操作系统进程的定义
- 格式:ppt
- 大小:568.50 KB
- 文档页数:38
操作系统创建进程的流程一、引言在计算机科学中,进程是指计算机中正在运行的一个程序实例。
操作系统负责管理和控制进程的创建、执行和终止。
进程的创建是操作系统的重要功能之一,本文将详细介绍操作系统创建进程的流程。
二、进程的定义进程是指在计算机系统中正在运行的一个程序实例,它具有独立的内存空间和执行环境。
每个进程都有自己的标识符(PID)和状态,可以并发地执行不同的任务。
三、进程的创建流程操作系统创建进程的流程大致可以分为以下几个步骤:1. 程序加载:首先,操作系统需要将要执行的程序从存储介质(如硬盘)加载到内存中。
这涉及到磁盘读取和内存分配等操作。
2. 内存分配:在将程序加载到内存中后,操作系统需要为新进程分配一块独立的内存空间。
这样,进程就可以在自己的地址空间中执行,而不会与其他进程相互干扰。
3. 上下文切换:在为新进程分配内存空间后,操作系统需要保存当前进程的上下文信息,包括程序计数器、寄存器等。
然后,操作系统将控制权转移到新进程,开始执行它的代码。
4. 初始化:新进程开始执行后,操作系统需要对其进行初始化。
这包括设置进程的状态、打开文件描述符、建立与其他进程的通信等。
5. 执行程序:一旦新进程被初始化,操作系统就会开始执行该进程的代码。
进程可以执行一系列指令,访问内存和设备资源,并进行各种计算和操作。
6. 进程调度:在多任务环境下,操作系统需要合理地调度进程的执行顺序。
进程调度算法可以根据不同的策略来选择下一个要执行的进程,如时间片轮转、优先级调度等。
7. 进程终止:当进程完成其任务或发生错误时,操作系统会终止该进程的执行。
在终止进程之前,操作系统会释放进程占用的内存和资源,并通知其他相关进程。
四、进程控制块(PCB)操作系统创建进程时,会为每个进程分配一个进程控制块(PCB),用于保存进程的相关信息。
PCB包括进程的标识符、状态、优先级、程序计数器、寄存器、内存分配信息等。
PCB的存在使得操作系统能够有效地管理和控制进程的创建、执行和终止。
哈工大操作系统读书笔记在哈尔滨工业大学的计算机科学与技术专业的学习中,操作系统是我们学科的核心课程之一。
为了更好地掌握操作系统的基本原理和技术,我认真阅读了相关教材,并做了一些笔记。
一、操作系统的基本概念1. 操作系统定义:操作系统是控制计算机硬件和软件资源,管理用户程序运行,提供用户界面和应用程序开发环境的一种系统软件。
2. 操作系统功能:主要功能包括处理机管理、存储管理、文件管理、设备管理以及用户界面。
二、处理机管理1. 进程的定义:进程是程序的一次执行,是系统进行资源分配和调度的基本单位。
2. 进程的状态:包括新建、就绪、运行和阻塞四种状态。
3. 进程控制块PCB:用于描述进程的基本信息和运行状态。
4. 进程调度算法:包括先来先服务、最短作业优先、最短剩余时间优先等。
三、存储管理1. 内存分配方式:包括固定分区、可变分区、分页和分段。
2. 内存置换算法:包括先进先出、最近最少使用、最佳置换算法等。
3. 虚拟内存的概念:通过将内存和外存统一管理,为用户提供一个比实际内存大得多的虚拟内存空间。
四、文件管理1. 文件系统的概念:文件系统是操作系统中负责管理和存储文件信息的软件部分。
2. 文件的分类:按性质分为系统文件和用户文件;按内容分为文本文件和二进制文件;按存储方式分为顺序文件和随机文件。
3. 文件的访问方式:包括顺序访问和随机访问。
五、设备管理1. 设备驱动程序的概念:设备驱动程序是操作系统与硬件设备交互的接口,负责设备的初始化和释放、设备的读写操作以及设备的状态查询等。
2. 缓冲技术的概念:缓冲技术是解决I/O设备速度与CPU速度不匹配问题的一种方法,通过在内存中开辟一块缓冲区,暂时存放输入输出数据,以实现数据的同步传输。
3. 设备分配与回收:设备分配的主要任务是确定哪些进程可以使用哪些设备,并满足设备的互斥使用和独立性等约束条件;设备回收的任务是在进程终止时,将设备的使用权收回并重新分配给其他进程使用。
操作系统:进程的概念和与程序的区别进程的概念和与程序的区别1、进程的定义进程是允许某个并发执⾏的程序在某个数据集合上的运⾏过程。
进程是由正⽂段、⽤户数据段及进程控制块共同组成的执⾏环境。
正⽂段存放被执⾏的机器指令,⽤户数据段存放进程在执⾏时直接进⾏操作的⽤户数据。
进程控制块存放程序的运⾏环境,操作系统通过这些数据描述和管理进程。
2、进程的特征进程是操作系统管理的实体,对应了程序的执⾏过程,具有以下⼏个特征。
并发性。
多个进程实体能在⼀段时间间隔内同时运⾏。
并发性是进程和现代操作系统的重要特征。
动态性。
进程是进程实体的执⾏过程。
进程的动态性表现在因执⾏程序⽽创建进程、因获得CPU⽽执⾏进程的指令、因运⾏终⽌⽽被撤销的动态变化过程。
此外,进程在创建后还有进程状态的变化。
独⽴性。
在没有引⼊线程概念的操作系统中,进程是独⽴运⾏和资源调度的基本单位。
异步性。
是指进程的执⾏时断时续,进程什么时候执⾏、什么时候暂停都⽆法预知,呈现⼀种随机的特性。
结构特征。
进程实体包括⽤户正⽂段、⽤户数据段和进程控制块。
3、进程与程序的⽐较3.1、进程与程序的区别程序是静态的,进程是动态的,程序是存储在某种介质上的⼆进制代码,进程对应了程序的执⾏过程,系统不需要为⼀个不执⾏的程序创建进程,⼀旦进程被创建,就处于不断变化的动态过程中,对应了⼀个不断变化的上下⽂环境。
程序是永久的,进程是暂时存在的。
程序的永久性是相对于进程⽽⾔的,只要不去删除它,它可以永久的存储在介质当中。
3.2、进程与程序的联系进程是程序的⼀次执⾏,⽽进程总是对应⾄少⼀个特定的程序。
⼀个程序可以对应多个进程,同⼀个程序可以在不同的数据集合上运⾏,因⽽构成若⼲个不同的进程。
⼏个进程能并发地执⾏相同的程序代码,⽽同⼀个进程能顺序地执⾏⼏个程序。
关于进程和程序的区别,《现代操作系统》中⽤了⼀个⽐喻形象说明:⼀位有⼀⼿好厨艺的计算机科学家正在为他的⼥⼉烘制⽣⽇蛋糕。
他有做⽣⽇蛋糕的⾷谱,厨房⾥有所需要的原料,在这个⽐喻中,做蛋糕的⾷谱就是程序(即⽤适当形式描述的算法),计算机科学家就是处理机(CPU),⽽做蛋糕的各种原料就是输⼊数据。
操作系统进程的定义操作系统进程的定义1、引言操作系统进程是计算机系统中最基本的执行单位。
在操作系统中,进程是指一个正在执行中的程序实例,在运行过程中占有一定的资源,并且能够并行执行。
进程的概念是计算机科学中的重要概念之一,本文将详细介绍操作系统进程的定义及其相关概念。
2、进程的基本概念2.1 进程的定义进程是计算机中正在执行的程序实例。
每个进程都有自己的程序计数器、寄存器集合、堆栈和相关的系统资源。
进程可以并发执行,相互之间相互独立。
进程可以被操作系统创建、调度、终止或挂起。
2.2 进程的特性- 并发性:多个进程可以同时执行。
- 独立性:每个进程都是相互独立的,进程之间不能直接访问其他进程的内部数据。
- 动态性:进程的创建、调度和终止都是动态的过程。
2.3 进程的状态- 运行状态:进程正在执行。
- 就绪状态:进程已经准备好执行,等待分配处理器资源。
- 阻塞状态:进程等待某些事件的发生,例如等待输入/输出完成。
3、进程控制块(PCB)3.1 PCB的定义进程控制块是操作系统中管理进程的重要数据结构。
每个进程都有一个与之对应的PCB,用于记录进程的状态、进程的标识符、进程的优先级等信息。
3.2 PCB的内容PCB包含以下几个方面的信息:- 进程标识符:用于唯一标识进程的编号。
- 进程状态:记录进程的当前状态,如运行状态、就绪状态或阻塞状态。
- 进程优先级:用于调度算法决定进程的执行顺序。
- 程序计数器:记录进程当前执行的地质。
- 寄存器集合:保存进程的寄存器信息。
- 内存管理信息:记录进程的内存使用情况,如分配的内存地质和内存大小。
- 文件管理信息:记录进程使用的文件资源情况。
4、进程的创建与终止4.1 进程的创建进程的创建是指在系统中创建一个新的进程。
通常情况下,进程的创建是由已经存在的进程调用系统调用来完成的。
操作系统会为新创建的进程分配资源,并初始化进程的PCB。
4.2 进程的终止进程的终止是指一个进程的执行结束或被操作系统终止。
操作系统并发的名词解释操作系统是计算机的核心软件之一,负责管理和协调计算机硬件和软件资源。
在多任务环境下,操作系统必须处理并发的任务,以提高计算机的效率和性能。
并发是指在同一时间间隔内,多个事件、任务或进程同时执行的能力。
在操作系统中,有一些与并发相关的重要概念和术语,本文将对其进行解释。
1. 进程(Process)进程是计算机中运行的程序的实例。
每个进程都有自己的内存空间和资源,可以独立运行,并且可以与其他进程进行通信。
操作系统通过分配时间片来实现多个进程的并发执行,每个进程占用一定的CPU时间,然后切换到下一个进程。
2. 线程(Thread)线程是进程中的一个执行单元。
一个进程可以包含多个线程,它们共享进程的资源,如内存空间和打开的文件。
线程可以独立执行,通过操作系统的调度机制来实现并发。
多线程的好处在于可以更有效地利用计算机的CPU资源,提高程序的响应速度。
3. 上下文切换(Context Switching)上下文切换是指操作系统从一个正在执行的进程或线程切换到另一个进程或线程的过程。
在切换过程中,操作系统需要保存当前进程或线程的上下文信息,并加载需要执行的进程或线程的上下文信息。
上下文切换是实现并发的基本机制,但它也带来了一定的开销,因为保存和加载上下文信息需要时间和计算资源。
4. 同步(Synchronization)同步是多个进程或线程之间协调和共享资源的一种机制。
在并发环境中,多个进程或线程可能同时访问和修改共享资源,而没有适当的同步机制可能导致数据不一致和竞态条件等问题。
常见的同步机制包括互斥锁、信号量和条件变量等,它们可以确保临界区的互斥访问和协调进程或线程之间的顺序。
5. 互斥锁(Mutex)互斥锁是一种常用的同步机制,用于防止多个线程同时访问共享资源。
当一个线程获取了互斥锁后,其他线程必须等待锁的释放才能访问该资源。
互斥锁保证了对共享资源的互斥访问,防止了数据竞争和不一致性。
操作系统进程的定义操作系统进程的定义1.引言在计算机系统中,进程是操作系统进行任务调度和资源管理的基本单位。
本文将介绍操作系统进程的定义及相关概念。
2.进程的概念2.1 进程的定义进程可以被定义为正在执行的程序实例。
每个进程都有自己的地质空间、内存和资源使用情况等属性,并且可以独立地执行和运行。
2.2 进程的特征进程具有以下特征:- 动态性:进程是动态和消亡的,可以动态地创建、终止和切换。
- 并发性:多个进程可以同时运行,实现操作系统的并发执行。
- 独立性:进程之间是独立的,相互之间不会干扰彼此的执行。
- 异步性:进程是独立运行的,它们的执行速度不受外部事件的干扰。
- 结构性:进程由程序、数据和资源组成,具有结构性。
3.进程的状态进程在运行过程中会有不同的状态,常见的进程状态包括:3.1 创建状态:进程正在被创建,但尚未开始执行。
3.2 就绪状态:进程已经准备好运行,正在等待分配CPU资源。
3.3 运行状态:进程正在执行中,占用CPU资源。
3.4 阻塞状态:进程由于某些原因无法继续执行,暂时阻塞。
3.5 终止状态:进程执行完成或被终止,进程即将结束。
4.进程的调度进程调度是操作系统的重要功能,通过调度算法将就绪状态的进程分配给CPU进行执行,并根据优先级和进程的状态进行相应的调度操作。
5.进程间的通信5.1 进程间通信的定义进程间通信(IPC)是指在进程间传输数据或共享信息,实现进程之间的协作和资源共享。
5.2 进程间通信的方式常见的进程间通信方式包括共享内存、消息传递、管道、信号量和套接字等。
6.进程的同步与互斥为了确保进程间数据的一致性,需要进行进程的同步与互斥控制。
同步是指协调进程之间的执行顺序,互斥是指防止多个进程同时访问共享资源。
7.附件本文档无涉及附件。
8.法律名词及注释8.1 进程:指操作系统中正在执行的程序实例。
8.2 地质空间:进程的内存地质范围,用于存储程序和数据。
8.3 资源:进程所需的各种系统资源,如CPU、内存、文件等。
进程与线程的定义、关系及区别进程与线程的定义、关系及区别⼀、进程的定义进程:指在系统中能独⽴运⾏并作为资源分配的基本单位,它是由⼀组机器指令、数据和堆栈等组成的,是⼀个能独⽴运⾏的活动实体。
进程⼀般有三个状态:就绪状态、执⾏状态和等待状态【或称阻塞状态】;进程只能由⽗进程建⽴,系统中所有的进程形成⼀种进程树的层次体系;挂起命令可由进程⾃⼰和其他进程发出,但是解除挂起命令只能由其他进程发出。
进程控制块(PCB):PCB不但可以记录进程的属性信息,以便对进程进⾏控制和管理,⽽且PCB标志着进程的存在,操作系统根据系统中是否有该进程的进程控制块PCB⽽知道该进程存在与否。
系统建⽴进程的同时就建⽴该进程的PCB,在撤销⼀个进程时,也就撤销其PCB,故进程的PCB对进程来说是它存在的具体的物理标志和体现。
⼀般PCB包括以下三类信息:进程标识信息;处理器状态信息;进程控制信息。
由程序段、相关的数据段和PCB三部分构成了进程实体(⼜称进程印像),⼀般,我们把进程实体就简称为进程。
进程的特征:1.动态性:进程的实质是程序的⼀次执⾏过程,进程是动态产⽣,动态消亡的。
2.并发性:任何进程都可以同其他进程⼀起并发执⾏。
3.独⽴性:进程是⼀个能独⽴运⾏的基本单位,同时也是系统分配资源和调度的独⽴单位。
4.异步性:由于进程间的相互制约,使进程具有执⾏的间断性,即进程按各⾃独⽴的、不可预知的速度向前推进。
⼆、线程的定义线程:线程是进程中的⼀个实体,作为系统调度和分派的基本单位。
线程的性质:1.线程是进程内的⼀个相对独⽴的可执⾏的单元。
若把进程称为任务的话,那么线程则是应⽤中的⼀个⼦任务的执⾏。
2.由于线程是被调度的基本单元,⽽进程不是调度单元。
所以,每个进程在创建时,⾄少需要同时为该进程创建⼀个线程。
即进程中⾄少要有⼀个或⼀个以上的线程,否则该进程⽆法被调度执⾏。
3.进程是被分给并拥有资源的基本单元。
同⼀进程内的多个线程共享该进程的资源,但线程并不拥有资源,只是使⽤他们。
操作系统中进程管理的原理操作系统是计算机系统中最为重要的软件之一,其作用是管理计算机的硬件和软件资源,为用户提供一个良好的使用环境。
进程管理是操作系统中的一个重要功能,其原理涉及到多个方面,包括进程的创建、退出、调度、通信等,具有重要的学习价值和实际应用价值。
本文将从进程的定义、特征和组成等方面入手,介绍操作系统中进程管理的原理。
一、进程的定义、特征和组成进程是指正在运行中的程序的一个实例,它是计算机系统中最基本的执行单元。
进程具有以下几个特征:1. 动态性:进程是动态的实体,可以被创建、终止或挂起。
2. 独立性:每个进程都有自己的虚拟地址空间和资源管理机制,能够独立地执行各自的任务。
3. 并发性:多个进程可以在同一时间内执行,实现系统的并发处理。
4. 同步性:进程之间可以通过共享内存、消息传递等方式进行通信和协作,实现数据的交换和同步。
进程由程序代码、数据、堆栈和系统资源等组成。
程序代码是进程的核心,它被存放在内存中,由CPU执行。
数据是进程运行时使用的变量、数组和结构等,它们保存在进程的堆和栈中。
堆是指程序运行时使用的动态分配内存,栈是指程序调用函数时使用的内存空间。
系统资源包括CPU、内存、输入输出设备等。
二、进程的创建和退出进程的创建包括进程控制块(PCB)的分配和初始化、地址空间的分配和初始化、程序代码的装入、系统资源的分配等步骤。
进程的退出则是相反的过程,包括系统资源的回收、地址空间的释放、PCB的回收等。
操作系统中进程的创建和退出通常通过系统调用实现。
在Linux中,创建进程的系统调用是fork(),退出进程的系统调用是exit()。
在Windows中,创建进程的系统调用是CreateProcess(),退出进程的系统调用是ExitProcess()。
三、进程的调度进程的调度是指进程在CPU上的分配和切换。
操作系统中使用多种调度算法对进程进行调度,如先来先服务(FCFS)、短作业优先(SJF)、时间片轮转等。
操作系统中进程的概念操作系统中进程的概念一、引言操作系统是计算机系统中最基础也是最重要的软件之一,它负责管理计算机的硬件资源,为用户提供友好的界面和高效的服务。
而进程则是操作系统中最核心的概念之一,它是指正在运行的程序在内存中的实例。
本文将详细介绍操作系统中进程的概念。
二、什么是进程?1.定义进程(Process)是指在计算机内存中运行的程序实例。
每个进程都有自己独立的地址空间和资源,包括代码、数据、堆栈、打开文件等。
2.特点(1)并发性:多个进程可以同时运行。
(2)独立性:每个进程都有自己独立的地址空间和资源。
(3)动态性:进程可以创建和销毁。
(4)异步性:不同进程之间执行顺序不可预测。
三、进程状态1.就绪状态当一个新建进程被分配到CPU之前,它处于就绪状态。
此时,该进程已经完成了所有必要的初始化工作,并准备好了被调度执行。
2.运行状态当一个就绪状态的进程被调度到CPU上执行时,它处于运行状态。
此时,该进程正在使用CPU执行指令。
3.阻塞状态当一个进程因为等待某些事件(如I/O操作)而无法继续执行时,它处于阻塞状态。
此时,该进程已经将CPU让给其他进程,并等待事件发生后被唤醒。
四、进程控制块1.定义进程控制块(Process Control Block,简称PCB)是操作系统中用于管理进程的数据结构。
每个进程都有一个对应的PCB,其中保存了该进程的所有信息。
2.内容(1)进程标识符:唯一标识该进程的数字。
(2)程序计数器:记录该进程下一条要执行的指令地址。
(3)寄存器:保存该进程在运行过程中使用到的寄存器值。
(4)内存管理信息:包括代码、数据和堆栈段在内存中的位置和大小等信息。
(5)打开文件列表:记录该进程打开的所有文件及其状态等信息。
(6)优先级和调度信息:记录该进程优先级和调度算法等信息。
五、多道程序设计与时间片轮转调度算法1.多道程序设计多道程序设计是指在计算机内存中同时运行多个程序,并且这些程序共享系统资源。
PS:自己整理的,很多书上没有,参考了各种资料的定义。
定义以全面为主,或许某些地方有某些重复,可根据理解酌情删减。
操作系统名词解释1.Operating System(操作系统):是一种运行在内核态的软件,是管理系统资源,控制程序执行,协调硬件使用的最基本的系统软件,在硬件的基础上提供一个基本的应用程序运行环境。
2.Busy Waiting(忙等待):当一个进程位于其临界区内时,其他试图进入临界区的进程都必须在进入区内连续空循环。
3.Processes(进程):一个进程就是一个正在执行程序的实例。
4.Thread(线程):是进程中某个单一顺序的控制流,是进程中的实体,又称轻量级进程,是CPU使用的基本单元,由线程号,程序计数器,寄存器集合和堆栈组成。
5.Critical Section(临界区):一个代码段,在该代码段里进程会可能改变共享数据。
6.Semaphore(信号量):内核定义的一种特殊的数据结构,其表现值的数据类型为整型,用于解决进程同步的问题。
7.Deadlock(死锁):两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。
8.Relocation(重定位):重定位就是把程序的逻辑地址空间变换成内存中的实际物理地址空间的过程,也就是说在装入时对目标程序中指令和数据的修改过程。
9.Atomic Action(原子操作):是指不会被线程调度机制打断的操作,这种操作一旦开始,就一直运行到结束。
10.R AID:为提高性能和可靠性,提出的统称为独立磁盘冗余阵列的多种磁盘组织技术。
11.B uffer(缓冲器):分为输入缓冲器和输出缓冲器,前者将外设送来的数据暂时存放,以便处理器将它取走;后者的作用是用来暂时存放处理器送往外设的数据。
12.V irtual Memory(虚拟内存):是计算机系统内存管理的一种技术,它使得应用程序认为它用用连续可用的内存,而实际上,它通常被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。
操作系统概念课后习题答案操作系统概念课后习题答案第一章:引论1.操作系统的定义:操作系统是计算机系统中的一个软件层,它管理和控制计算机硬件资源,为用户和应用程序提供接口和服务。
2.操作系统的功能:处理器管理、存储器管理、设备管理、文件管理和用户界面等。
第二章:进程管理1.进程的概念:进程是一个正在执行的程序的实例,它由代码、数据和执行环境组成。
2.进程状态:就绪、运行和阻塞。
3.进程调度算法:先来先服务、最短作业优先、时间片轮转和优先级调度等。
第三章:线程管理1.线程的概念:线程是进程的一个执行单元,一个进程可以包含多个线程。
2.线程与进程的区别:线程共享相同的地质空间和文件描述符,而进程拥有独立的地质空间和文件描述符。
3.线程模型:用户级线程模型和内核级线程模型。
第四章:内存管理1.内存管理的目标:实现内存的分配与回收、内存的保护和共享。
2.内存分配的概念:连续分配、非连续分配和虚拟内存分配。
3.地质转换:逻辑地质到物理地质的转换过程,包括分段、分页和段页式等。
第五章:存储器管理1.存储器的层次结构:主存储器、辅助存储器和高速缓存。
2.页面置换算法:最佳置换算法、先进先出算法、最近最久未使用算法和时钟置换算法等。
3.虚拟内存的概念:将存储器抽象成一组连续的地质空间,实现大容量存储和地质共享。
第六章:设备管理1.设备管理的功能:设备分配、设备驱动程序和设备中断处理等。
2.设备分配算法:先来先服务、最短作业优先和轮转法等。
3.磁盘调度算法:先来先服务、最短寻道时间优先和扫描算法等。
第七章:文件管理1.文件的概念:文件是命名的、有序的数据集合,它是操作系统中最基本的数据组织方式。
2.文件系统的组织结构:层次式文件系统、索引式文件系统和线性文件系统等。
3.文件共享与保护:文件锁机制、权限控制和访问控制列表等。
第八章:I/O系统1.I/O系统的组成部分:I/O设备、I/O控制器和设备驱动程序等。
2.I/O操作的方式:程序控制I/O和中断驱动I/O。
操作系统-进程概念⼀、定义(Process) 进程是具有独⽴功能的程序关于某个数据集合上的⼀次运⾏活动,是系统进⾏资源分配和调度的独⽴单位1、进程是程序的⼀次执⾏过程,是对CPU的抽象,是正在运⾏的程序的抽象2、每个进程具有独⽴的地址空间3、操作系统通过调度将CPU的控制权交给某个进程⼆、进程控制块PCB(Process Control Block) ⼜称进程描述符,进程属性,是操作系统⽤于管理控制进程的⼀个专门的数据结构,记录进程的各种属性PCB是系统感知进程存在的唯⼀标志,进程与PCB是⼀⼀对应的 进程表:所有进程的PCB集合三、PCB包含哪些信息 进程描述信息进程标识符PID,唯⼀,整数,进程名(不唯⼀),⽤户标识符userID,进程组关系(兄弟⽗⼦关系) 进程控制信息当前状态,优先级,代码执⾏⼊⼝,运⾏统计信息,进程间同步和通信,进程队列指针,进程消息队列指针 所拥有的资源和使⽤情况虚拟地址空间的状况,打开⽂件列表 CPU现场信息进程不运⾏时的寄存器值和指向该进程的页表的指针四、进程状态及状态转换 运⾏态(Running)占有CPU,并在CPU上运⾏ 就绪态(Ready)已经具备运⾏条件,但由于没有空闲CPU,⽽暂时不能运⾏ 等待态(Waiting/Blocked)或叫阻塞态,封锁态,睡眠态,因等待某⼀事件⽽暂时不能运⾏ 操作系统通常将进程状态分为多种模型,这⾥给出三状态和五状态五、进程队列1、操作系统为每⼀类进程建⽴⼀个或多个队列2、队列元素为PCB3、伴随进程状态的改变,其PCB从⼀个队列进⼊另⼀个队列上图中,⼀个进程创建后经许可(提交)进⼊就绪队列,经过调度进⼊CPU,如果正常处理完毕会释放,如超时重新进⼊就绪队列如果还有各种等待事件,则进⼊各类等待事件队列,当相应的事件发⽣后再次进⼊就绪队列,等待调度进⼊CPU六、上下⽂切换定义:CPU硬件状态从⼀个进程换到另⼀个进程的过程进程在运⾏时,其硬件状态保存在CPU上的寄存器中(只有⼀套)进程不运⾏时,这些寄存器的值保存在进程控制块PCB中,当操作系统要运⾏⼀个新的进程时,需要将这个进程的PCB中的值送到对应的寄存器中,这也是下⼀篇要讲的线程的概念。
操作系统-进程的概念计算机中,CPU是最宝贵的资源,为了提⾼CPU的利⽤率,引⼊了多道程序设计的概念。
当内存中多个程序存在时,如果不对⼈们熟悉的“程序”的概念加以扩充,就⽆法刻画多个程序共同运⾏时系统呈现出的特征。
⼀、进程的引⼊多道程序系统中,程序具有:并⾏、制约以及动态的特征。
程序概念难以便是和反映系统中的情况:1. 程序是⼀个静态的概念程序是完成某个功能的指令集和。
系统实际上是出于不断变化的状态中,程序不能反映这种动态性。
2. 程序概念不能反映系统中的并⾏特性例如:两个C语⾔源程序由⼀个编译程序完成编译,若⽤程序概念理解,内存中只有⼀个编译程序运⾏(两个源程序看作编译程序的输⼊数据),但是这样⽆法说明⽩内存中运⾏着两个任务。
程序的概念不能表⽰这种并⾏情况,反映不了他们活动的规律和状态变化。
就像不能⽤菜谱(程序)代替炒菜(程序执⾏的过程)⼀样(这句话我稍微修改了⼀下,感觉应该是这样表诉才对)⼆、进程的定义进程:⼀个具有⼀定独⽴功能的程序关于某个数据集合的⼀次运⾏活动,是系统进⾏资源分配和调度运⾏的基本单位三、进程与程序的差别1. 进程是⼀个动态的概念进程是程序的⼀次执⾏过程,是动态概念程序是⼀组有序的指令集和,是静态概念2. 不同的进程可以执⾏同⼀个程序区分进程的条件:所执⾏的程序和数据集合。
两个进程即使执⾏在相同的程序上,只要他们运⾏在不同的数据集合上,他们也是两个进程。
例如:多个⽤户同时调⽤同⼀个编译程序编译他们编写的C语⾔源程序,由于编译程序运⾏在不同的数据集合(不同的C语⾔源程序)上,于是产⽣了⼀个个不同的进程3. 每个进程都有⾃⼰的⽣命周期当操作系统要完成某个任务时,它会创建⼀个进程。
当进程完成任务之后,系统就会撤销这个进程,收回它所占⽤的资源。
从创建到撤销的时间段就是进程的⽣命期4. 进程之间存在并发性在⼀个系统中,同时会存在多个进程。
他们轮流占⽤CPU和各种资源5. 进程间会相互制约进程是系统中资源分配和运⾏调度的单位,在对资源的共享和竞争中,必然相互制约,影响各⾃向前推进的速度6. 进程可以创建⼦进程,程序不能创建⼦程序7. 从结构上讲,每个进程都由程序、数据和⼀个进程控制块(Process Control Block, PCB)组成四、进程的重要特征1. 动态特征:进程对应于程序的运⾏,动态产⽣、消亡,在其⽣命周期中进程也是动态的、2. 并发特征:任何进程都可以同其他进程⼀起向前推进3. 独⽴特征:进程是相对完整的调度单位,可以获得CPU,参与并发执⾏4. 交往特征:⼀个进程在执⾏过程中可与其他进程产⽣直接或间接关系5. 异步特征:每个进程都以相对独⽴、不可预知的速度向前推进6. 结构特征:每个进程都有⼀个PCB作为他的数据结构进程最基本的特征是并发和共享特征五、进程的状态与转换1. 进程的三种基本状态a. 运⾏状态:获得CPU的进程处于此状态,对应的程序在CPU上运⾏着b. 阻塞状态:为了等待某个外部事件的发⽣(如等待I/O操作的完成,等待另⼀个进程发来消息),暂时⽆法运⾏。