第4章材料力学的基本概念
- 格式:ppt
- 大小:1.86 MB
- 文档页数:2
材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。
本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。
一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。
一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。
法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。
1.2 应变应变是物体在受力作用下发生形变的度量。
一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。
线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。
二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。
即当外力停止作用时,材料能够完全恢复到初始状态。
弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。
2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。
即当外力停止作用时,材料只能部分恢复到初始状态。
塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。
三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。
在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。
根据胡克定律,应力等于弹性模量与应变的乘积。
四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。
杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。
4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。
剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。
五、破坏力学破坏力学是研究材料在外力作用下失效的学科。
材料力学材料力学基本概念基本概念Simwe :lian20041、强度:在载荷作用下构件抵抗破坏的能力;刚度:在载荷作用下构件抵抗变形的能力;稳定性:在载荷作用下构件保持稳定平衡的能力;2、基本假设:连续性假设:物体在其整个体积内充满了物质而毫无空隙,其结构是密实的; 均匀性假设:从物体内任意一点处取出的体积单元,其力学性能都能代表整个物体的力学性能;各向同性假设:材料沿各个方向的力学性能相同。
3、力学性能:材料在外力作用下所表现出来的变形和破坏方面的特征。
4、应力:受力杆件某一截面上一点处的内力集度。
正应力:垂直于截面的法向分量切应力:与截面相切的切向分量5、圣维南原理:力作用于杆端方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响。
6、一点处的应力状态:通过一点的所有不同方位截面上应力的全部情况。
7、线应变:每单位长度的伸长(或缩短)。
LL ∆=ε 8、胡克定律:当杆内的应力不超过材料的某一极限值(比例极限)时,杆的伸长△L 与其所受外力F 、杆的原长L 成正比,而与其横截面面积A 成反比。
引进比例常数E ,故有:EAL F L N =∆ 9、泊松比:当拉(压)杆内的应力不超过材料的比例极限时,横向线应变ε’与纵向线应变ε的绝对值之比为一常数,称此值为横向变形因数或泊松比。
εεµ'= 10、应变能:伴随弹性变形的增减而改变的能量称为应变能。
11、应力应变曲线:纵坐标表示名义应力,横坐标表示名义应变,这种能反应材料的力学性能的曲线图称为应力应变曲线。
比例极限:在弹性阶段内,应力应变符合胡克定律的最高限,与之对应的应力称为比例极限;弹性极限:弹性阶段的最高点卸载后不发生塑性变形的极限,与之对应的应力称为弹性极限;屈服极限:在屈服阶段内,应力有幅度不大的波动,最高点的应力为上屈服极限,最低点的应力为下屈服极限,通常将下屈服极限称为屈服极限;强度极限:在强化阶段,最高点对应的应力称为强度极限。
材料力学的基本概念
材料力学是一种研究材料承受外力的理论和实验结合的一门工程学科,是力学专业下的一个分支学科。
材料力学研究的内容包括:材料的机械性质、结构的力学参数、材料及其结构的强度和稳定性、受外力作用的断裂、疲劳、振动及其相关数学模型的分析等。
一、材料的机械性质。
材料机械性质是指材料本身的特性,它可以描
述材料在在力学作用下的变形特性和强度特性,其中包括材料的塑性性能、韧性特性及耐久性特性等,这些特性决定了材料和结构在受力作用下的行为。
二、结构的力学参数。
结构的力学参数是指结构系统的一些力学指标,它可以使用材料本身的物理性能、结构的几何形状、材料的实际表现等特
性来描述,例如接缝的连续性、材料的屈服强度和断裂强度的影响、接缝
结构的稳定性等,这些参数将确定结构对外力的响应。
三、材料及其结构的强度和稳定性。
材料及其结构的强度和稳定性是
指结构对外力的响应能力,这些参数将决定结构对外力的强度以及承受这
种外力的稳定性,它们包括材料的强度、结构的几何形状、结构的连续性
和材料的实际表现等方面的参数,其中材料的强度,特殊情况下,设计极
限可以达到材料的理论屈服点延长。
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
材料力学的基本知识与基本原理材料力学是研究材料在外力作用下的力学性能和力学行为的学科。
它是材料科学与工程中的重要基础学科,对于材料的设计、制备和应用具有重要意义。
本文将介绍材料力学的基本知识与基本原理,帮助读者更好地理解材料的力学性质。
一、材料力学的基本概念材料力学是研究材料在外力作用下的力学行为的学科,它主要包括静力学、动力学和弹性力学等内容。
静力学研究材料在力的作用下的平衡状态,动力学研究材料在力的作用下的运动状态,而弹性力学则研究材料在外力作用下的弹性变形。
二、材料力学的基本原理1. 牛顿第一定律牛顿第一定律也被称为惯性定律,它指出物体在没有外力作用下将保持静止或匀速直线运动。
在材料力学中,这一定律可以解释材料在没有外力作用下的静力平衡状态。
2. 牛顿第二定律牛顿第二定律是描述物体受力后的运动状态的定律,它表明物体所受合力与物体的加速度成正比。
在材料力学中,牛顿第二定律可以用来描述材料在外力作用下的运动状态,从而研究材料的力学性能。
3. 弹性力学原理弹性力学原理是研究材料在外力作用下的弹性变形的原理。
它基于胡克定律,即应力与应变成正比。
应力是单位面积上的力,应变是单位长度上的变形量。
弹性力学原理可以用来计算材料在外力作用下的应力和应变,从而研究材料的弹性性能。
4. 应力与应变的关系应力与应变的关系是材料力学中的重要内容,它可以通过应力-应变曲线来描述。
应力-应变曲线是材料在外力作用下的应力和应变之间的关系曲线,它可以反映材料的力学性能和变形特性。
在应力-应变曲线中,通常有线弹性阶段、屈服阶段、塑性阶段和断裂阶段等不同的阶段。
5. 杨氏模量和泊松比杨氏模量和泊松比是材料力学中的两个重要参数。
杨氏模量是描述材料在拉伸或压缩时的刚度的参数,它越大表示材料越硬。
泊松比是描述材料在拉伸或压缩时的体积变化与形变的比值,它越小表示材料越不易变形。
三、材料力学的应用材料力学的研究成果广泛应用于材料科学与工程领域。
材料力学基本概念和公式材料力学是研究材料在受到外力作用下的变形和破坏行为的一门学科。
下面将简要介绍材料力学的基本概念和公式。
1.伸长量(ε):伸长量是材料在受到拉伸力作用下的长度变化与原始长度之比,可以表示为ε=ΔL/L0,其中ΔL是材料受力后的长度变化,L0是材料的原始长度。
2.弹性模量(E):弹性模量是材料表征其抵抗拉伸或压缩变形能力的物理量,定义为材料受应力作用下的应力与应变之比,可以表示为E=σ/ε,其中σ是材料受到的应力。
3.屈服强度(σy):屈服强度是材料在受力过程中产生塑性变形的应力阈值,物理上可以看作是材料从弹性到塑性变形的过程。
屈服强度可以表示为σy=Fy/A,其中Fy是材料引起塑性变形的应力,A是材料的横截面积。
4.断裂强度(σf):断裂强度是材料在受到应力作用下发生破坏的最大阈值,表示材料的抗拉抗压能力。
断裂强度可以表示为σf=Ff/A,其中Ff是材料破坏时受到的应力。
5. 牛顿第二定律(F = ma):材料力学中的牛顿第二定律与经典物理学中的类似,描述了材料在受到外力作用下的加速度与作用力之间的关系。
6.雪松方程(σ=Eε):雪松方程是描述线性弹性材料受力变形关系的基本公式,其中σ为材料受到的应力,E为弹性模量,ε为材料的应变。
7.线性弹性材料的胡克定律(σ=Eε):对于线弹性材料来说,应力和应变之间的关系可以遵循胡克定律。
即材料的应力是弹性模量和应变的乘积。
8.悬臂梁挠度公式(δ=(Fl^3)/(3EI)):悬臂梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为悬臂梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
9.铰接梁挠度公式(δ=(Fl^3)/(48EI)):铰接梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为铰接梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
10.压缩应力(σc):压缩应力是材料在受到压缩力作用下的应力,可以表示为σc=F/A,其中F为材料受到的压缩力。
第二篇材料力学主要研究对象:弹性体¾弹性体:只发生弹性变形的物体主要研究内容:1.弹性体的变形,以及力和变形之间的关系;2.构件的失效及与失效有关的设计准则(强度、刚度和稳定性);第 4 章材料力学的基本概念§4-1关于材料的基本假定§4-2弹性杆件的外力与内力§4-3弹性体受力与变性特点§4-4杆件横截面上的应力§4-5正应变与切应变§4-6线弹性材料的应力-应变关系§4-7 杆件受力与变形的基本形式§4-8 结论与讨论一、构件: 组成结构和机械的最基本的部件材料力学所研究的仅限于杆件杆件:纵向尺寸远大于横向尺寸的构件板杆壳块一、构件: 组成结构和机械的最基本的部件材料力学所研究的仅限于杆件杆件:纵向尺寸远大于横向尺寸的构件二、构件在荷载作用下正常工作应满足三个要求1.构件必须具有足够的强度强度:构件抵抗破坏的能力。
破坏——断裂或产生过大的永久变形(塑性变形)2.构件必须具有足够的刚度刚度:构件抵抗弹性变形的能力。
在满足强度、刚度和稳定性要求的同时,须尽可能合理选用材料和降低材料消耗量,以节约投资。
材料力学固体力学材料科学测定材料的力学性能和失效行为外力作用下的应力,变形和能量三、材料力学的任务稳定性:构件保持原有平衡状态的能力3. 构件必须具有足够稳定性§4-1关于材料的基本假定组成构件的材料,其微观结构和性能一般都比较复杂。
研究构件的应力和变形时,如果考虑这些微观结构上的差异,不仅在理论分析中会遇到极其复杂的数学和物理问题,而且在将理论应用于工程实际时也会带来极大的不便。
为简单起见,在材料力学中,需要对材料作了一些合理的假定。
§4-1关于材料的基本假定一、均匀连续性假设假定材料粒子无空隙、均匀地分布于物体所占的整个空间。
从微观结构看,材料的粒子当然不是处处连续分布的,但从统计学的角度看,只要所考察的物体之几何尺寸足够大,而且所考察的物体中的每一“点”都是宏观上的点,则可以认为物体的全部体积内材料是均匀、连续分布的。
材料力学概念及基础知识材料力学是一门研究构件承载能力的科学,其任务是在保证安全和经济的前提下,研究构件的强度、刚度和稳定性问题。
强度是指构件抵抗破坏的能力,刚度是指构件抵抗变形的能力,稳定性是指构件保持初始直线平衡形式的能力。
为了研究这些问题,材料力学假设构件内均匀充满物质,并且在各个方向力学性质相同。
在材料力学中,内力是指构件内由于发生变形而产生的相互作用力。
计算内力的方法是通过截面法,包括四个步骤:截、留、代、平。
应力是在某个面积上内力分布的集度,单位为Pa。
正应力是垂直于截面的应力,而剪应力是平行于截面的应力。
材料力学研究的基本变形包括拉伸或压缩、剪切、扭转和弯曲。
拉压变形发生在外力的作用线与构件轴线重合时,此时会产生轴力。
计算某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。
轴力图的绘制步骤是先画出水平线作为X轴,然后以外力的作用点为界将轴线分段。
最后,材料力学的研究对象包括杆件、板壳和块体等构件。
为了完成材料力学的任务,理论分析和实验研究都是必不可少的手段。
材料力学主要研究构件的强度、刚度和稳定性理论。
其中,杆件包括直杆(轴线为直线)和曲杆(轴线为曲线)。
杆件受到大小相等、方向相反且作用平面垂直于杆件轴线的力偶作用时,杆件的横截面会产生相对转动。
变形性质可以分为弹性变形和塑性变形。
研究内力的方法是截面法,而表示内力密集程度的指标是应力。
基本变形有轴向拉伸或压缩、剪切、扭转和弯曲。
轴力图可以表示轴力与横截面积的关系。
平面假设是指受轴向拉伸的杆件,在变形后横截面积仍保持不变的情况下,两平面相对位移了一段距离。
应力集中是指在某些局部位置,应力骤然增大的现象。
低碳钢的四个表现阶段是弹性阶段、屈服阶段、强化阶段和局部变形阶段。
材料强度性能的主要指标是屈服强度和抗拉强度,而塑性指标主要是伸长率和断面收缩率。
材料的脆性和塑性可以通过延伸率来区分。
连接杆主要有铆钉链接、螺栓链接、焊接、键连接和销轴链接。