第三章 射线与物质的相互作用
- 格式:doc
- 大小:43.00 KB
- 文档页数:5
第三节X射线与物质相互作用我们前面讲过当X射线穿透物质时,与物质发生各种作用有吸收、散射、透射光电效应等一、X射线的散射X射线是一种电磁波,当它穿透物质时,物质的原子中的电子,可能使X射线光子偏离原射线方向,即发生散射。
X射线的散射现象可分为相干散射和非相干散射。
1、相干散射及散射强度当X射线通过物质时,在入射电场作用下,物质原子中的电子将被迫围绕其平衡位置振动,同时向四周辐射出与入射X射线波长相同的散射X射线,称为经典散射。
由于散射波与入射波的频率或波长相同,位相差恒定,在同一方向上各散射波符合相干条件,又称为相干散射。
按动力学理论,一个质量为m的电子,在与入射线呈2θ角度方向上距离为R处的某点,对一束非偏振X射线的散射波强度为:I e =I0)22cos1(24224θ+CmRe它表示一个电子散射X射线的强度,式中fe=e2/mC2称为电子散射因子。
22cos12θ+称为极化因子或偏振因子。
它是由入射波非偏振化引起的I e =I0)22cos1(109.72226θ+⨯-R从上式可见(书P5)相干散射波之间产生相互干涉,就可获得衍射。
可见相干散射是X 射线衍射技术的基础。
2、非相干散射当入射X射线光子与原子中束缚较弱的电子或自由电子发生非弹性碰撞时,光子消耗一部分能量作为电子的动能,于是电子被撞出离子外(即反冲电子)同时发出波长变长,能量降低的非相干散射,或康普顿散射这种散射分布在各方向上,波长变长,相位与入射线之间也没有固定的关系,故不产生相互干涉,不能产生衍射,只会称为衍射谱的背底,给衍射分析工作带来干扰和不利的影响。
二、X 射线的透射X 射线射线透过物质后强度的减弱是X 射线射线光子数的减少,而不是X 射线能量的减少。
所以,透射X 射线能量和传播方向基本与入射线相同。
X 射线与物质相互作用,实质上是X 射线与原子的相互作用,其基本原理是原子中受束缚电子被X 射线电磁波的振荡电场加速,短波长的X 射线易穿过物质,长波长X 射线易被物质吸收。
射线与物质的相互作用全解1.α射线与物质相互作用:α射线是由两个质子和两个中子组成的氦核,在与物质相互作用时,主要通过库仑相互作用与物质中的原子核和电子发生碰撞。
-α粒子与原子核碰撞:由于α粒子具有正电荷,与带正电荷的原子核发生库仑力相互作用。
当α粒子的动能较高时,它能够克服原子核的库仑斥力,与原子核进行散射或靶核核反应。
例如,α衰变中,α粒子通过电子云与原子核接触,克服库仑斥力,从而离开原子核。
-α粒子与电子碰撞:α粒子也能与物质中的电子发生库仑散射。
这种散射主要影响较低能量的α粒子,使其改变方向,并逐渐失去能量。
2.β射线与物质相互作用:β射线包括β正电子和β负电子,它们在与物质相互作用时,主要通过电磁相互作用与物质的电子发生碰撞。
-β电子与物质中的电子相互作用:β电子与物质中的电子发生库仑散射,导致β电子方向改变,并逐渐失去能量。
此外,β电子还会与物质中的原子核发生库仑相互作用,引起散射或产生次级带电粒子。
同时,β电子还会与物质中的靶核发生β衰变反应。
-β正电子与物质相互作用:β正电子与物质中的电子发生湮没作用,这是由于正电子和电子之间的共振效应导致的。
正电子与物质中的电子湮没后,能量转化为两个光子。
3.γ射线与物质相互作用:γ射线是电磁波,在与物质相互作用时,主要通过光电效应、康普顿散射和对消能量通过光子转化为电子对等几种机制与物质发生相互作用。
-光电效应:γ射线与物质中的原子发生相互作用,使原子内的电子受到能量的激发或被打出原子,形成光电子。
-康普顿散射:γ射线与物质中的电子发生碰撞,因为能量较高,导致电子被击中后发生能量和动量的转移,γ射线发生能量和方向的散射。
-电子对产生:γ射线经过物质时,其能量可能会转化为电子对(正电子和电子对)。
这是一种相对论效应,当γ射线的能量较高时,会出现这种现象。
4.X射线与物质相互作用:X射线与物质相互作用的主要机制是光电效应和康普顿散射。
-光电效应:X射线与物质中的原子发生相互作用,使原子内的电子受到能量的激发或被打出原子,形成光电子。
X射线与物质的相互作用X射线是一种高能电磁波,具有较短的波长和较高的频率。
当X射线入射到物质上时,它与物质中的原子相互作用,主要有光电效应、康普顿散射和正电子湮灭三种。
首先,光电效应是指当X射线入射到物质中的原子内层电子上时,电子被光子击中后被激发或抛射出原子。
这个过程遵循能量守恒定律,即入射X射线的能量等于光电子的能量加上剩余能量。
光电效应的主要特点是能量转移效率高,但是能量分辨率较差,不适用于微细结构的研究。
其次,康普顿散射是X射线与物质中的自由电子碰撞后散射出去,同时X射线的波长发生了变化。
这个过程遵循动量守恒和能量守恒定律。
康普顿散射在医学诊断中得到了广泛应用,因为它具有良好的能量分辨率和较高的对比度。
最后,正电子湮灭是指当X射线入射到物质中时,一部分入射X射线与物质中的原子碰撞,产生正电子和负电子。
正电子与负电子相遇后发生湮灭,产生两个γ光子。
正电子湮灭谱是通过测量X射线与物质的相互作用,得到信息的有效方法。
除此之外,X射线还会与物质产生其他的相互作用,如光子发射、光子吸收、光子和原子核相互作用等。
这些相互作用过程是多种多样的,可以通过测量入射和散射X射线的强度、能量变化以及角分布来研究物质的结构、成分等信息。
在医学方面,X射线的应用非常广泛。
例如,X射线透视可以用于骨骼和丰富因子的成像,可以用于检查骨折、肺部感染、心脏病等疾病。
另外,计算机断层扫描(CT)是一种通过多个方向的X射线扫描来获取物体横截面图像的技术,可以用于检测和诊断肿瘤、脑血栓等疾病。
在工业领域,X射线也得到了广泛的应用。
例如,X射线非破坏性检测可以用于检测金属和非金属材料的缺陷,如焊缝、裂纹等。
此外,X射线衍射可以用于材料的结晶结构分析,用于研究材料的晶体结构和晶体缺陷。
总之,X射线与物质的相互作用是一种重要的物理现象,具有广泛的应用领域。
通过研究X射线与物质的相互作用机制,可以获得物质的结构、成分等信息,为医学诊断、工业检测等领域提供技术支持。
射线与物质的相互作用全解射线与物质的相互作用是物理学中的重要课题之一、射线主要包括X 射线、γ射线以及带电粒子射线。
它们与物质相互作用过程可以通过不同的机制进行解释,其中主要包括光电效应、康普顿散射、电子对产生以及核反应等。
本文将详细介绍射线与物质不同相互作用过程的全解。
首先,光电效应是指射线与物质相互作用时,射线能量被物质的原子或分子吸收,同时将一些原子或分子的一个外层电子打出,使其形成自由电子,并使原子或分子离子化。
光电效应的发生需要满足光子能量大于物质原子或分子的束缚能。
在光电效应中,射线的能量被完全转化为电子的动能,并且随着射线能量的增加,光电效应的截面逐渐增大。
其次,康普顿散射是指射线与物质相互作用时,射线与物质中的自由电子碰撞,并转移能量。
在康普顿散射过程中,射线的能量减小,同时产生散射射线,其散射角度与原始射线方向有关。
康普顿散射的截面依赖于射线能量和散射角度,而与物质性质无关。
因此,康普顿散射广泛应用于材料成分分析和非破坏性检测等领域。
第三,电子对产生是指高能射线与物质相互作用时,射线的能量转化为正负电子对。
在电子对产生中,射线的能量足够高,超过物质原子或分子的静止能量,因此,能够产生正负电子对。
电子对的产生量与射线能量呈正比,并且与物质性质无关。
最后,核反应是指射线与物质的原子核相互作用而产生新的核反应产物。
核反应的过程可以分为两类:一类是射线与原子核碰撞产生的弹性散射或非弹性散射,另一类是射线与原子核相互作用产生裂变反应或聚变反应。
核反应的截面与射线能量和物质的原子核性质密切相关。
需要指出的是,射线与物质相互作用过程的解释是基于经典物理学理论的基础上进行的。
在高能物理学领域中,射线与物质相互作用的解释需要使用量子场论的框架来描述。
此外,射线与物质的相互作用和影响还涉及到辐射生物学、辐射医学以及放射化学等学科的研究。
这些都是相当广泛和复杂的领域,需要进一步深入的研究和实践来完全解释。
第三章射线与物质的相互作用上一章讨论了原子核的放射性。
原子核在衰变过程中,放射出各种各样的粒子。
本章讨论这些粒子与物质的相互作用。
本章所述的射线,泛指核衰变或核裂变放出的粒子,或由加速器,核反应β等等。
堆产生的各种各样的粒子,如n,,,,,3γHex,dta,本章所涉及的物质,可以是气体液体和固体,可以是单质也可以是化合物或混合物。
通常叫做靶物质。
本章要讨论的是当粒子通过物质时所发生的各种相互作用和效应。
了解射线与物质的相互作用的意义在于:(1)理解射线与物质相互作用的机理,增加人们对微观世界的认识;(2)由射线与物质相互作用的实验,例如散射实验,可以提供有关原子和原子核结构的知识(3)各种探测器都是依据射线与物质相互作用的机制、特点来设计和制造的。
因此,研究射线与物质相互作用的认识,为制造这些设备提供了依据(提供基础知识)(4)射线通过物质时要造成辐射损伤,我们可以根据射线与物质相互作用的知识,进行有效的辐射防护(5)根据射线与物质相互作用的知识,开展核技术和各个学科领域的应用。
如在核测井方法中,密度测井就是根据γ射线与物质相互作用的规律来测量地层密度的。
在本章中对于带点粒子与物质相互作用只作简要介绍,着重讨论γ射线与物质的相互作用。
有关中子与物质的相互作用在第六章讨论。
§1带电粒子与物质的相互作用α、β、γ射线穿透物质时,要与靶物质发生相互作用.这种相互作用涉及两个方面:(1)射线(2)靶物质。
不同的射线与物质相互作用的机制不同;而不同的靶物质即使对于同种射线的作用也有差异。
对于射线按带电与否可分为:荷电粒子,如α、β及各种离子:不带电粒子:如γ、n等再按质量的大小分:重带电粒子;轻带电粒子。
地球物理测井专业主要利用射线与物质的相互作用来确定地层的一些参数。
由于γ射线不带电荷,可以入射到物质的深处,因而可以得出物质较深处的相互特性。
这是我们重点讨论非带电粒子与物质相互作用的原因。
具有一定能量的带电粒子射入靶物质与物质发生相互作用,有如下四种作用方式:(1)与核外电子发生非弹性碰撞;(2)与核发生非弹性碰撞;(3)与核外电子发生弹性碰撞;(4)与核发生弹性碰撞。
第三章射线与物质的相互作用
一·电离:电离辐射非电离辐射
阿尔法粒子(氦)易发生电离,但易被阻挡
(电离只能由高能粒子发生)
粒子:1·激发态:(低能态-高能态)M ~M+ 和电子
剥离内层电子即激发过程(电离过程)2·退激发态:由高能态-低能态
直接电离与间接电离
直接电离:
间接电离:
强电离弱电离中等电离
二·
放射源接收器(检测器)
射程计算:电子对/距离- 电离强度
(二)·贝塔射线与物质的相互作用(中等电离辐射)
质量小- 作用于电子(核外电子)上
作用于物质时引起直接电离
致辐射:用轰击重金属核
(三)·伽马X射线
光电效应:光子能量小于1.0 电子伏特
光电子:由光电效应引起的所剥离的自由电子
内层电子被剥离后产生“空穴”使得外层电子进入内层被称
为俄歇电子
康普顿散射:0.2-5.0 电子伏特
部分能量被吸收剩余的继续作用
高能光子散射角度较小
低能光子散射角度较大
即受光子能量影响
电子对:光子能量大于1.02 电子伏特产生正电子负电子
正负电子湮灭释放能量(质量变为能量并释放光子能量与之前相
同)但能量来源于之前的光子
光子与物质之间的作用>30种
原子序数与光子能量关系图(包含光电效应康普顿效应电子对)
(四)·中子
中子一般来源于核反应
快中子能量高速度快
弹性散射:小核
非弹性散射:大核
中子俘获:减速以后的中子(也是快中子)会发生被俘获后发出伽马射线
(大原子如铱192)
热中子:由快中子蜕变
快电子重带电粒子
快电子的速度大;重带电粒子相对速度小;
快电子除电离损失外,辐射损
失不可忽略;重带电粒子主要通过电离损失而
损失能量;
快电子散射严重重带电粒子在介质中的运动径迹
近似为直线
阿尔法射线与束缚电子发生非弹性碰撞-------电离,激发
贝塔射线与核外电子发生非弹性碰撞——电离,激发,致辐射伽马射线X射线光电反应-----光子被吸收
康普顿散射----光子被散射
弹性散射------产生两个光子
中子非弹性散射------ 光子
中子俘获-------其他辐射
单纯路径上离子化物质密度------线性能量转移---线碰撞阻止本领
阿尔法:贝塔:伽马=104:102:1
辐射的生物学效应
1·能量吸收------皮肤出现红斑
2·大分子被破坏-----蛋白质---结构改变---变性---失去功能
核酸----被打破断裂--自我修复(出错碱基替换
即基因突变)。