高三复习概率教案(学生版)
- 格式:doc
- 大小:615.50 KB
- 文档页数:11
《高三数学复习教案:概率与统计分析》高三数学复习教案:概率与统计分析概率与统计分析是高中数学复习中重要的一部分,也是考试中常见的考点。
通过掌握概率与统计分析的基本概念、运算方法和实际应用,能够帮助同学们提高解题能力,提升数学成绩。
一、基本概念1. 概率的定义和性质:概率是指某种事件发生的可能性大小。
在数学上,可以用一个介于0与1之间的实数表示概率。
当某个事件必然发生时,其概率为1;当某个事件不可能发生时,其概率为0。
概率具有加法法则、乘法法则和互斥事件等性质。
2. 随机变量和概率分布:随机变量是随机试验结果的函数。
离散随机变量取有限或可列无穷多个可能值,而连续随机变量则取无限多个可能值。
随机变量的概率分布由它取各个可能值及其对应的概率所构成。
二、运算方法1. 排列组合:在排列组合问题中,我们经常需要计算某些事件出现的可能性。
排列是指从n个不同元素中选取m个元素进行排序,可以用数学公式P(n,m)表示;组合是指从n个不同元素中选取m个元素,不考虑其顺序,可以用数学公式C(n,m)表示。
2. 概率计算方法:a. 事件的概率为发生该事件的样本数与总样本空间的大小之比。
b. 随机变量的期望值是每种可能取值乘以相应概率后求和得到的。
c. 随机变量的方差是每种可能取值与期望值之差的平方乘以相应概率后求和得到的。
三、实际应用1. 排列组合在实际问题中的应用:在日常生活和工作中,排列组合思想经常被用到。
比如,在组织活动时需要确定座位安排,则可以通过计算排列或组合的方法来得到不同座位安排方式的数量。
2. 概率在实际问题中的应用:概率理论广泛应用于金融、保险、医疗等领域。
比如,在投资决策中,通过对某只股票未来走势进行概率分析,可以帮助投资者做出更明智的决策。
3. 统计分析的应用:统计分析是对大量数据进行整理、分析和解释的过程。
在日常生活中,通过统计分析可以了解人口结构、收入水平、消费习惯等信息,从而为社会制定相关政策提供参考。
高中数学第五章概率教案教学目标:1. 了解概率的基本概念和定义,掌握概率计算的方法。
2. 能够在实际问题中运用概率知识解决问题。
3. 能够通过实验来验证概率的计算结果。
教学内容:1. 概率的基本概念和定义2. 概率计算的方法3. 事件的互斥与独立4. 事件的排列组合5. 概率的实际应用教学重点:1. 概率的基本概念和定义2. 概率计算的方法教学难点:1. 事件的互斥与独立2. 事件的排列组合教学准备:1. 教学课件2. 教学实验器材3. 习题集教学步骤:一、引入概率的概念(10分钟)通过一个简单的实例引导学生了解概率的概念,并引出概率的定义。
二、概率的计算方法(20分钟)1. 讲解概率计算的基本方法2. 给学生演示概率计算的步骤3. 练习相关计算题目三、事件的互斥与独立(15分钟)1. 解释事件互斥和独立的概念2. 给学生举例说明互斥和独立事件的计算方法四、事件的排列组合(20分钟)1. 介绍排列组合的概念2. 解释有放回、无放回抽样的排列组合计算方法五、概率的实际应用(15分钟)通过实际问题的练习,让学生运用概率知识解决问题,加深对概率的理解。
六、总结与展望(10分钟)对概率的学习进行总结,展望下一节课内容。
教学评估:1. 教师课堂表现评价2. 学生练习题表现评价3. 学生实验结果报告评价拓展延伸:1. 给学生布置概率实验项目,让学生通过实验来验证概率的计算结果。
2. 鼓励学生参加数学建模比赛,应用概率知识解决实际问题。
高中数学求概率的问题教案
一、教学目标
1. 理解概率的概念和基本性质。
2. 掌握计算概率的方法。
3. 能够应用概率解决实际问题。
二、教学内容
1. 概率的定义和概念。
2. 概率的性质。
3. 概率的计算方法。
三、教学过程
1. 导入:通过生活中的例子引导学生认识概率的概念。
2. 教学主体:
a. 讲解概率的定义和性质。
b. 讲解计算概率的方法,包括古典概型和几何概型。
c. 指导学生做相关练习,巩固知识。
3. 练习与实践:
a. 给学生提供一些实际问题,让他们应用概率知识进行求解。
b. 分组讨论并展示解题思路。
4. 总结与拓展:
a. 总结概率的相关知识和方法。
b. 带领学生拓展概率应用领域,如赌博、运输等。
四、教学评价
1. 学生在课堂练习和实践中表现良好,能够正确应用概率知识解决问题。
2. 学生能够积极参与课堂讨论,展示解题思路和方法。
3. 学生能够理解概率的概念和性质,掌握相关计算方法。
五、教学反思
1. 针对学生理解和掌握程度,根据实际情况适当调整教学内容和方法。
2. 加强案例分析和实际问题应用,帮助学生更好地理解和掌握概率知识。
3. 鼓励学生提出问题和思考,促进课堂互动和交流。
高三总复习概率一. 本周教学内容:概率二. 重点、难点:1. 了解随机事件的发生存在着规律性和随机事件的概率的意义,了解等可能性事件的概率的意义,会用排列、组合的公式计算一些等可能事件的概率。
2. 了解互斥事件与独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率。
三. 教学过程:(一)随机事件的概率1. 基本概念(1)随机现象:在一定条件下可能发生,也可能不发生的事件,叫做随机事件。
(2)随机试验:在一定条件下,对随机现象的一次观察,叫做一次随机试验(简称试验)。
(3)随机事件:在一定条件下,对随机现象进行试验的每一种可能的结果叫做随机事件(分为基本事件和复合事件)。
基本事件:在随机试验中,不能分解的事件。
例如,掷一个骰子,其结果可能出现1点,2点,3点,……,6点,可用e1,e2,e3,……e6表示。
每个结果是一个基本事件。
而出现“点数小于4”的事件B,则B={e1,e2,e3}。
e1,e2,e3中有一个发生,则事件B发生,反之事件B发生,则B中基本事件一定有一个发生,因此B是可分解的事件,是复合事件。
(4)必然事件与不可能事件必然事件:在一定条件下必然发生的事件,记作Ω,P(Ω)=1。
不可能事件:在一定条件下必然不发生的事件,记作E,P(E)=0。
2. 随机事件之间的关系(1)事件的包含关系:若事件A的发生必导致事件B的发生,则称事件B包含事件(2)事件的和(并):在试验中,事件A与B至少有一个发生的事件,叫做A与B的和或并,记作A+B或A∪B。
(3)事件的积(交):在试验中,事件A与事件B同时发生的事件叫做事件A与B的积或交,记作A·B或A∩B。
(4)互斥事件(又称互不相容事件):在同一试验中,事件A与B不可能同时发生,则称事件A与事件B为互斥事件(或互不相容事件),记作A·B= 。
一、课题:《概率》复习课二、教学目的:1、随机事件的概率;随机现象的发生;频率与概率的区别。
2、利用古典概型与几何概型可以求一些随机事件的概率;随机模拟。
三、教学重点:应用概率解决实际问题。
四、教学难点:应用概率解决实际问题。
五、教学方法:归纳、总结、讨论、交流。
六、教学过程:(一)知识梳理:1.事件(1)必然条件:在条件S 下,_________会发生的事件,叫做相对于条件S 的必然事件,简称必然事件;(2)不可能事件:在条件S 下,__________会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件;(3)确定事件:__________事件与___________事件统称为相对于条件S 的确定事件,简称确定事件;(4)随机事件:在条件S 下,___________的事件叫做相对于条件S 的随机事件,简称随机事件。
(5)_________事件与________事件统称为事件,一般用________表示。
2、概率与频率(1)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的_________,称事件A 出现的比例)(A f n 为事件A 出现的__________,显然频率的取值范围是____________。
(2)概率:在大量重复试验后,随着试验次数的增加,事件A 发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A 的概率,用P (A )表示,显示概率的取值范围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。
3、正确理解频率与概率之间的关系(1)频率本身是随机的,在试验前___________确定,做同样次数的重复试验得到事件的频率会不同。
(2)概率是一个__________的数,是客观存在的,与每次试验无关。
(3)频率是概率的_____,随着试验次数的增加,频率会越来越接近概率。
《高三数学复习教案:概率与统计分析》一、引言在高三阶段,数学成为了学生们备战高考的重中之重。
而在数学中,概率与统计分析是一个重要而复杂的知识点。
本文旨在为高三学生提供一份完善的数学复习教案,帮助他们系统地复习概率与统计分析,提高解题能力和应试水平。
二、概率与统计的基本概念1. 概率的基本概念概率是指某个事件在相同条件下重复进行的随机试验中出现的可能性大小。
介绍概率的基本概念时,可从试验、样本空间、随机事件等方面入手,明确概率的定义和性质。
2. 随机事件与事件的运算随机事件是样本空间的一个子集,对随机事件的求解可运用集合论中的交、并、差等运算。
在此基础上,还需要介绍和讲解事件的概率,并给出概率计算的相关方法。
三、概率的计算方法1. 古典概型古典概型是指在条件相同、等可能性假设成立的情况下,通过数学方法计算概率的一种方法。
介绍古典概型时,需具体讲解排列与组合的概念和应用,以及计算概率的具体步骤和公式。
2. 几何概型几何概型是指通过几何方法计算概率的一种方法。
介绍几何概型时,需重点讲解面积计算和几何概率的计算公式,以及在实际问题中的应用。
3. 条件概率和事件独立性条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
在介绍条件概率时,需着重讲解条件概率的定义和计算公式,并给出实际问题的例子。
同时,还需介绍事件的独立性,以及如何判断和计算独立事件的概率。
4. 概率的推断与应用概率的推断是指通过已知的概率信息,推断未知概率的一种方法。
介绍概率的推断时,可讲解频率与概率的关系,最大似然估计等相关概念,以及常见的推断问题和解题方法。
四、统计的基本概念1. 统计的基本概念统计是指对大量数据进行收集、整理、分析和解释的一门科学。
在介绍统计的基本概念时,需包括数据的收集和分类,以及统计推断的目的和意义。
2. 数据的表示与整理数据的表示和整理是统计的基础工作,对各种图表和统计量的应用有助于更好地理解数据。
在介绍数据的表示与整理时,可包括频数分布表、直方图、折线图、散点图等,以及相关统计量的计算和应用。
概率的教案7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!概率的教案7篇教师可以通过不同的教学策略和方法来增加教案的适切性,教案的有效性可以通过学生成绩、学生反馈和教师自我评估来评估,下面是本店铺为您分享的概率的教案7篇,感谢您的参阅。
高三数学复习教案:概率统计一、教学目标1.理解概率统计的基本概念,掌握概率的计算方法。
2.能够运用概率统计的方法解决实际问题。
3.提高学生分析问题和解决问题的能力。
二、教学内容1.概率的基本概念与计算方法2.离散型随机变量及其分布列3.连续型随机变量及其概率密度函数4.随机变量的期望和方差5.统计量的概念与计算方法6.假设检验与置信区间三、教学重点与难点1.教学重点:概率的基本概念与计算方法,离散型随机变量及其分布列,连续型随机变量及其概率密度函数,随机变量的期望和方差。
2.教学难点:离散型随机变量分布列的求解,连续型随机变量概率密度函数的应用,随机变量期望和方差的计算。
四、教学过程第一课时:概率的基本概念与计算方法1.引入同学们,大家好!今天我们开始复习概率统计这一模块。
让我们回顾一下概率的基本概念和计算方法。
2.概念讲解(1)概率的定义:在一定条件下,某个事件发生的可能性大小。
①0≤P(A)≤1②P(∅)=0,P(S)=1③对于任意可列个两两互斥的事件A1,A2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+…3.概率的计算方法(1)古典概型:若样本空间S中的每个基本事件等可能发生,则事件A的概率为:P(A)=A中基本事件数/样本空间S中基本事件数(2)条件概率:在事件B发生的条件下,事件A发生的概率,记为P(A|B)。
根据条件概率的定义,有:P(A|B)=P(AB)/P(B)(3)乘法公式:P(AB)=P(A)P(B|A)(4)全概率公式与贝叶斯公式4.例题讲解(1)古典概型:掷一枚硬币,求正面朝上的概率。
(2)条件概率与乘法公式:甲、乙两人比赛,甲胜的概率为0.6,乙胜的概率为0.4。
若甲先赢一局,求甲最终获胜的概率。
(3)全概率公式与贝叶斯公式:某工厂有两个车间,第一车间生产的产品占60%,第二车间生产的产品占40%。
第一车间不合格率为0.01,第二车间不合格率为0.02。
从工厂中随机抽取一件产品,发现不合格,求这件产品来自第一车间的概率。
概率(第1课时)一、思想方法1、 弄清概念:等可能性事件、随机事件、互斥事件、对立事件、独立事件;2、 灵活运用公式:加法公式、乘法公式、;3、 概型:古典概型、贝努里概型。
二、再现性题组:1、从1,2,3,4,5,6中任取2个数排列,组成的无重复数字的二位奇数的概率为A2615AA B 26153AA C 2615CC D 26153CC2、 一枚骰子,向上的一面的点数中①“大于3点”与“小于2点”②“大于3点”与“小于3点” ③“大于3点”与“小于4点”④“大于3点”与“小于5点” 其中是互斥事件但不是对立事件的有 ( ) A ①② B ①②③ C ③④ D ①③④3、一枚均匀的硬币连掷20次,设出现k 次正面朝上的概率kP ,是出现20-k 次正面朝上的概率是)100(20<≤-k P k( )A kkPP ->20 BkkPP -=20 CkkPP -<20 DkP 与kP-20的大小不定4、甲袋中装有白球3个,黑球5个,乙袋中装有白球4个,黑球6个,现从两袋中各取1个,则两球颜色相同的概率是_____ _5、一个口袋中有6个球,其中4个红球,2个黄球,从中摸出3个球,则3个球的颜色不全相同的概率是_________三、示范性题组1、在一次考试中出了六道是非题,回答正确的记1分,回答不正确的记0分,如果某个考生考了六道题,求:(1)得6分的概率;(2)不低于4分的概率;(3)至少得3分的概率。
备课说明:正确理解得分与做对题目的关系。
2、设10件产品中有4件次品,6件正品。
求:(1)任意取2件都是次品的概率;(2)任意取5件恰有2件次品的概率;(3)如果有放回地抽取,任意取3件都是正品的概率;(4)如果有放回地抽取,任意取3件至少有2件次品的概率;(5)从中依次取5件,2件都是次品的概率;(6)从中依次取5件,恰有2件是次品的概率;备课说明:对题目中出现“任取”、“有放回地”、“恰有”、“依次取”、“至少”、“至多”、“都是”、“都不是”等词语,要弄清其含义。
2023高三二轮复习概率专题学案目标本学案的目标是帮助高三学生复概率相关知识,为他们在高考中取得优异成绩提供支持。
复内容1. 概率基础知识回顾:包括样本空间、事件、概率定义等。
2. 概率计算方法:包括排列组合、加法原理、乘法原理等。
3. 条件概率与独立事件:理解条件概率的概念,掌握计算条件概率的方法,并能够判断事件的独立性。
4. 随机变量与概率分布:了解随机变量的概念,研究常见的概率分布如二项分布、正态分布等。
5. 概率统计与推断:了解统计学中的概率概念,包括抽样方法、估计与检验等。
研究计划本学案建议按照以下研究计划进行概率复:第一周1. 复概率基础知识:回顾样本空间、事件的概念,熟悉概率定义和基本性质。
2. 复概率计算方法:回顾排列组合、加法原理和乘法原理的应用。
3. 完成相关练题,提高概率计算能力。
第二周1. 研究条件概率与独立事件:理解条件概率的定义,研究计算条件概率的方法。
2. 掌握判断事件独立性的准则,并能应用于实际问题。
3. 完成相应练题,巩固所学内容。
第三周1. 了解随机变量与概率分布:研究随机变量的基本概念和性质。
2. 掌握二项分布、正态分布等常见概率分布的特点和计算方法。
3. 完成相关练题,提高概率分布的应用能力。
第四周1. 研究概率统计与推断:了解抽样方法、估计与检验的基本概念。
2. 研究如何利用样本数据进行参数估计和假设检验。
3. 完成相关练题,掌握概率统计与推断的基本方法。
复方法1. 阅读教材和参考书籍:仔细阅读相关章节,理解概念和方法。
2. 刷题巩固知识:完成大量的练题,提高计算能力和问题解决能力。
3. 合作研究与讨论:与同学一起讨论和解决问题,互相研究和帮助。
4. 老师辅导和答疑:及时向老师提问和求助,解决研究中的困惑。
复建议1. 制定合理的研究计划,合理安排每周的研究内容和复时间。
2. 坚持每天的研究和复,保持良好的研究惯。
3. 多进行归纳总结,拓宽概率知识的应用。
1.在近年高考中,每年都有一道概率解答题。
此类试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如测试成绩、串联并联系统、计算机上网、产品合格率、温度调节等,所以在概率统计复习中要注意全面复习,加强基础,注重应用.2.就考查内容而言,用概率定义(除法)或基本事件求事件(加法、减法、乘法)概率,常以小题形式出现;随机变量取值-取每一个值的概率-列分布列-求期望方差常以大题形式出现.概率还将在选择与填空中出现,可能与实际背景及几何题材有关.1.概率的基本概念与运算2.古典概型与几何概型3.随机变量及其分布列、期望与方差4.超几何分布、二项分布与正态分布解密一、概率的基本概念与计算★★【知识点回放】1.随机事件必然事件与不可能事件反映的就是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象。
2.频率与概率频率与概率有本质的区别,不可混为一谈,频率随着试验次数的改变而变化,概率却是一个常数,他是频率的科学抽象。
当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当做随机事件的概率。
3.事件的关系及运算(1)对于事件A和事件B,如果事件A发生事件B一定发生,称事件B包含事件A。
(2)若事件A发生当且仅当事件B也发生,称事件A等于事件B。
(3)当某事件发生当且仅当事件A发生或事件B发生,称事件A与事件B的并事件。
(4)若某事件发生当且仅当事件A且事件B都发生,则称事件A与事件B的交事件。
(★★★)【例1】以下命题:(1)将一枚硬币抛掷两次,设事件A:“两次都出现正面”,事件B:“两次都出现反面”,则事件A与事件B是对立事件;(2)在命题(1)中,事件A与事件B是互斥事件;(3)在10件产品中有3件是次品,从中任取3件,事件A:“所取3件中最多有2件是次品”,事件B :“所取3件中至少有2件是次品”,则事件A 与事件B 是互斥事件。
正确的命题的个数为( )A .0 B.1 C.2 D.3变式:判断下列给出的事件,是否为互斥事件,是否为对立事件,并说明道理。
从40张扑克牌(红桃、黑桃、方块、梅花,点数从1-10各10张)中,任取一张(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”(3)“抽出的牌的点数为5的倍数”与“抽出的牌的点数大于9”。
(★★★★)【例2】某公司招聘员工,指定三门考试课程,有两种考试方案。
方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过。
假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响。
(1)分别求该应聘者用方案一和方案二时考试通过的概率;(2)试比较该应聘者在上述两种方案下考试通过的概率的大小。
(说明理由)变式:同时投掷两个骰子,计算下列事件的概率:(1)事件A :两个骰子点数相同;(2)事件B :两个骰子点数之和为8;(3)事件C :两个骰子点数之和为奇数。
变式:甲、乙、丙三人独立解某一道数学题,已知该题被甲解出而乙解不出的概率为14,被乙解出而丙解不出的概率为112,被甲、丙两人都解出的概率是29。
(1)求该题被乙独立解出的概率;(2)求该题被解出的概率。
★★★【考题回放】1. 下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定2.从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是( )A.3个都是正品B.至少有1个次品C.3个都是次品D.至少有1个正品3. 有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一 个三角形的概率为( ) A 101 B 103 C 21 D 1074. 先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,则2log 1X Y =的概率为( ) A.16 B. 536 C.112 D.125. 从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是( )A.1B.21C.31D.3211. 甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0.7、0.6,且每次试跳成功与否相互之间没有影响,求:(1)甲试跳三次,第三次才能成功的概率;(2) 甲、乙两人在第一次试跳中至少有一人成功的概率;(3) 甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.解密二:古典概型与几何概型(教师:古典概型、几何概型及其概率计算公式是考查的重点,本节将以古典概型的定义为重点,结合其两大特点,考查古典概型的问题。
几何概型主要是以现实生活为背景,几何图形为载体,重在考查几何概型的求法,主要是以选择、填空题为主。
其中与长度、面积有关的几何概型更为重要。
)★★★【知识点回放】古典概型有两个特征:(1)试验中所有可能出现的基本事件只有有限个;(2)各基本事件的出现是 等可能性的,即它们发生的概率相同.我们称具有这两个特征的概率称为古典概率模型(classical models of probability )简称古典概型注意:在“等可能性”概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.古典概型概率的计算方法:如果一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 ;如果某个事件A 包括的结果有m 个,那么事件A 发生的概率P(A)= 。
方法点拨:(1)古典概型实验的结果即基本事件的找法——例举法(穷举法),列表法或图形法。
(2)求P (A )的步骤:①判断事件A 是否为古典概型;②求基本事件的总个数n ;③算出事件A 中包含的基本事件的个数m ;④求事件A 的概率,即()m P A n=。
用公式求概率时,关键在于求m ,n 。
在求n 时,应注意这n 个结果必修时等可能的,在这一点上比较容易出错。
在求m 时,可结合图形采取列举法,数出事件A 发生的结果数。
几何概型如果每个事件发生的概率只与构成该事件的区域有关,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A 概率计算公式为:()()()A P A =构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积几何概型的特点:在一个区域内均匀分布,只与该区域的大小有关.几何概型与古典概型的区别:试验的结果 。
几种常见的几何概型的概率的求法:(1)设线段l 是线段L 的一部分,向线段L 上任投一点,若落在线段l 上的点数与线段l 的长度成正比,而与线段l 在线段L 的相对位置无关,则点落在线段l 上的概率为P= 。
(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上的概率为P= 。
(3)设空间区域v 是空间区域V 的一部分,向区域V 上任投一点,若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域V 上的相对位置无关,则点落在区域v 上的概率为P= 。
(★★★★)【例3】现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率。
分析:(1)为返回抽样;(2)为不返回抽样(★★★★)【例4】在区间[-1,1]上随机取一个数x ,cos2x π的值介于0到21之间的概率为( ). A.31 B.π2 C.21 D.32 (★★★★)【例5】 在边长为25的正方形中挖去边长为23的两个等腰直角三角形,现有均匀的粒子散落在正方形,问粒子落在中间带形区域的概率是多少?(★★★★)【例6】(会面问题)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.(★★★★)【例7】某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).★★★★【考题回放】1.甲袋中装有3个白球5个黑球,乙袋中装有4个白球6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分掺混后再从乙袋中随机取出一个球放回甲袋,则甲袋中白球没有减少的概率为( )A .4437B .4435 C .4425 D .449 2.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为( )A .51B .52C .103D .107 3.一个骰子连续掷两次,以先后得到的点数m ,n 为点P (m ,n),那么点P 在圆1722=+y x外部的概率为( )A .31B .32C .1811D .1813 4. 在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( )A .511B .681C .3061D .4081 7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 _______________。
8. 点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为 。
解密三:随机变量的期望与方差(教师:随机变量在近几年高考题中有选择题也有填空题,但更多的是解答题,解答题以应用题为背景命题,是近几年高考的一个热点,今后仍然保持这个热度。
帮助学生在复习时牢固掌握求随机变量分布列的步骤,运用分布列求概率。
另外概念要清楚,计算要准确,文字表述要规范。
)★★★★【知识点回放】1.随机变量的概念与分类在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.随着试验结果变化而变化的变量称为随机变量.随机变量常用字母 X , Y ,ξ,η,… 表示.随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.所有取值可以一一列出的随机变量,称为离散型随机变量; 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量。