由截尾稳定过程驱动的种群模型
- 格式:pdf
- 大小:581.54 KB
- 文档页数:11
简介基于经典的阶段结构模型和Lotka V olterra捕食猎物––脉冲时滞微分方程模型,对模型的周期性释放天敌对害虫控制在固定时间过程提出了。
我们发现,对于“害虫灭绝的全局吸引性条件('prey-eradication”)模型的周期解和种群的持续生存依赖于时间延迟。
我们还表明,常数捕食者的成熟时间延迟和脉冲释放,可以对系统的动力学产生重大影响数值分析。
因此,害虫的成熟时间延迟被认为是建立一个程序,以维持在长期的可接受的低水平的害虫。
在本文中,主要的特点是,我们引入时间延迟和脉冲到捕食者-猎物(天然敌人害虫)模型的年龄结构,表现出一种新的建模方法研究了脉冲时滞微分方程,并给出了一些合理的建议管理层。
介绍模型病虫害的暴发,往往会造成严重的生态和经济问题。
一个广泛的病虫害防治策略,以农民提供。
生物控制(见[ 1,7 ])是从其他生物的行动,通常被称为天敌或有益物种的害虫种群的减少。
生物控制的一种方法是增强,这是操纵现有的天敌,以提高其有效性。
这可以通过大规模生产来实现天敌的自然天敌的周期性释放,并通过遗传增强的敌人,以提高其有效性控制。
一个在温室生物防治的第一个成功案例是寄生小蜂的使用对番茄和黄瓜温室白粉虱白。
基于经典Lotka V olterra捕食猎物––系统,许多文献[ 8 ]提出–10脉冲微分方程模型的周期性释放天敌对害虫控制在固定时间的过程。
基本模型构建如下在过去的几十年中,人口模型和这些模型中有越来越大的兴趣,捕食者-食饵系统是种群动态的基本结构,并得到了广泛的研究应用数学家和生态学家1–[ 18 ]。
这是众所周知的,引入的时间延迟到系统中更现实的模型捕食者-猎物的相互作用。
在一般情况下,延迟微分方程显示更复杂动态比常微分方程作为一个时间延迟可以带来一个开关的平衡和诱导的稳定性各种振荡和周期解。
因此,捕食者-食饵系统的关键问题之一是研究时滞对系统稳定性、分岔和周期等动力学行为的影响现象。
第5节生态系统的稳定性[学习目标] 1.阐明生态平衡与生态系统的稳定性。
2.举例说明抵抗力稳定性和恢复力稳定性。
3.简述提高生态系统稳定性的措施。
4.设计制作生态缸,观察其稳定性。
一、生态平衡与生态系统的稳定性1.生态平衡(1)概念:生态系统的结构和功能处于相对稳定的一种状态。
(2)特征——动态平衡。
①结构平衡:生态系统的各组分保持相对稳定。
②功能平衡:生产—消费—分解的生态过程正常进行。
③收支平衡。
(3)调节机制——负反馈机制。
①在一个系统中,系统工作的效果,反过来又作为信息调节该系统的工作,并且使系统工作的效果减弱或受到限制,它可使系统保持稳定。
②负反馈调节在生态系统中普遍存在,它是生态系统具备自我调节能力的基础。
2.生态系统的稳定性(1)概念:生态系统维持或恢复自身结构与功能处于相对平衡状态的能力。
生态系统的稳定性,强调的是生态系统维持生态平衡的能力。
(2)原因:生态系统具有自我调节能力。
(3)特点:生态系统的自我调节能力是有限的。
判断正误(1)生态平衡就是生态系统的物质和能量的输入与输出均衡()(2)当农田里蚜虫数量增多时,七星瓢虫的数量也会增多,这样蚜虫种群数量的增长就会受到抑制,这属于生物群落内的负反馈调节()(3)负反馈调节在生物群落中普遍存在,但在生物群落与非生物环境之间不存在()答案(1)×(2)√(3)×任务一:分析生态系统中的反馈调节过程尝试用文字、线框、箭头等符号,简要描绘高原鼠兔的数量能够维持相对稳定的原因和森林火灾多发的原因及灾后恢复的过程。
提示如图所示1.下列关于生态平衡的说法,不正确的是()A.生态平衡就是生态系统的结构和功能处于相对稳定的一种状态B.处于生态平衡的生态系统的各种组成成分保持不变C.处于生态平衡的生态系统的物质和能量的输入和输出达到平衡状态D.生态平衡的调节机制是负反馈调节答案 B解析处于生态平衡的生态系统的结构与功能处于相对稳定状态,生态系统的各组分保持相对稳定,而不是保持不变,B错误。
育种中bayesa模型原理
Bayesa模型是一种基于贝叶斯理论的统计模型,常用于基因组选择育种中。
其原理如下:
首先,模拟4个世代的群体数据,每个群体4000尾个体,分别模拟4分类、3分类和2分类的表型,将第三个世代的4000个个体作为参考群体,随机选择第四个世代的1000个个体作为验证群体,模拟重复20次。
利用BayesA和BayesCπ的线性模型和阈模型进行基因组育种值估计,另外选择基于默认超参数的支持向量回归(SVRdef)和调整超参数的支持向量回归(SVRtuning)进行基因组选择。
结果表明,贝叶斯阈模型对2分类、3分类和4分类性状的预测准确性平均比贝叶斯线性模型高2.1%、2.6%和2.9%。
在育种过程中,BayesA和BayesCπ模型都可以用于预测和选择个体,但BayesA模型假设所有基因的效应都是独立的,而BayesCπ模型则假设基因的效应是相关的。
实际应用中,可以根据具体情况选择合适的模型。
捕食者与被捕食者模型——Logistic-Volterra模型摘要Logistic模型是最常用的模型之一,在其基础上又可以发展出许多其他数学模型,其重要性不言而喻,而Volterra模型则是经典的被捕食者与捕食者模型之一。
本文尝试结合两者,建立一个Logistic-Volterra模型,并做出数值解和分析。
关键词:Logistic模型 Volterra模型数值解一、问题的提出Volterra模型显示的被捕食者与捕食者系统存在着显著的周期振荡,而实际上,多数的捕食者与捕食者系统都是观察不到的。
尝试建立模型,描述这种现象。
二、符号说明r:被捕食者固有增长率d:捕食者固有死亡率a:捕食者掠取被捕食者的能力b:被捕食者供养捕食者的能力N1:被捕食者的最大环境容纳量N2:捕食者的最大环境容纳量三、模型假设1.在没有天敌的情况下,被捕食者数量增加的固有速度与被捕食者数量x和阻滞作用因子(1-x/N1)成正比,即dxdt =rx(1−xN1)2.在没有食物的情况下,捕食者数量减少的固有速度与捕食者数量y和阻滞作用因子(1+y/N2)成正比,即dydt =−dy(1+yN2)3.捕食者与被捕食者在同一环境下生存,它们的种群变化速度互相影响,影响因子应与它们相遇的频率成正比,即捕食导致被捕食者数量减少的速度为-axy,捕食导致捕食者数量增加的速度为bxy四、模型建立与求解1.Volterra模型的分析意大利数学家Volterra在上世纪20年代提出的Volterra模型:dxdt=rx−axydydt=−dy+bxy取r=1 d=0.5 a=0.1 b=0.02,运用matlab的ode45功能函数,做出数值解,并绘图分析。
图1被捕食者与捕食者随时间变化图图2捕食者与被捕食者相图从图形可以看出,捕食者与被捕食者共同生存,数量随时间作周期变化。
2.建立Logistic-Volterra模型在Volterra模型中的物种自身增长率中,考虑自身阻滞作用,即加入Logistic项,得到以下模型:dx dt =rx(1−xN1)−axydy dt =−dy(1+yN2)+bxy取r=1 d=0.5 a=0.1 b=0.02 N1=100 N2=25,运用matlab的ode45功能函数,做出数值解,并绘图分析。
几类生物种群模型的定性研究
生物种群模型是研究生物种群数量动态变化的数学模型。
根据物种的
特点和研究的重点不同,生物种群模型可以分为多类。
1.多样性维持模型:
多样性维持模型关注的是物种之间的相互作用对物种多样性的影响。
其中,竞争-排除模型认为物种之间存在强烈的竞争关系,导致了物种数
量的稳定状态;互补-促进模型则认为物种之间存在互补关系,相互促进
物种的数量增加。
2.捕食者-猎物模型:
捕食者-猎物模型研究的是捕食者与猎物之间的相互作用对种群数量
的影响。
最经典的模型是Lotka-Volterra模型,它描述了捕食者和猎物
之间的动态关系,可以观察到周期性的数量变动。
3.分散子模型:
分散子模型主要研究的是物种的生殖与迁移对种群数量的影响。
例如,在孤立岛上的物种会受限于资源的有限性以及个体迁移的难度,因此种群
数量可能会下降。
4.生态位模型:
生态位模型主要研究的是一个物种在特定环境中的占据与竞争策略对
物种数量的影响。
生态位模型可以通过计算物种的竞争优势指数来推断物
种数量的变化。
总的来说,生物种群模型是研究生物种群数量动态变化的重要工具。
不同类型的模型从不同角度切入,揭示了生物种群数量变化的机制和规律,对于理解和保护生物多样性具有重要意义。
生物选二知识点填空认真填、读、背第一节种群的数量特征一、种群:生活在一定区域内的同种生物全部个体的集合。
种群既是生物繁殖的基本单位,又是生物进化的基本单位。
提示一定的区域,是指连续的区域,中间不能有间隔(地理隔离),如两个湖泊,这是两个区域。
二、种群的数量特征①种群密度是种群最基本的数量特征。
②直接决定种群密度的因素是出生率和死亡率、迁入率和迁出率。
③年龄组成和性别比例不直接决定种群密度,年龄组成通过影响种群的出生率和死亡率,从而预测种群数量变化趋势,性别比例能够影响种群的出生率间接影响种群密度。
三、种群密度的调查方法种群密度的调查方法有逐个计数法和估算法。
逐个计数法适用于分布范围小、个体较大的种群;估算法适用于逐个计数非常困难的种群。
估算种群密度的常用方法有样方法和标记重捕法。
1.“两看法”选择种群密度的调查方法2.样方法调查种群密度应注意的问题(1)一般不选丛生或蔓生的单子叶草本植物,而选择个体数目容易辨别的双子叶草本植物。
(2)样方法并非只适用于植物。
对于活动能力弱、活动范围小的动物如昆虫卵、蚜虫、跳蝻等也可用样方法调查。
(3)植物的大小不同,样方面积也应不同。
如乔木的样方面积为100 m2,灌木为16 m2,草本植物为1 m2。
(4)选取样方时,要注意随机取样。
例如对于方形地块常用五点取样法,狭长地块常用等距取样法。
(5)样方法中的计数要准确:同种生物个体无论大小都要计数,若有正好在边界线上的,应遵循“计上不计下,计左不计右”的原则。
3.标志重捕法调查种群密度应注意的问题(1)标志重捕法中标记物要合适,不能过于醒目;不能影响被标记对象的正常生理活动;标记物不易脱落,能维持一定时间。
(2)标志重捕法中两次捕捉期间种群数量要稳定:被调查个体在调查期间没有大量迁入和迁出、出生和死亡的现象。
标记重捕法(3)计算公式:个体总数N初次捕获开标记个体数M=再次捕获个体数n重捕的标记个体数m第二节种群数量的变化一、建构种群增长模型的方法数学模型:用来描述一个系统或它的性质的数学形式,包括数学公式和曲线图两种表现形式。
高中生物—必修三《稳态与环境》知识点总结(二)第三章植物的激素调节第一节植物生长素的发现一、生长素的发现过程1、达尔文提出:胚芽鞘尖端受单侧光刺激后, 就向下传递某种“影响”,造成伸长区背光面比向光面生长快,因而出现向光性弯曲。
2、詹森的实验:尖端产生的影响可以透过琼脂片传递到下部。
3、拜尔的实验:胚芽鞘尖端产生的影响在下部分布不均匀造成了胚芽鞘的弯曲生长。
4、温特的实验:胚芽鞘的尖端确实产生了某种化学物质,这种物质从尖端运输到下部,并促进下部某些部分生长。
温特把这种物质命名为:生长素。
二、植物激素(生长素)1、植物激素:由植物体内合成的,能从产生部位运送到作用部位,对植物的生长发育有显著影响的微量有机物。
除生长素外,还发现了赤霉素、细胞分裂素、脱落酸和乙烯等.2、在胚芽鞘中感受光刺激的部位:胚芽鞘尖端向光弯曲的部位:胚芽鞘尖端下部产生生长素的部位:胚芽鞘尖端发生横向运输的部位:尖端3、胚芽鞘向光弯曲生长原因:外因:单侧光照射内因:生长素分布不均匀4、形态学上端和形态学下端判断:5、关于生长素:色氨酸经过一系列反应可转变成生长素。
生长素的产生部位:幼嫩的芽、叶和发育中的种子生长素的分布:植物体的各个器官中都有分布,但相对集中在生长旺盛的部分。
生长素的合成不需要光生长素的运输:①横向运输(只发生在胚芽鞘尖端):在单侧光刺激下生长素由向光一侧向背光一侧运输②极性运输:从形态学上端运到下端,不能倒运,属于主动运输。
③非极性运输:成熟组织,如韧皮部注:生长素最早是从人尿中分离出来的,这是由于人体内缺乏分解生长素的酶,不能将随食物进入人体的生长素分解。
第二节生长素的生理作用1、植物体各个器官对生长素的敏感程度不同:根>芽>茎根、芽、茎的最适生长素浓度分别是:10-10mol/L、10-8mol/L、10-4mol/L。
2、生长素的生理作用:两重性,既能促进生长,也能抑制生长;既能促进发芽也能抑制发芽;既能防止落花落果,也能疏花疏果。