(完整版)量子点太阳能电池简介
- 格式:doc
- 大小:441.01 KB
- 文档页数:6
量子点太阳能电池简介摘要:量子点太阳能电池是第三代太阳能电池,也是目前最尖端、最新的太阳能电池之一,这种电池在使用半导体材料的普通太阳能电池之中,引入了纳米技术与量子力学理论,尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。
简述了量子点太阳能电池的物理机理及研究内容。
关键词:量子点,太阳能电池,机理随着人类面临的环境与能源问题的持续恶化,加强环境保护和开发清洁能源是人类高度关注的焦点。
因此,近年来人们对太阳能开发和利用的研究进展极为迅速。
作为一种重要的光电能量转换器件,太阳能电池的研究一直受到人们的热切关注。
太阳能电池可以分为两大类:一类是基于半导体p-n结中载流子输运过程的无机固态太阳能电池;另一类则是基于有机分子材料中光电子化学过程的光电化学太阳能电池。
单晶GaAs太阳能电池、晶体Si太阳能电池和Si基薄膜太阳能电池属于第一类,而染料敏化太阳能电池和聚合物太阳能电池属于第二类。
第一类太阳能电池已经产业化或商业化,而第二类太阳能电池正处于研究与开发之中。
目前太阳能电池存在能耗高、光电转换效率低等缺点。
尽管人们已采用各种方法使太阳能电池的转换效率得到了一定改善,但尚不能使其大幅度提高。
找到一种更有效的途径或对策,使太阳能电池的实际能量转换效率接近其理论预测值,成为材料物理、光伏器件与能源科学的一项重大课题。
量子点是指三维方向尺寸均小于相应物质块体材料激子的德布罗意波长的纳米结构。
理论研究指出,采用具有显著量子限制效应和分立光谱特性的量子点作为有源区设计和制作的量子点太阳能电池,可以使其能量转换效率获得超乎寻常的提高,其极限值可以达到66%左右,而目前太阳能电池的主流晶体硅技术的光电转换效率理论上最多仅为30%。
尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。
量子点太阳能电池类型量子点太阳能电池是一种新型的太阳能电池技术,应用了量子点材料的特殊性质,具有很大的潜力和优势。
以下将介绍几种常见的量子点太阳能电池类型。
第一种类型是量子点敏化太阳能电池(Quantum Dot Sensitized Solar Cells,QDSC)。
这种电池利用了量子点材料的优异光电特性,将其作为光敏剂,吸收光能并将其转化为电能。
通过这种方式,量子点敏化太阳能电池能够有效地捕捉到太阳能的更多光谱,提高能量转换效率,实现更高的能源产出。
第二种类型是量子点增强型太阳能电池(Quantum Dot Enhanced Solar Cells,QDESC)。
这种电池将量子点材料作为增强层加入到传统的太阳能电池中。
量子点能够吸收并转换太阳光中较高能量的光子,将其转化为更适合太阳能电池吸收的低能量光子。
这种方式可以增强电池对太阳能的吸收能力,提高能量转换效率。
第三种类型是量子点多结太阳能电池(Quantum Dot Multiple Junction Solar Cells,QDJSC)。
这种电池采用多层量子点材料的结构,每一层都能够吸收光谱中的不同能量范围的光子。
通过这种层叠的结构,能够利用太阳能光谱中更多的光子,提高能量转换效率。
量子点多结太阳能电池兼具高效率和宽谱吸收的特点,能够在不同光照条件下表现出较好的性能。
通过研究和探索,科学家们还不断提出新的量子点太阳能电池类型和结构,不断推动该领域的发展。
这些新的电池类型可以根据需要,调整量子点材料的性质、结构和组成,以实现更高的能量转换效率、更长的寿命和更低的成本。
未来,量子点太阳能电池有望成为替代传统太阳能电池的主流技术。
与传统太阳能电池相比,量子点太阳能电池具有更高的能量转换效率、更宽的光谱吸收范围、更长的使用寿命和更好的稳定性。
此外,量子点太阳能电池材料的制备成本也在不断降低,有望实现商业化生产,满足日益增长的能源需求。
在实际应用中,我们可以将量子点太阳能电池广泛运用于各个领域。
量子点太阳能电池技术概况作者:孟庆波来源:《新材料产业》 2013年第3期文/ 孟庆波中国科学院物理研究所一、概述1.量子点太阳能电池概念近年来,量子点太阳能电池已成为国际上的研究热点。
此类电池的主要特点是以无机半导体纳米晶(量子点)作为吸光材料。
量子点(QuantumDots,QDs)是准零维(quasi-zerodimensional)纳米材料。
粗略地说,量子点3个维度的尺寸均小于块体材料激子的德布罗意波长。
从外观上看,量子点恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,即量子局限效应(quantum confinementeffect)特别显著。
量子点有很多的优点:①吸光范围可以通过调节颗粒的组分和尺寸来获得,并且可以从可见光到红外光;②化学稳定性好;③合成过程简单,是低成本的吸光材料;④具有高消光系数和本征偶极矩,电池的吸光层可以制备得极薄,因此可进一步降低电池成本;⑤相对于体相半导体材料,采用量子点可以更容易实现电子给体和受体材料的能级匹配,这对于获得高效太阳能电池十分关键。
更重要的是,量子点可以吸收高能光子并且一个光子可以产生多个电子-空穴对(多激子效应),理论上预测的量子点电池效率可以达到44%。
因此,量子点太阳能电池常常被称作第3代太阳能电池,具有巨大的发展前景。
2.量子点太阳能电池分类目前,量子点太阳能电池主要分为肖特基太阳能电池、耗尽型异质结太阳能电池、极薄层太阳能电池、体相异质结太阳能电池、有机-无机异质结太阳能电池和量子点敏化太阳能电池等,具体说明如下:(1)肖特基量子点太阳能电池肖特基量子点太阳能电池的结构非常简单,在导电玻璃上涂覆量子点层,再在量子点层上加载金属阴极即可。
它的优点在于:第一,结构简单,量子点层可以通过喷雾涂覆或者喷墨打印的方式获得,有利于工业化生产;第二,量子点层的厚度仅为100nm左右,可以进一步降低电池成本。
但是,肖特基量子点太阳能电池有一些缺点:首先,少数载流子(这里为电子)必须在到达目标电极前穿过整个量子点层,易产生较严重的复合;其次,金属-半导体界面的缺陷态导致费米能级的钉扎现象,降低了电池的开路电压,所以肖特基量子点太阳能电池的开路电压一般较低。
量子点太阳能电池
量子点太阳能电池是一种利用量子点光电转换材料作为能量转换器,以获得能源的新
型太阳能电池。
它是一种比传统太阳能电池具有更高效率的绿色能源技术。
量子点太阳能
电池能够将太阳能有效转换成电能,可以用于发电和充电电池。
可以使用单纯的量子点材
料制成太阳能电池,也可以将它们与染料敏化剂或活性物质结合使用,制成更先进的太阳
能电池,比如量子点-染料敏化太阳能电池。
量子点太阳能电池原理是使用量子点结构和特性,以使其具有很强的光催化能力,可
以把太阳光转化成电能,从而解决传统太阳能电池低效问题。
量子点可设计成各种不同的
尺寸和形状,它们的光电转换效率远比传统的太阳能电池要高,可以增大太阳能电池的光
强度,从而提高其电力转换效率。
量子点太阳能电池有许多优点,它们的生产成本较低,其静电特性比其他电池技术较低,容易加工和制造,成本低,它们可以轻松地整合到太阳能生产系统中来提高太阳能利
用率,可以增强太阳能电池的灵活性和可靠性。
量子点太阳能电池另一个优点是其完全可再生的特性。
因为它们的结构不会受到任何
有害的气体、温度或湿度的影响,所以它们可以重复使用多次,对环境也是有益的。
虽然目前量子点太阳能电池具有许多优点,但也存在一些问题,比如其成本相对较高,还有一些技术上的挑战,如长期稳定性、可靠性和性能。
因此,生产商和研究者正努力改
进设计,以增加性能,降低成本。
且随着技术的发展,量子点太阳能电池有望在未来成为
一种高效、可靠并低成本的可再生能源技术,是可持续发展的绿色技术。
量子点敏化太阳能电池
量子点敏化太阳能电池是一种基于半导体量子点技术的新型太阳能电池。
量子点是尺寸在纳米级别的半导体颗粒,其具有很好的光物理和电子学性质。
通过将量子点吸附于钛某膜表面,可以提高太阳能电池的光吸收效率,从而提高电池的性能。
量子点敏化太阳能电池具有以下优点:
1. 光电转换效率高:量子点可以吸收半导体电池无法吸收的红外光谱,从而提高光电转换效率。
2. 光稳定性好:由于量子点具有很好的光物理性质,因此它们可以吸收和发射光子,从而提高电池的光稳定性。
3. 制备简单:与其他太阳能电池相比,量子点敏化太阳能电池的制备工艺相对简单,成本也较低。
4. 可控性强:通过控制量子点的尺寸和组成,可以调整太阳能电池的光学和电学性质,从而得到更好的性能。
尽管量子点敏化太阳能电池在实验中取得了良好的性能,但在实际应用中还需要克服许多挑战,如长期稳定性、成本、批量生产等问题。
因此,目前该技术仍处
于研究和发展阶段。
量子点太阳能电池的研究及应用近年来,随着科学技术的不断发展,太阳能电池作为一种重要的可再生能源得到了广泛关注和研究。
量子点太阳能电池,作为太阳能电池的一种新型形态,具有许多优异的特性,因此引起了科学家们的极大关注。
本文将对量子点太阳能电池的研究及应用进行探讨。
一、量子点太阳能电池的原理在传统的太阳能电池中,其主要原理是将太阳能转化为电能。
而量子点太阳能电池则是利用量子点的光电效应来实现对太阳能的转化。
量子点是一种直径在1~10纳米范围内的微观颗粒,它们能够在一定范围内吸收或发射电磁波,并且具有尺寸能量效应、量子限效应和准受限效应等特性。
通过将这些量子点嵌入到太阳能电池中,可以在吸收太阳光的过程中产生电子,并将其传递到电池中的电极上,从而实现对太阳能的转化。
二、量子点太阳能电池的优点相比于传统的太阳能电池,量子点太阳能电池具有以下几方面的优点:1. 高效率:量子点太阳能电池的效率可以达到30%以上,比传统太阳能电池的效率高出很多。
2. 容易制备:制备量子点太阳能电池的材料和工艺相对简单,成本也较低。
3. 透明性好:量子点太阳能电池可以制成透明材料,可以应用于大面积的太阳能玻璃幕墙等场景。
4. 抗衰减,寿命长:量子点材料可以保持长时间的稳定状态,并具有较长的使用寿命。
以上优点使得量子点太阳能电池在应用方面具有广阔的前景。
三、量子点太阳能电池的应用量子点太阳能电池具有广泛的应用前景,主要涉及以下几个方面:1. 太阳能玻璃幕墙:量子点太阳能电池可以制成透明材料,可以应用于大面积的太阳能玻璃幕墙。
2. 移动电源:量子点太阳能电池可以制作成柔性材料,可以应用于移动电源等场景。
3. 光伏发电:量子点太阳能电池可以与传统的太阳能电池相结合,提高光伏发电的效率。
4. 生活用电:利用量子点太阳能电池可以为生活用电提供新的来源。
四、量子点太阳能电池的挑战虽然量子点太阳能电池具有很大的优点,但是在研究和应用中还存在以下几个挑战:1. 量子点太阳能电池的制备工艺和技术还需要进一步完善,特别是应用于工业化生产场景时需要考虑到工艺稳定性和可复制性。
基于量子点的太阳能电池的研究及其性能分析如今的社会,发展越来越快,科技也越来越成熟。
能源问题一直是人类面临的难题之一,如何利用太阳能这一稳定的可再生能源成为了各国研究的重点。
而基于量子点的太阳能电池,则是近年来备受关注的新型太阳能电池。
本文将就基于量子点的太阳能电池的研究及其性能进行一些探讨。
一、基于量子点的太阳能电池的概念和原理1. 概念:基于量子点的太阳能电池是一种新型的光电转化设备,它是利用量子点的特殊物理和化学性质,以半导体为载体的太阳能电池。
基于量子点的太阳能电池中,通过将量子点嵌入半导体薄膜中,使得它们能够吸收太阳能,从而充当半导体的激发器,并将光能转化为电能。
2. 原理:基于量子点的太阳能电池,是通过利用量子点的特殊物理和化学性质来实现强化光电转化效果的。
其基本原理如下:(1)利用量子效应:基于量子点的太阳能电池,利用的就是单个或少数量子点的特殊量子效应。
这种量子效应只有在量子点的尺寸小于其束缚波长时才会出现。
在这种情况下,量子点呈现出独特的光电学性质,具有非常高的光电转化效率。
(2)通过数量控制调节物理特性:不同数量的量子点可以调节不同的物理特性,特别是光电学特性。
通过数量控制,可以达到调节物理特性的目的。
(3)提高光谱利用率:基于量子点的太阳能电池由于特殊的光谱利用方式,能够提高光谱利用率,增加太阳能光谱的覆盖面积,提高光电转化的效率。
二、基于量子点的太阳能电池的性能分析1. 优点:(1)光电转化效率高:相比于传统太阳能电池,基于量子点的太阳能电池光电转化效率更高,因为它利用了量子点的特殊物理性质,能够强化光电转化效果。
(2)光度响应窄:基于量子点的太阳能电池光度响应窄,能够很好地充分利用太阳光谱的能量,从而提高其转化效率。
(3)灵活性和可控性强:基于量子点的太阳能电池,可以通过调节量子点的大小、形态以及种类等方法来实现不同光学参数的调节,具有非常好的灵活性和可控性。
2. 局限性:(1)研究难度大:基于量子点的太阳能电池研究需要实现量子点与半导体接触的良好性质以及光电性质的优化调控,这些都需要很高的技术水平和实验经验。
量子点与太阳能电池太阳能电池是一种能够将太阳光转化为电能的设备。
太阳能电池的发展史可以追溯到19世纪初,但直到20世纪50年代,太阳能电池才真正的开始被广泛应用。
如今,随着环保和可持续发展的日益普及,太阳能电池已成为了一种主要的可再生能源技术,被广泛应用于房屋、办公室和工厂等场所。
但是太阳能电池的效率和成本问题仍然是制约其发展的主要瓶颈。
近年来,一种科技被引入到了太阳能电池的研究中,它就是量子点技术。
什么是量子点技术?量子点(quantum dots)是一种微小的半导体结构。
这种结构大小只有几个纳米,因此被称为“纳米技术”的一种重要表现。
量子点的微小尺寸和半导体特性将有助于实现高效率、低成本和高稳定性的太阳能电池。
量子点光伏技术是一种基于电子量子效应的新型太阳能电池。
传统的半导体太阳能电池可以吸收波长比较短的太阳光,但对波长较长的太阳光的吸收则非常有限。
这就是传统太阳能电池效率不高的原因之一。
量子点太阳能电池则可以利用半导体材料在纳米尺度上产生的量子效应,帮助太阳能电池吸收更多波长更长的太阳光,从而提高太阳能电池的能量转换效率。
量子点技术与太阳能电池的结合优势明显利用量子点技术可以改善传统太阳能电池的吸收光谱,提高吸收效率。
通过精细调控量子点的大小、形状和材料等特性,科学家可以定做吸收波长,实现特定波长的光谱接收和转换,提高光电转换效率。
例如,利用量子点技术可以制备出能够吸收可见光和红外光波长的太阳能电池,大大提高了太阳能电池对不同波长太阳光的接收程度,从而提高了太阳能电池的能量输出效率。
此外,利用量子点技术还可以大幅降低太阳能电池的制造成本。
量子点材料制备和加工技术基于传统的半导体工艺,因此不需要额外的成本。
同时,利用量子点技术,可以控制太阳能电池的结构和性能,改变太阳能电池的形状和构造,使其更加轻薄、便携、柔性,从而提高太阳能电池的适用性和便利性。
量子点太阳能电池正在迅速发展随着科技的进步,量子点太阳能电池正逐渐走向成熟。
量子点,钙钛矿太阳能电池随着科技不断发展,太阳能电池成为了一种快速发展的清洁能源,同时也带来了一些新的技术和材料。
其中,钙钛矿太阳能电池和量子点太阳能电池凭借着其独特的性能,备受关注。
在这篇文章中,我们将介绍这两种新型太阳能电池的基本原理以及一些关键技术。
一、量子点太阳能电池1. 基本原理量子点太阳能电池是一种利用微小的半导体材料(量子点)将光转化为电子的太阳能电池。
量子点被设计成能够吸收特定波长的光线。
当光线照射到量子点上时,电子被激发并跳到一个高能级,从而将光能转化为电能。
2. 技术难点量子点太阳能电池的制造需要高精度的显微技术和半导体工艺技术。
另外,量子点的尺寸和形状对其性能有很大的影响,因此需要对这些参数进行定制化设计。
3. 应用前景量子点太阳能电池可以在室内照明和小型电子设备中应用。
他们非常小巧,轻便,因此可以用在可穿戴设备和智能家居中。
与此同时,量子点太阳能电池还可以用于提高大型太阳能电池组的效率。
二、钙钛矿太阳能电池1. 基本原理钙钛矿太阳能电池是一种新型的太阳能电池,可以将光能有效地转化为电能。
它们以钙钛矿晶体结构为基础,通过分层薄膜和电解质制成。
当太阳光线照射到钙钛矿上时,电子被激发并从半导体材料中释放出来,形成电流。
2. 技术难点虽然钙钛矿太阳能电池在转化效率方面表现出色,但是也有一些技术上的挑战。
钙钛矿材料需要通过高温和成熟的半导体工艺来制造。
此外,钙钛矿太阳能电池通常需要稳定的温度和湿度来保持性能。
3. 应用前景钙钛矿太阳能电池是当今最具前景的清洁能源技术之一。
有了更高的转换效率和稳定性,它们将成为太阳能电池行业的主流产品。
预计未来钙钛矿太阳能电池将在能源管理、智能建筑、基础设施等领域得到广泛应用,取代传统的化石燃料。
总之,量子点太阳能电池和钙钛矿太阳能电池都是新型太阳能电池,具有出色的转化效率和广泛的应用前景。
我们相信,这两种电池的不断发展和创新将会推动清洁能源领域的发展。
了解量子点太阳能电池的工作原理量子点太阳能电池是一种新型的光伏技术,它采用了量子点作为光敏材料,具有出色的光电转换效率和抗光衰减特性。
本文将对量子点太阳能电池的工作原理进行详细介绍。
首先,让我们了解一下什么是量子点。
量子点是具有特定尺寸的半导体纳米晶体,在三维空间中呈现球形或柱状。
由于其尺寸的限制,量子点的电子在能级上出现了离散的能带结构,这使得量子点能够对辐射能谱进行高效率地吸收。
量子点太阳能电池的工作原理依赖于电荷转移过程。
当光线照射到量子点太阳能电池的表面时,量子点吸收光子能量,并将其转化为激发态的电子。
这些激发态的电子被称为激子,它们在量子点内部进行非辐射复合或在半导体内部通过能带重组形成自由载流子。
这些自由载流子在电场的作用下被分离,并形成电流。
与传统的太阳能电池相比,量子点太阳能电池具有以下几个优势。
首先,量子点太阳能电池能够在更宽的光谱范围内吸收光能。
由于量子点材料的能级结构可以根据其尺寸进行调控,因此量子点太阳能电池能够吸收可见光、近红外光甚至是紫外线光。
这使得量子点太阳能电池的光电转换效率更高。
其次,由于量子点具有较小的尺寸,量子点太阳能电池可以实现多重能带的吸收。
传统的太阳能电池由于能带的限制只能吸收一定波长范围内的光线,而量子点太阳能电池通过调整量子点材料的尺寸和组成,可以实现多能带的吸收。
这使得量子点太阳能电池在吸收不同波长的光线时都能够保持较高的效率。
此外,量子点太阳能电池还具有较长的载流子寿命。
量子点内部的非辐射复合过程相对较长,使得自由载流子可以在材料内部长时间传输和扩散,从而提高了电荷传输效率和载流子寿命。
这对于太阳能电池的稳定性和性能表现具有重要意义。
另外,量子点太阳能电池还可以制备成柔性和透明的薄膜状,因此具有更广泛的应用前景。
与传统的硅基太阳能电池相比,量子点太阳能电池更容易集成到纺织品、建筑材料和电子设备中,以满足多种需求。
尽管量子点太阳能电池具有许多优势,但目前仍存在一些挑战和局限性。
量子点电池的原理和应用1. 量子点电池的概述量子点电池是一种基于量子点材料制备的新型太阳能电池。
通过利用量子点材料的特殊性质,如量子尺寸效应和量子限制效应,量子点电池能够提高光电转换效率和稳定性,成为可持续发展的清洁能源技术。
2. 量子点电池的工作原理量子点电池的工作原理基于光电效应和量子尺寸效应。
当光照射到量子点电极上时,光子能量被吸收,并将激发电子从价带跃迁到导带。
量子点的特殊结构使得电子在空间限制下运动,增加了光电转换效率。
这些电子可以通过导电材料传输到电池电极,从而产生电流。
3. 量子点电池的优势量子点电池相比传统太阳能电池具有以下优势:•高光电转换效率:量子点材料具有量子限制效应,能够有效利用光能,提高光电转换效率。
•宽光谱响应:量子点电池对太阳光谱的各个波段都有良好的响应能力,可以更全面地利用光能。
•调控带隙:通过控制量子点的尺寸和组成,可以调节其带隙,以适应不同光谱条件下的光吸收和光电转换。
•高稳定性:量子点材料具有良好的光稳定性和抗光热退化性能,可以有效延长电池的使用寿命。
4. 量子点电池的应用量子点电池具有广泛的应用前景,以下是一些具体的应用领域:4.1 光伏发电由于量子点电池具有高效率和宽光谱响应的特点,可应用于光伏发电领域。
量子点电池可以在多个波段上吸收光能,提供更高的光电转换效率,进一步提升光伏发电的能源利用效率。
4.2 柔性电子产品量子点电池具有柔性、轻薄的特性,可以应用于柔性电子产品,如柔性显示屏、可穿戴设备等。
通过将量子点电池与柔性基底相结合,可以实现电池的弯曲和拉伸,满足柔性电子产品的需求。
4.3 光催化由于量子点电池能够有效吸收可见光,将其应用于光催化反应可以提高反应效率。
光催化技术在环境污染治理、水分解制氢等领域具有广泛的应用前景,在能源和环境领域具有重要意义。
4.4 光电子器件量子点电池可以应用于光电子器件,如光电二极管、光电导等。
通过将量子点材料作为光电转换元件,可以实现高效、高精度的光电信号转换,并应用于通信、光电检测等领域。
钙钛矿量子点太阳能电池钙钛矿量子点太阳能电池,这可真是个神奇的东西。
就像发现了一个隐藏在科技世界里的宝藏。
钙钛矿这种材料,名字听起来就很酷炫,它的结构独特得很。
量子点呢,就像是一个个超级微小的能量精灵。
把它们组合在一起做成太阳能电池,那简直就像是打造了一个微观世界里的能量魔法阵。
想象一下,阳光就像是老天爷每天免费派送的无数小礼物,钙钛矿量子点太阳能电池就像是一个超级智能的小管家,专门负责接收这些小礼物,然后把它们转化成我们能用的电。
这电啊,可以让我们的灯亮起来,可以让冰箱制冷,可以让电视播放节目。
我曾经看到过一个介绍钙钛矿量子点太阳能电池的小展览。
那些小小的电池片,看起来普普通通,但是当工作人员介绍它们的能量转换效率的时候,我真的是惊呆了。
就这么个小小的东西,能把那么多的阳光转化成电能,感觉就像是一个小不点拥有了巨大的力量。
在日常生活里,要是每家每户都用上这种太阳能电池,那可不得了。
电费能省不少呢,而且还特别环保。
不用再担心发电烧煤污染环境,就像给地球妈妈减轻了不少负担。
再说说钙钛矿量子点太阳能电池的发展前景,就像是一条宽阔的大路,前面充满了无限的可能。
科学家们不断地研究改进,让它的性能越来越好。
说不定以后我们的手机、电脑这些小电器,都能直接用钙钛矿量子点太阳能电池供电,再也不用到处找充电器了。
不过呢,它也不是完美无缺的。
有时候可能会受到一些环境因素的影响,就像人会生病一样。
但是这并不影响它成为未来能源领域的一颗耀眼明星。
我觉得钙钛矿量子点太阳能电池是非常有潜力的。
它像是一个充满希望的新生力量,在能源的舞台上正逐渐崭露头角。
虽然现在可能还存在一些小问题,但它的未来是光明的,值得我们期待和关注,相信它会给我们的生活带来更多的惊喜和改变。
量子点太阳能电池简介摘要:量子点太阳能电池是第三代太阳能电池,也是目前最尖端、最新的太阳能电池之一,这种电池在使用半导体材料的普通太阳能电池之中,引入了纳米技术与量子力学理论,尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。
简述了量子点太阳能电池的物理机理及研究内容。
关键词:量子点,太阳能电池,机理随着人类面临的环境与能源问题的持续恶化,加强环境保护和开发清洁能源是人类高度关注的焦点。
因此,近年来人们对太阳能开发和利用的研究进展极为迅速。
作为一种重要的光电能量转换器件,太阳能电池的研究一直受到人们的热切关注。
太阳能电池可以分为两大类:一类是基于半导体p-n结中载流子输运过程的无机固态太阳能电池;另一类则是基于有机分子材料中光电子化学过程的光电化学太阳能电池。
单晶GaAs太阳能电池、晶体Si太阳能电池和Si基薄膜太阳能电池属于第一类,而染料敏化太阳能电池和聚合物太阳能电池属于第二类。
第一类太阳能电池已经产业化或商业化,而第二类太阳能电池正处于研究与开发之中。
目前太阳能电池存在能耗高、光电转换效率低等缺点。
尽管人们已采用各种方法使太阳能电池的转换效率得到了一定改善,但尚不能使其大幅度提高。
找到一种更有效的途径或对策,使太阳能电池的实际能量转换效率接近其理论预测值,成为材料物理、光伏器件与能源科学的一项重大课题。
量子点是指三维方向尺寸均小于相应物质块体材料激子的德布罗意波长的纳米结构。
理论研究指出,采用具有显著量子限制效应和分立光谱特性的量子点作为有源区设计和制作的量子点太阳能电池,可以使其能量转换效率获得超乎寻常的提高,其极限值可以达到66%左右,而目前太阳能电池的主流晶体硅技术的光电转换效率理论上最多仅为30%。
尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。
1 量子点太阳能电池的物理机理人们针对太阳能电池存在的能耗高、光电转换率低等缺点,提出了三套解决方案[1]:1)增加带隙数量,制作多带隙叠层太阳能电池;2)热载流子冷却前进行俘获;3)一个高能光子产生多个电子空穴对或者多个低能光子产生一个高能电子空穴对。
目前,方案1已经得到实际应用,后两套方案基于量子点产生的量子限制效应正处于研究之中。
半导体量子点太阳能电池作为第三代太阳能电池具有潜在的优势,它通过以下两个效应可以大大增加光电转换效率:第一个效应是来自具有充足能量的单光子激发产生多激子;第二个效应是在带隙里形成中间带,可以有多个带隙起作用,来产生电子空穴对。
这两个效应的产生是因为量子点中的能级量子化。
能级量子化还会产生其它效应:减缓热电子-空穴对的冷却;提高电荷载流子之间的俄歇复合过程和库仑耦合;并且对于三维限制的载流子,动量不再是一个好量子数,跃迁过程不必满足动量守恒。
提高转换效率的两种基本的方式(增加光电压或者增加光电流)理论上在三维量子点太阳能电池的结构中能够实现。
1.1 量子点多激子太阳能电池的机理在一般的半导体太阳能电池中由碰撞电离引起的多个电子空穴对的形成对于提高量子产能并没有多重要的贡献,这主要是因为只有在光子的能量达到光谱的紫外区才会有可观的碰撞电离效应,而大多数半导体无法满足要求,原因有两个,一个是晶体的动量守恒,另外是碰撞电离的比率必须和由电子-声子散射引起的能量弛豫的比率接近。
在量子点体系中三维限制效应会形成分裂的量子化能级,能有效地减慢电声子的相互作用。
而且对于三维限制载流子,由于动能不再是一个好量子数,因此跃迁过程也不必满足动量守恒,这样碰撞电离效应可得到增强,热电子可产生多个空穴对,因此称为多电子产生。
多电子产生现象在不少纳米晶体中有报道,如PbSe、PbS、PbTe和CdSe等。
但目前实验研究中,基于量子点的光转换器件的量子产能还不理想。
量子点多激子增强效应机制尚处于研究阶段。
1.2 量子点中间带太阳能电池的机理中间带材料是在传统半导体材料的价带和导带之间存在一个中间带。
由于中间带的形成,电子会从价带跃迁到中间带,以及从中间带跃迁到导带,使低于带隙能量的光子也能够对电池的光电流产生贡献。
中间带可通过尺寸为纳米量级的半导体量子点镶嵌在三维的宽带隙半导体材料中来实现—量子点为势阱,宽带隙半导体为势垒。
通过调制阱宽可实现不同的量子限制效应;改变能级分裂的距离,可以形成不同的带隙宽度。
[2](a)(b)图2,(a)中间带材料的结构;(b)量子点中间带太阳能电池的能级构造中间带太阳能电池能够捕获和吸收低于带隙能量的光子,使太阳能电池可以在没有电压降低的情况下提高光电流,因此它是目前第三代太阳能电池研究中最为活跃的领域之一。
在中间带太阳能电池需要解决的基本问题中,最关键的是光的有效吸收问题。
为了使光子有最大能量输出的同时使载流子的热损失最小,具有一定能量的光子应首先被相应的最宽的能隙吸收(不同带隙主要吸收与能隙宽度相近能量的光子,避免高能量的光子被窄能带先吸收),同时要求价带到导带的吸收系数比价带到中间带的吸收系数大,价带到中间带的吸收系数比中间带到导带的吸收系数大。
其次是要求中间带必须是半满的,且应有足够的电子空穴对浓度,能够满足电子从价带到中间带的跃迁和中间带到导带跃迁的要求。
上述要求在实验上是不容易满足的,因此寻找满足上述要求的中间带材料是实现高效中间带太阳能电池的关键之一。
2 量子点太阳能电池研究内容介绍2.1 量子点敏化太阳能电池量子点敏化太阳能电池,是以染料敏化太阳能电池(DSSC)为基础构造的,两者的工作原理相似,只是前者选择窄带隙半导体量子点替代有机染料分子作为光敏剂连接到宽带隙半导体如TiO2、ZnO和SnO2等阳极材料上使其达到敏化效果[3]。
量子点敏化太阳能电池包括导电玻璃、光阳极、光敏剂、电解质和对电极5个部分。
其中光阳极即是量子点附着和光生电子注入的载体,一般是具有长电子扩散长度的宽禁带半导体制成的多孔电极。
目前,光阳极材料的研究主要集中在TiO2、ZnO、SnO2、Nb2O5和In2O3等二元半导体氧化物上。
对光阳极的形貌和成分调控是提高量子点敏化太阳能电池效率的一种途径,也是研究的热点和重点。
量子点敏化太阳能电池研究很多。
文献[4]综述了光分解沉积法简单工艺制备金属硫化物量子点—TiO2太阳能敏化电池。
图2,量子点敏化太阳能电池示意图2.2 量子点太阳能电池材料及其机理研究许多科研实验设计不同材料不同结构的量子点太阳能电池,证明了量子点的多激子产生、中间带效应会提高量子点太阳能电池电流密度和转换效率。
常见的量子点材料有InAs/InGaAs,InAs/GaAs。
有研究者证明Sb调节生长方式是一种构造超高密度量子点结构太阳能电池的可行行为。
为了核实在高聚光条件下量子点太阳能电池吸收光谱的提高,美国国家可再生能源实验室研究了在高强度照射下比较了有20层量子点的太阳能电池和常规GaAs电池的短路电流和光电转换效率,如图3所示,提高是很明显的。
图3 功率效率和短路电流密度的对比Zusing Yang等[5]制备了CdHgTe和CdTe量子点太阳能电池,具有优良的光电转换效率。
Sugaya等人[6]用间断沉积法制备了InGaAs量子点太阳能电池。
2.3 量子点太阳能电池器件及其结构研究目前量子点太阳能电池结构常用的是P-i-n结构,最早应用于非晶Si太阳能电池,其主要目的是利用p-n结自建电场对i层光生载流子所产生的漂移作用提高收集效率。
[7]Seth Hubbard 和Ryne Raffaelle[8]为了提高太阳能电池的转换效率,在2010年构造了InAs/GaAs 量子点提高太阳能电池,并证实了增加量子点的层数能提高量子点太阳能电池的外量子效率,也会影响电池的转换效率。
他们将InAs量子点嵌入到GaAs的p-i-n 太阳能电池的中间,如图4所示。
图4, p-i-n 结构量子点太阳能电池Takata等[9]人利用应变补偿技术在GaAs衬底上生长20、25、100层InAs/GaNAs叠层,构造了量子点中间带太阳能电池,如图5所示。
图5,多层量子点太阳能电池结构3 小结与展望量子点太阳能电池有着良好的应用前景,其中量子点敏化太阳能电池距离商业化应用最为接近,但真正意义上的量子点太阳能电池—基于多激子产生效应设计和制作的太阳能电池,还有待深入研究。
同其它许多具有应用前景的项目一样,量子点太阳能电池研究领域还有很多工作要做,首先是光电转换机制的研究,然后是材料的制备,还有器件的组装以及成本问题。
相信在众多科研人员的努力下,量子点太阳能电池会尽快为解决人类的环境与能源问题作出贡献。
参考文献[1] 姜礼华, 曾祥斌, 金韦利, 张笑. 硅量子点在太阳能电池中的应用, 激光与光电子学进展, 2010.[2] E.Canovas, A.Marti, N.Lopez, et al. Thin Solid Films, 516(2008), 6943-6947.[3] 刘铭,杨君友,冯双龙,朱虎. 量子点敏化太阳能电池研究进展. 功能材料, 2010.[4] Hiroaki Tada, Musashi Fujishima and Hisayoshi Kobayashi. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem.Soc.Rev, 2011.[5] Zusing Yang, Huan-Tsung Chang. Solar Energy Materials and Solar cells, 94(2010), 2046-2051.[6] T.sugaya, Y.Kamikawa, S.Furue, T.Amano, M.Mori, S.Niki. Solar Energy Materials and Solar Cells, 95(2011), 163-166.[7] 彭英才, 傅广生. 量子点太阳能的探索. 材料研究学报, 23(2009).[8] 康培, 刘如彬, 王帅, 张启明, 孙强, 穆杰. 量子点太阳能电池研究进展. 电源技术, 135(2011).[9] A.Takata, R.Oshima, Y.Shoji, et al. Fabrication of 100 Layer-Stacked InAs/GaNAs Strain-Compensated Quantum Dots on GaAs (001) for Application to Intermediate Band Solar Cell. 35th IEEE Photovoltaic Specialists Conference. Hawaii, USA:IEEE Piscataway, 2010: 001877-001880.。