意识。
参考教材刘漫红, 等. 纳米材料及其制备技术. 北京: 冶金工业出版社,2014.08;林志东. 纳米材料基础与应用. 北京: 北京大学出版社,2010.08;张立德, 牟季美. 纳米材料和纳米结构. 北京: 科学出版社,2001.02.第1章纳米材料概述要求:掌握纳米尺度、纳米材料的概念与内涵,熟悉常见纳米材料及其应用前景,了解纳米科技发展。
1.1 纳米尺度概念(1)1纳米是多少纳米(nanometer)是一个长度单位,简写为nm,1 nm=10-9 m=10 Å;换一种方式:1 m=103 mm=106μm=109 nm。
头发直径:50-100 m,1 nm相当于头发的1/50000-1/100000。
氢原子的直径为1 Å,1 nm等于10个氢原子排起来的长度。
(2)人类对世界和物质的认识层次宇观(Cosmoscopic) :星系等天体系统,距地球最远星系约220 亿光年;可直接观测但不能以物质手段加以影响和变革的时空区域。
包括星团、星系、星系团、超星系团、总星系团及遍布宇宙空间的射线和引力场所构成的物质系统。
宇观世界的运动需用广义相对论、宇宙电动力学和星系力学描述。
宏观(Macroscopic):人类肉眼所涉及的空间范围;介观(Mesoscopic):包括从微米、亚微米到纳米尺寸的范围;微观(Microscopic):以原子为最大起点,下限是无限的领域。
(3)纳米尺度纳米尺度正好处于以原子、分子为代表的微观世界和以人类活动空间为代表的宏观世界的中间地带,称为介观世界。
绪论1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。
Richard Feynman:世界上首位提出纳米科技构想的科学家。
2、纳米材料(1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因)(2)纳米尺度:1-100 nm范围的几何尺;纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。
(3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等(4)纳米材料的维度:○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状)○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构)○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构)○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成)(5)纳米材料的分类○1具有纳米尺度外形的材料○2以纳米结构单元作为主要结构组分所构成的材料3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。
4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。
分辨率达0.1~0.2 nm,可以直接观察和移动原子。
5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。
可用于研究半导体、导体和绝缘体。
AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。
6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程分支学科:纳米力学:研究物体在纳米尺度的力学性质纳米物理学:研究物质在纳米尺度上的物理现象及表征纳米化学:研究纳米尺度范围的化学过程及反应纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制;纳米医学:利用纳米科技解决医学问题的边缘交叉学科纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。
纳⽶材料与技术-纳⽶微粒的基本理论第⼆章纳⽶微粒的基本理论⼀、⼩尺⼨效应⼆、表⾯效应三、量⼦尺⼨效应四、宏观量⼦隧道效应五、库仑堵塞效应六、介电限域效应⼀、⼩尺⼨效应随着颗粒尺⼨的量变,在⼀定条件下会引起颗粒性质的质变。
由于颗粒尺⼨变⼩所引起的宏观物理性质的变化称为⼩尺⼨效应(体积效应)。
对超微颗粒⽽⾔,尺⼨变⼩,就会产⽣如下⼀系列新奇的性质:当微粒的尺⼨与光波波长、电⼦德布罗意波长以及超导态的相⼲长度或透射深度等物理特征尺⼨相当或更⼩时,晶体周期性的边界条件将被破坏,微粒表⾯层附近的原⼦密度减⼩,导致材料的磁性、光吸收、化学活性、催化特性以及熔点等与普通粒⼦相⽐有很⼤变化,这就是纳⽶粒⼦的⼩尺⼨效应。
1. 尺⼨与光波波长(⼏百nm )相当颗粒光吸收极⼤增强、光反射显著下降(低于1%);⼏个nm 厚即可消光,⾼效光热、光电转换 ? 红外敏感、红外隐⾝固体在宽谱范围内对光均匀吸收光谱蓝移(晶体场)、新吸收带等。
2. 与电⼦德布罗意波长相当铁电体 ? 顺电体;多畴变单畴,显出极强的顺磁性。
20nm 的Fe 粒⼦(单磁畴临界尺⼨),矫顽⼒为铁块的1000倍,可⽤于⾼存储密度的磁记录粉;但⼩到6nm 的Fe 粒,其矫顽⼒降为0,表现出超顺磁性,可⽤于磁性液体(润滑、密封)等离⼦体共振频移(随颗粒尺⼨⽽变化):改变颗粒尺⼨,控制吸收边的位移,制造具有⼀定频宽的微波吸收纳⽶材料(电磁波屏蔽、隐型飞机等)纳⽶磁性⾦属磁化率提⾼20倍(记录可靠);饱和磁矩仅为1/2(更易擦除)。
3. 晶体周期性丧失,晶界增多熔点降低(2nm 的⾦颗粒熔点为600K ,随粒径增加,熔点迅速上升,块状⾦为1337K ;纳⽶银粉熔点可降低到373K )? 粉末冶⾦新⼯艺界⾯原⼦排列混乱→易变形、迁移表现出甚佳的韧性及延展性纳⽶磷酸钙构成⽛釉,⾼强度、⾼硬度纳⽶Fe 晶体断裂强度提⾼12倍;纳⽶Cu 晶体⾃扩散是传统的1016-19倍;纳⽶Cu 的⽐热是传统Cu 的2倍;纳⽶Pd 的热膨胀系数提⾼⼀倍;纳⽶Ag ⽤于稀释致冷的热交换效率提⾼30%,等等。
纳米材料的介绍一、纳米材料概述纳米材料是指纳米级尺寸的材料,具有良好的化学、光学等性能。
纳米材料泛指三维空间中至少有一维处于纳米尺寸或由它们作为基本单元构成的材料。
根据物理形态的不同,纳米材料可划分为五类:纳米薄膜、纳米粉体、纳米纤维、纳米块体、纳米相分离液体。
纳米材料的性能一般由量子力学决定,其光、电、磁、热性能与普通材料存在明显的差异。
相较于传统材料制品,纳米材料制品在光学、热学、力学、化学等性能方面具有明显优势。
从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1-100纳米范围内的一种固体材料。
主要包括晶态、非晶态的金属、陶瓷等材料组成。
因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。
这些特殊性质所表现出来的有导电、导热、光学、磁性等。
目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。
二、纳米材料定义纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
由于其组成单元的尺度小,界面占用相当大的成分。
因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。
纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从微观到宏观的过渡有更深入地认识。
三、纳米材料的性质1、"强" 在电子,医保,环保,能源等领域具有更多的优势。
2、"高" 适用纳米材料制作的器材,拥有更高的耐热,导电,高磁导性,可塑性。
3、"轻" 纳米材料更加轻更加便利,体积变小的同时还可以提高效率。
材料科学1、纳米材料导论(选修课)绪论0.1纳米科技的兴起1959年,美国著名物理学家(1965年诺贝尔物理学奖获得者)费因曼教授(R.P.Feynman)曾指出:“如果有一天人类能够按人的意志安排一个原子和分子,那将会产生什么奇迹?”今天,这个美好的愿望已经开始走向现实.目前,人类已经能够制备出包括有几十个到几万个原子的纳米颗粒,并把它们作为基本单元构造一维量子线、二维量子面和三维纳米固体,创造出相同物质传统材料完全不具备的奇特性能。
这就是面向21世纪的纳米科学技术。
0.2纳米材料的研究历史人类对物质的认识分为宏观和微观两个层次。
宏观是指研究的对象尺寸很大,并且下限有限,上限无限(肉眼可见的是最小宏观,而上限是天体、星系)。
到目前为止,人类对宏观物质结构及运动规律已经有相当的了解,一些学科领域都已建立,如力学、地球物理学、天体物理学、空间科学等。
微观指原子、分子,以及原子内部的原子核和电子,微观有上限而无法定义下限。
19世纪末到20世纪初,人类对微观世界的认识已延伸到一定层次,时间上达到纳秒、皮秒和飞秒数量级。
建立了相应的理论,例如原子核物理、粒子物理、量子力学等。
相对而言,在原子、分子与宏观物质的中间领域,人类的认识还相当肤浅,被誉为有待开拓的“处女地".近20年以来,人类已经发现,在微观到宏观的中间物质出现了许多既不同于宏观物质,也不同于微观体系的奇异现象。
下面对纳米材料的研究历史作简要介绍。
1 000年以前。
当时,中国人利用燃烧的蜡烛形成的烟雾制成碳黑,作为墨的原料或着色染料,科学家们将其誉为最早的纳米材料。
中国古代的铜镜表面防锈层是由Sn02颗粒构成的薄膜,遗憾的是当时人们并不知道这些材料是由肉眼根本无法看到的纳米尺度小颗粒构成.1861年,随着胶体化学(colloidchemistry)的建立,科学家们开始对1—lOOnm的粒子系统进行研究。
但限于当时的科学技术水平,化学家们并没有意识到在这样一个尺寸范围是人类认识世界的一个崭新层次,而仅仅是从化学角度作为宏观体系的中间环节进行研究。
03第三章纳米材料的能带理论及基本效应纳米材料是一种具有特殊物理、化学和机械性质的材料,其在纳米尺度下的特性与传统的宏观材料有很大的差异。
因此,解释纳米材料特性的理论也需要考虑到纳米尺度下的效应。
本文将介绍纳米材料的能带理论及基本效应。
能带理论是描述材料中电子能级分布的理论模型。
它起源于量子力学和固体物理学,通过量子力学的波函数和演化方程来描述电子在固体中的运动行为。
根据能量-动量关系,能带理论将固体中的能态分为禁带、导带和价带。
这些能带的性质决定了材料的电导率、光学特性和热传导性能等。
在纳米材料中,由于尺寸的减小,量子尺寸效应和表面效应成为能带理论中需要考虑的一部分。
首先,量子尺寸效应源于纳米材料中的电子被限制在小范围内运动,通过限制电子的波长,能带结构会发生变化。
尺寸减小可以导致能带分裂,禁带宽度变大,导致更强的量子限制,从而影响材料的光谱特性。
其次,表面效应指的是材料的表面对电子运动的影响。
纳米材料相比于宏观材料拥有更大的表面积,表面原子相互作用对电子能带结构的影响变得显著。
表面效应可以导致能带结构的改变,例如表面态的出现,禁带的移动等。
另外,纳米材料的尺度效应也会对能带结构产生重要影响。
当纳米材料的尺寸较小时,由于体积的减小,材料内的晶格畸变、应力分布以及原子间相互作用会发生变化,从而导致能带结构的变化。
纳米材料的能带结构对其性质有着重要的影响。
首先,纳米材料的能带结构决定了其电导率。
由于量子限制效应,纳米材料通常具有较高的电阻率。
此外,能带结构还决定了纳米材料的光吸收和发射谱,从而影响其光学性质。
另外,纳米材料的能带结构也会影响其热传导性能。
由于尺寸减小,纳米材料中的晶格振动模式数量减少,热能的传导能力降低。
此外,纳米材料中的界面效应和散射现象也会对热传导产生重要影响。
总之,纳米材料的能带理论及基本效应描述了纳米尺度下材料电子能级分布和相关特性的理论模型。
通过研究纳米材料的能带结构和相关效应,可以揭示纳米材料的特殊性质,并为其在电子学、光学和热学领域的应用提供理论基础。
纳米材料原理
纳米材料是一种具有特殊结构和性能的材料,其尺寸在纳米尺度范围内。
纳米
材料具有独特的物理、化学和生物学特性,因此在材料科学、物理学、化学、生物学等领域具有广泛的应用前景。
纳米材料的研究和应用已经成为当今科学研究的热点之一。
首先,纳米材料的特殊性质源于其尺寸效应。
当材料的尺寸减小到纳米尺度时,其表面积和界面效应将显著增强,从而导致材料的物理、化学和生物学性质发生显著变化。
例如,纳米材料的光学、电子、磁学、力学等性质将与宏观材料有所不同,这为纳米材料的应用提供了新的可能性。
其次,纳米材料的制备和表征技术是纳米科学研究的关键。
纳米材料的制备技
术包括物理方法、化学方法、生物方法等多种途径,如溅射法、溶胶-凝胶法、化
学气相沉积法、生物合成法等。
而纳米材料的表征技术包括透射电子显微镜、扫描电子显微镜、原子力显微镜、X射线衍射等多种手段,这些技术的发展为纳米材料的研究和应用提供了重要的支持。
另外,纳米材料的应用领域包括纳米电子学、纳米光电子学、纳米生物学、纳
米医学、纳米能源等多个领域。
例如,纳米材料可以应用于柔性电子器件、光催化剂、生物传感器、药物载体、锂离子电池等方面,展现出广阔的应用前景。
同时,纳米材料也面临着诸如生物安全性、环境友好性、大规模制备等挑战,这些问题需要进一步的研究和解决。
总的来说,纳米材料是一种具有特殊性质和广泛应用前景的材料,其研究和应
用已经成为当今科学研究的热点之一。
随着纳米科学技术的不断发展,纳米材料必将在材料科学、物理学、化学、生物学等领域发挥重要作用,为人类社会的发展做出重要贡献。