2017年初中奥数题及答案
- 格式:doc
- 大小:69.50 KB
- 文档页数:9
初中奥数题及答案初中奥数题大全及答案奥数题不管是什么样的题型都是有一定规律的,只要我们把这一类题型的规律掌握了。
下面是店铺整理的关于初中奥数题大全及答案,欢迎大家参考!数字谜(数字谜)[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100 改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?答案与解析:根据[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100,得到[21-(0.4+13)]×25=100,只有一个小数,假设小数有问题,那么,(21-17)×25=100,0.4应为4,2.5应为0.25答:把2.5改成0.25。
应用题解题技巧【试题】把7本相同的书摞起来,高42毫米。
如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)【详解】方法1:(1)每本书多少毫米?42÷7=6(毫米)(2)28本书高多少毫米?6×28=168(毫米)方法2:(1)28本书是7本书的多少倍?28÷7=4(2)28本书高多少毫米?42×4=168(毫米)父亲和儿子的年龄【问题】父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的.11倍?【答案】想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。
又知今年儿子15岁,两个岁数的差就是所求的问题。
解:(45-15)÷(11-1)=3(岁)15-3=12(年)答:12年前父亲的年龄是儿子年龄的11倍。
下载全文。
年初中奥数题及答案初中奥数题试题一一、选择题(每题分,共分).如果,都代表有理数,并且+,那么 ( ).,都是.,之一是.,互为相反数.,互为倒数答案:解析:令,-,满足(-),由此、互为相反数。
.下面的说法中正确的是 ( ).单项式与单项式的和是单项式.单项式与单项式的和是多项式.多项式与多项式的和是多项式.整式与整式的和是整式答案:解析:²,都是单项式.两个单项式,²之和为²是多项式,排除。
两个单项式²,之和为是单项式,排除。
两个多项式与-之和为是个单项式,排除,因此选。
.下面说法中不正确的是 ( ). 有最小的自然数.没有最小的正有理数.没有最大的负整数.没有最大的非负数答案:解析:最大的负整数是,故错误。
.如果,代表有理数,并且+的值大于-的值,那么 ( ).,同号.,异号.>.>答案:.大于-π并且不是自然数的整数有 ( ).个.个.个.无数个答案:解析:在数轴上容易看出:在-π右边的左边(包括在内)的整数只有-,-,-,共个.选。
.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( ).个.个.个.个答案:解析:负数的平方是正数,所以一定大于它本身,故错误。
.代表有理数,那么,和-的大小关系是 ( ).大于-.小于-.大于-或小于-.不一定大于-答案:解析:令,马上可以排除、、,应选。
.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) .乘以同一个数.乘以同一个整式.加上同一个代数式.都加上答案:解析:对方程同解变形,要求方程两边同乘不等于的数,所以排除。
我们考察方程-,易知其根为.若该方程两边同乘以一个整式-,得(-)(-),其根为及,不与原方程同解,排除。
同理应排除.事实上方程两边同时加上一个常数,新方程与原方程同解,对,这里所加常数为,因此选..杯子中有大半杯水,第二天较第一天减少了,第三天又较第二天增加了,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ).一样多.多了.少了.多少都可能答案:解析:设杯中原有水量为,依题意可得,第二天杯中水量为×(-);第三天杯中水量为()×()××;第三天杯中水量与第一天杯中水量之比为∶,所以第三天杯中水量比第一天杯中水量少了,选。
初中奥数题及答案大全导读:本文初中奥数题及答案大全,仅供参考,如果觉得很不错,欢迎点评和分享。
初中奥数题及答案大全:一、选择题(每题1分,共10分)1.下面的说法中正确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
2.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
3.下面说法中不正确的是()A.有最小的自然数B.没有最小的正有理数C.没有的负整数D.没有的非负数答案:C解析:的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。
b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。
两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。
两个多项式x3+x2式x2x,与。
,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。
C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。
个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。
,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初中奥数题目及答案大全初中奥数题及答案大全:一、选择题(每题1分,共10分)1.下面的说法中准确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,所以选D。
2.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
3.下面说法中不准确的是()A.有ZUI小的自然数B.没有ZUI小的正有理数C.没有的负整数D.没有的非负数答案:C解析:的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不准确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上能够排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,能够在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
2017年全国初中数学联合竞赛试题参考答案和评分标准(1)2017年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.已知实数,,abc满足213390abc,3972abc,则32bcab??=()A.2.B.1.C.0.D.1?.【答】B.已知等式可变形为2(2)3(3)90abbc,3(2)(3)72abbc,解得218ab??,318bc??,所以32bcab1.2.已知△ABC的三边长分别是,,abc,有以下三个结论:(1)以,,abc为边长的三角形一定存在;(2)以222,,abc为边长的三角形一定存在;(3)以||1,||1,||1abbcca为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设abc??,则有bca??.(1)因为bca??,所以2bcbca,即22()bca??(),即bca??,故以,,abc为边长的三角形一定存在;(2)以2,3,4abc为边长可以构成三角形,但以2224,9,16abc为边长的三角形不存在;(3)因为abc??,所以||11,||11,||11ababbcbccaac,故三条边中||1ca??大于或等于其余两边,而||1||111abbcabbc()()()()111||1acacca=,故以||1ab??,||1bc??,||1ca??为边长的三角形一定存在.3.若正整数,,abc满足abc??且2()abcabc,则称(,,)abc为好数组.那么,好数组的个数为()A.1.B.2.C.3.D.4.【答】C.若(,,)abc为好数组,则2()6abcabcc,所以6ab?.显然,a只能为1或2.若a=2,由6ab?可得2b?或3,2b?时可得4c?,3b?时可得52c?(不是整数);若a=1,则2(1)bcbc,于是可得(2)(2)6bc,可求得(,,)abc =(1,3,8)或(1,4,2017年全国初中数学联合竞赛试题参考答案及评分标准第1页(共7页)5).综合可知:共有3个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设O是四边形ABCD的对角线AC、BD的交点,若180BADACB,且3BC?,4AD?,5AC?,6AB?,则DOOB=()A.109.B.87.C.65.D.43.【答】A.过B作//BEAD,交AC的延长线于点E,则180ABEBAD ACB??,所以△ABC∽△AEB,所以ACBCABEB?,所以631855ABBCEBAC.再由//BEAD,得4101895DOADOBBE.5.设A是以BC为直径的圆上的一点,ADBC?于点D,点E在线段DC上,点F在CB的延长线上,满足BAFCAE.已知15BC?,6BF?,3BD?,则AE=()A.43.B.213.C.214.D.215.【答】B.如图,因为BAFCAE,所以BAFBAECAEBAE,即90FAEBAC.又因为ADBC?,故2ADDEDFDBDC.而639DFBFBD,15312DCBCBD,所以29312ADDE,所以6AD?,4DE?.从而222264213AEADDE.6.对于正整数n,设na是最接近n的整数,则1232001111aaaa()A.1917.B.1927.C.1937.D.1947.【答】A.对于任意自然数k,2211()24kkk不是整数,所以,对于正整数n,12n?一定不是整数.设m是最接近n的整数,则1||2mn??,1m?.易知:当1m?时,1||2mn2211()()mnm??221144mmnmm.于是可知:对确定的正整数m,当正整数n满足221mmnmm时,m是最接近n的整数,即nam?.所以,使得na=m的正整数n的个数为2m.注意到2213131822001414210,因此,12200,,,aaa?中,有:2个1,4个2,6个3,2017年全国初中数学联合竞赛试题参考答案及评分标准第2页(共7页)EOCBADCBFDE8个4,……,26个13,18个14.所以123200111111111191246261812313147aaaa.二、填空题:(本题满分28分,每小题7分)1.使得等式311aa成立的实数a的值为_______.【答】8.由所给等式可得32(11)aa.令1xa??,则0x?,且21ax??,于是有322(1)(1)xx,整理后因式分解得2(3)(1)0xxx,解得10x?,23x?,31x??(舍去),所以1a??或8a?.验证可知:1a??是原方程的增根,8a?是原方程的根.所以,8a?.2.如图,平行四边形ABCD中,72ABC,AFBC?于点F,AF交BD于点E,若2DEAB?,则AED?=_______.【答】66?.取DE的中点M,在Rt△ADE中,有12AMEMDEAB.设AED,则1802AME,18ABM.又ABMAMB,所以180218,解得66.3.设,mn是正整数,且mn?.若9m与9n的末两位数字相同,则mn?的最小值为.【答】10.由题意知,999(91)mnnmn是100的倍数,所以91mn??是100的倍数,所以9mn?的末两位数字是01,显然,mn?是偶数,设2mnt??(t是正整数),则29981mntt.计算可知:281的末两位数字是61,381的末两位数字是41,481的末两位数字是21,581的末两位数字是01.所以t的最小值为5,从而可得mn?的最小值为10.4.若实数,xy满足3331xyxy,则22xy?的最小值为.【答】12.因为333322031()(1)333xyxyxyxyxyxy22(1)[()()(1)(1)]3(1)xyxyxyxyxy2017年全国初中数学联合竞赛试题参考答案及评分标准第3页(共7页)MEFCBDA22(1)(1)xyxyxyxy2221(1)[()(1)(1)]2xyxyxy,所以1xy或1xy??.若1xy,则22xy?=2.若1xy??,则22222111[()()][1()]222xyxyxyxy,当且仅当12xy??时等号成立.所以,22xy?的最小值为12.第一试(B)一、选择题:(本题满分42分,每小题7分)1.已知二次函数2(0)yaxbxcc的图象与x轴有唯一交点,则二次函数3233yaxbxc的图象与x轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数2yaxbxc的图象与x轴有唯一交点,所以2140bac,所以240bac??.故二次函数3233yaxbxc的判别式323363623211()4(4)()1616bacbacbb61516b?0?,所以,二次函数3233yaxbxc的图象与x轴有两个交点.2.题目和解答与(A)卷第1题相同.3.题目和解答与(A)卷第3题相同.4.已知正整数,,abc满足26390abc,260abc,则222abc??=()A.424.B.430.C.441.D.460.【答】C.由已知等式消去c整理得22(9)3(1)75ab,所以23(1)75b??,又b为正整数,所以16b??.若b=1,则2(9)75a??,无正整数解;若b=2,则2(9)72a??,无正整数解;若b=3,则2(9)63a??,无正整数解;若b=4,则2(9)48a??,无正整数解;若b=5,则2(9)27a??,无正整数解;若b=6,则2(9)0a??,解得9a?,此时18c?.2017年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)因此,9a?,b=6,18c?,故222abc=441.5.设O是四边形ABCD的对角线AC、BD的交点,若180BADACB,且3BC?,4AD?,5AC?,6AB?,则DOOB=()A.43.B.65.C.87.D.109.【答】D.解答过程与(A)卷第4题相同.6.题目和解答与(A)卷第5题相同.二、填空题:(本题满分28分,每小题7分)1.题目和解答与(A)卷第1题相同.2.设O是锐角三角形ABC的外心,,DE分别为线段,BCOA的中点,7ACBOED,5ABCOED,则OED?=_________.【答】10?.如图,设OEDx??,则5ABCx??,7ACBx??,DOC??18012BACx,10AOCx??,所以1802AODx,180(1802)ODExxx,所以1122ODOEOAOC,所以60DOC,从而可得10x??.3.题目和解答与(A)卷第3题相同.4.题目和解答与(A)卷第4题相同.第二试(A)一、(本题满分20分)已知实数,xy满足3xy??,221112xyxy,求55xy?的值.解由221112xyxy可得2233222()xyxyxyxyxy.设xyt?,则222()292xyxyxyt,332()[()3]3(93)xyxyxyxyt,代入上式可得22(392)3(93)tttt,解得1t?或3t?.……………………10分当3t?时,3xy?,又3xy??,故,xy是一元二次方程2330mm的两实数根,但易知此方程没有实数根,不合题意.……………………15分当1t?时,1xy?,又3xy??,故,xy是一元二次方程2310mm的两实数根,符合题意.此时552233222()()()(92)[3(93)]3123xyxyxyxyxyttt.……………………20分2017年全国初中数学联合竞赛试题参考答案及评分标准第5页(共7页)DEOBAC二、(本题满分25分)如图,△ABC中,ABAC?,45BAC,E 是BAC?的外角平分线与△ABC的外接圆的交点,点F在AB上且EFAB?.已知1AF?,5BF?,求△ABC的面积.解在FB上取点D,使FD=AF,连接ED并延长,交△ABC的外接圆于点G.由EF⊥AD,AF=FD知△AED是等腰三角形,所以∠AED=1802??∠EAD=∠BAC,……………………10分所以??AGBC?,所以??ACBG?,所以AC=BG (15)分又∠BGE=∠BAE=∠ADE=∠BDG,所以BG=BD,所以AC=BD =5-1=4,……………………20分△ABC的AB边上的高sin4522hAC.所以,△ABC的面积116226222SABh (25)分三、(本题满分25分)求所有的正整数数对(,)ab,使得34938ba.解显然,4938b??为奇数,所以a为奇数.又因为33493849385ba,所以5a?.……………………5分由34938ba可得38493ba,即22(2)(24)73baaa.……………………10分设2(2,24)aaad,则d为奇数.注意到224(2)(4)12aaaa,所以|12d,所以d=1或3.……………………15分若d=1,则有22 27, 243,b aaa或22 23, 247, ba aa均无正整数解.……………………20分若d=3,则有221237,243,baaa?或12223,2437,baaa解得11a?,3b?.所以,满足条件的正整数对只有一个,为(11,3).……………………25分第二试(B)一、(本题满分20分)已知实数,,abc满足abc??,16abc,22211284abcabc,求c的值.解设abx??,aby?,依题意有2212(16)(16)1284xyxyx,整理得21(8)(8)8xyx,所以8x?或8(8)yx??.……………………10分2017年全国初中数学联合竞赛试题参考答案及评分标准第6页(共7页)FEABCD(1)若8x?,则8ab??,此时c=8.(2)若8(8)yx??,即8(8)abab,则(8)(8)0ab,所以8a?或8b?.当8a?时,结合abc??可得24abc,与16abc矛盾.当8b?时,结合abc??及16abc可得0a?,8c?.综合可知:8c?.……………………20分二、(本题满分25分)求所有的正整数m,使得21221mm 是完全平方数.解当m=1时,212211mm是完全平方数.……………………5分当1m?时,设212221mmn(n为正整数).注意到2112112122212(2)221(21)(2)mmmmmm,故可得12122(21)(2)mmn,……………………10分所以22212112(21)(21)(21)mmmmnnn.……………………15分设121mxn,121myn,则xy?,222mxy??,所以,xy均为2的方幂.……………………20分又22myx被4除余数为2,所以,只可能2x?,2my?,故22222mm,解得3m?.综上可知:满足条件的正整数m有两个,分别为1和3.……………………25分三、(本题满分25分)如图,O为四边形ABCD内一点,OADOCB,OAOD?,OBOC?.求证:2222ABCDADBC.证明由题设条件可知90AODBOC,又OADOCB,所以△AOD∽△COB,……………………5分所以ODAOOBCO?,从而OCAOOBOD?.……………………10分又AOCAOBBOCAOBAODDOB,所以△AOC∽△DOB,所以OACODB.……………………15分设AC和BD交于点P,则90APDAOD,所以ACDB?,……………………20分所以222222222222()()()()ABCDAPPBPDPCAPPDPBPCADBC .……………………25分2017年全国初中数学联合竞赛试题参考答案及评分标准第7页(共7页)PDAO CB。
当两条直线相交所成的四个⾓中,有⼀个⾓是直⾓时,即两条直线互相垂直(perpendicular),其中⼀条直线叫做另⼀直线的垂线(perpendicular line),单独的⼀条直线不能叫垂线。
交点叫垂⾜(foot of a perpendicular)。
显然,垂线是指两条直线的特殊位置关系。
垂线必须是直线。
从直线外⼀点到这条直线的垂线段的长度,称之为点到直线的距离。
【练习题】
1、过⼀点有且只有________直线与已知直线垂直。
2、到直线L的距离等于2cm的点有( )
A.0个
B.1个
C.⽆数个
D.⽆法确定
3、点P为直线m外⼀点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m
的距离为( )
A.4cm
B.2cm
C.⼩于2cm
D.不⼤于2cm
4、直线外⼀点到这条直线的________,叫做点到直线的距离。
5、画⼀条线段或射线的垂线,就是画它们________的垂线。
【参考答案】
1.⼀条
2.C
3.D
4.•垂线段的长度
5.所在直线。
2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.1023 B.1033C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.1023B.1033C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得423AH =. 所以梯形ABCD 的面积为()14210214233⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。
初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。
同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多B.多了C.少了D.多少都可能答案:C解析:设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为0.99∶1,所以第三天杯中水量比第一天杯中水量少了,选C。
10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多B.减少C.不变D.增多、减少都有可能答案:A二、填空题(每题1分,共10分)1.²-²=______。
答案:²-²=(+)×(-)=(+)×1=。
解析:利用公式a²-b²=(a+b)(a-b)计算。
2.1-2+3-4+5-6+7-8+…+4999-5000=______。
答案:1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500。
解析:本题运用了运算当中的结合律。
3.当a=-0.2,b=0.04时,代数式 a²-b的值是______。
答案:0解析:原式==(-0.2)²-0.04=0。
把已知条件代入代数式计算即可。
4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______千克。
答案:45(千克)解析:食盐30%的盐水60千克中含盐60×30%(千克),设蒸发变成含盐为40%的水重x克,即60×30%=40%x解得:x=45(千克)。
遇到这一类问题,我们要找不变量,本题中盐的含量是一个不变量,通过它列出等式进行计算。
三、解答题1.甲乙两人每年收入相等,甲每年储蓄全年收入的15,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?答案:解:设每人每年收入x元,甲每年开支4/5x元,依题意有:3(4/5x+1200)=3x+600即(3-12/5)x=3600-600解得,x=5000答:每人每年收入5000元所以S的末四位数字的和为1+9+9+5=24。
4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。
答案:设上坡路程为x千米,下坡路程为y千米.依题意则:由②有2x+y=20,③由①有y=12-x,将之代入③得 2x+12-x=20。
所以x=8(千米),于是y=4(千米)。
答:上坡路程为8千米,下坡路程为4千米。
5.求和:。
答案:第n项为所以。
6.证明:质数p除以30所得的余数一定不是合数。
证明:设p=30q+r,0≤r<30,因为p为质数,故r≠0,即0<r<30。
假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5。
再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾。
所以,r一定不是合数。
解:设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q)。
可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q。
(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故p+q=8。
初中奥数题试题二一、选择题1.数1是 ( )A.最小整数B.最小正数C.最小自然数D.最小有理数答案:C解析:整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D。
1是最小自然数,正确,故选C。
2.a为有理数,则一定成立的关系式是 ( )A.7a>aB.7+a>aC.7+a>7D.|a|≥7答案:B解析:若a=0,7×0=0排除A;7+0=7排除C;|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B。
( )A.6.1632B.6.2832C.6.5132D.5.3692答案:B解析:3.1416×7.5944+3.1416×(-5.5944)=3.1416(7.5944-5.5944)=2×3.1416=6.2832,选B。
4.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A.225B.0.15C.0.0001D.1答案:B解析:-4,-1,-2.5,-0.01与-15中最大的数是-0.01,绝对值最大的数是-15,(-0.01)×(-15)=0.15,选B。
二、填空题1.计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______。
答案:(-1)+(-1)-(-1)×(-1)÷(-1)=(-2)-(-1) =-1 。
2.求值:(-1991)-|3-|-31||=______。
答案:(-1991)-|3-|-31||=-1991-28=-2019。
3.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009。
则n的最小值等于______。
答案:4解析:1990n的末四位数字应为1991+8009的末四位数字.即为0000,即1990n 末位至少要4个0,所以n的最小值为4。
4.不超过(-1.7)²的最大整数是______。
答案:2解析:(-1.7)²=2.89,不超过2.89的最大整数为2。
5.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______。
答案:29解析:个位数比十位数大7的两位数有18,29,其中只有29是质数。
三、解答题1.已知3x2-x=1,求6x3+7x2-5x+2000的值。
答案:原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003。
2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件。
试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?答案:原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件。
如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490。
所以当x=3时,y最大=490元,即每件提价3元,每天获利最大为490元。
3.如图1-96所示,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°。
求证:DA⊥AB。
证明:∵CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC。
又∵AB⊥BC,∴AB⊥AD。
4.求方程|xy|-|2x|+|y|=4的整数解。
答案:|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2。
因为|x|+1>0,且x,y都是整数,所以5.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)答案:设设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以0.0497x=994,所以x=20000(元),y=35000-20000=15000(元)。