金属的塑性变形和加工硬化概述
- 格式:ppt
- 大小:598.50 KB
- 文档页数:30
名词解释塑性成型:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法加工硬化:略动态回复:在热塑性变形过程中发生的回复动态再结晶:在热塑性变形过程中发生的结晶超塑性变形:一定的化学成分、特定的显微组织及转变能力、特定的变形温度和变形速率等,则金属会表现出异乎寻常的高塑性状态塑性:金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力。
屈服准则(塑性条件):在一定的变形条件下,只有当各应力分量之间符合一定关系时,指点才开始进入塑性状态,这种关系成为屈服准则。
塑性指标:为衡量金属材料塑性的好坏,需要有一种数量上的指标。
晶粒度:表示金属材料晶粒大小的程度,由单位面积所包含晶粒个数来衡量,或晶粒平均直径大小。
填空1、塑性成形的特点(或大题?)1组织性能好(成形过程中,内部组织发生显著变化)2材料利用率高(金属成形是靠金属在塑性状态下的体积转移来实现的,不切削,废料少,流线合理)3尺寸精度高(可达到无切削或少切屑的要求)4生产效率高适于大批量生产失稳——压缩失稳和拉伸失稳按照成形特点分为1块料成形(一次加工、轧制、挤压、拉拔、二次加工、自由锻、模锻2板料成形多晶体塑性变形——晶内变形(滑移,孪生)和晶界变形超塑性的种类——细晶超塑性、相变超塑性冷塑性变形组织变化——1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变固溶强化、柯氏气团、吕德斯带(当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗超不平、变形不均匀的痕迹,称为吕德斯带)金属的化学成分对钢的影响(C略、P冷脆、S热脆、N兰脆、H白点氢脆、O塑性下降热脆);组织的影响——单相比多相塑性好、细晶比粗晶好、铸造组织由于有粗大的柱状晶粒和偏析、夹杂、气泡、疏松等缺陷、塑性降低。
摩擦分类——干摩擦、边界摩擦、流体摩擦摩擦机理——表面凹凸学说、分子吸附学说、粘着理论库伦摩擦条件T=up 常摩擦力条件t=mK塑性成形润滑——1、特种流体润滑法2、表面磷化-皂化处理3、表面镀软金属常见缺陷——毛细裂纹、结疤、折叠、非金属夹杂、碳化物偏析、异金属杂物、白点、缩口残余影响晶粒大小的主要因素——加热温度、变形程度、机械阻碍物常用润滑剂——液体润滑剂、固体润滑剂(干性固体润滑剂、软化型固体润滑剂)问答题1、提高金属塑性的基本途径1、提高材料成分和组织的均匀性2、合理选择变形温度和应变速率3、选择三向压缩性较强的变形方式4、减小变形的不均匀性2、塑性成形中的摩擦特点1、伴随有变形金属的塑性流动2、接触面上压强高3、实际接触面积大4、不断有新的摩擦面产生5、常在高温下产生摩擦3、塑性成形中对润滑剂的要求1、应有良好的耐压性能2、应有良好的耐热性能3、应有冷却模具的作用4、应无腐蚀作用5、应无毒6、应使用方便、清理方便4、防止产生裂纹的原则措施1、增加静水压力2、选择和控制适合的变形温度和变形速度3、采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等。
加工硬化的概念加工硬化的概念一、引言加工硬化是指通过机械加工过程中材料的塑性变形,使其内部结构发生改变,从而提高材料的硬度和强度。
这种方法可以用于各种金属材料的加工和制造,包括铝、钢、铜等。
二、机械加工对材料的影响在机械加工过程中,材料会受到压力和摩擦力的作用,从而产生塑性变形。
这种变形会导致材料内部结构发生改变,形成晶粒细化和位错堆积等现象。
这些变化会导致材料的硬度和强度增加。
三、加工硬化的原理加工硬化是基于晶格缺陷理论的。
当金属材料受到应力时,晶格中会出现位错。
这些位错可以在金属内部运动,并与其他位错相互碰撞和堆积。
这些位错堆积越多,就会导致晶粒细化和硬度增加。
四、影响加工硬化效果的因素1. 加工方式:不同的机械加工方式对材料产生不同程度的变形,从而影响加工硬化效果。
例如,冷拔和轧制可以产生更大的变形,因此会导致更明显的加工硬化效果。
2. 温度:在高温下进行机械加工可以减少材料的硬度和强度。
因此,在进行加工硬化时需要选择适当的温度。
3. 加工速度:加工速度越快,位错堆积就越多,从而导致更明显的加工硬化效果。
4. 材料成分:不同材料的成分对加工硬化效果也有影响。
例如,含有微量元素的合金可以产生更好的加工硬化效果。
五、应用1. 加工硬化可以用于制造各种金属制品,包括建筑材料、汽车零件、航空航天部件等。
2. 加工硬化还可以用于改善材料表面性能,例如提高耐磨性和抗腐蚀性等。
3. 加工硬化还可以用于制造超塑性材料,在这种材料中,晶粒细化可以使其具有极高的塑性变形能力。
六、结论加工硬化是一种通过机械加工过程中材料塑性变形来提高材料硬度和强度的方法。
它可以用于各种金属材料的加工和制造,具有广泛的应用前景。
要实现最佳的加工硬化效果,需要考虑多种因素,包括加工方式、温度、加工速度和材料成分等。
8.金属的塑性变形和加工硬化1.加工硬化:金属在冷塑性变形过程中,随着变形程度增加,其强度和硬度提高而塑性(延伸率、面缩率)则降低,这种现象称为加工硬化。
2.面心立方金属单晶体的应力-应变曲线。
ⅰ硬化系数θ较小,一般认为在此阶段只有一个滑移系统起作用,强化作用不大,称位易滑移阶段。
ⅱ硬化系数θ最大且大体上是常数,对于各种面心立方金属具有相同的数量级,故称为线性硬化阶段。
ⅲ硬化系数θ随变形量的增加而逐渐减小,故称为抛物线强化阶段。
3.对应力-应变曲线影响的主要因素。
4.面心立方金属形变单晶体的表面现象。
ⅰ除了照明特别好(暗场),用光学显微镜一般看不到滑移线。
ⅱ光学显微镜在暗场下可以看到滑移线,线长随应变的增加而递减,电镜观察到的单个滑移线比第一阶段粗而短。
ⅲ出现滑移带,带中包括许多靠的很近的滑移线,应变增加,带间不在增加新的线,形变集中在原来的带中,滑移带端出现了碎化现象。
5.面心立方金属单晶体的加工硬化理论。
6.多晶体是通过晶界把取向不同,形状大小不同,成分结构不同的晶粒结合在一起的集合体。
晶界对塑性变形过程的影响,主要是在温度较低时晶界阻碍滑移进行引起的障碍强化作用和变形连续性要求晶界附近多系滑移引起的强化作用。
ⅰ障碍强化作用ⅱ多系滑强化作用ⅲ多晶体变形的不均匀性7.金属多晶体应力-应变曲线ⅰ点阵类型和金属种类的影响ⅱ变形温度于应变速率的影响a.随温度升高可能开动新的滑移系统。
b.随温度升高可在变形过程中出现回复和再结晶现象,引起金属软化,减弱加工硬化。
c.随温度升高可能出现新的塑性变形机理,使加工硬化减弱。
8.细化晶粒对金属材料的力学性能有何影响?有哪些途径可以细化晶粒?细化晶粒可以提高韧性,有助于防止脆性断裂发生,可以降低脆性转化温度,提高材料使用范围,在低强度钢中,利用细化晶粒来提高屈服强度有明显效果。
细化途径:(1)改变结晶过程中的凝固条件,尽量增加冷却速度,另一方面调节合金成分以提高液体金属过冷能力,使形核率增加,进而获得细化的初生晶粒。
金属材料的加工硬化原理金属材料是现代工业中最常用的材料之一,因为金属材料具有高强度、耐磨损、导电、导热等优异的物理化学特性。
然而,纯金属的塑性、延展性等物理特性不足以满足现代工业对材料的需求。
为此,金属加工硬化技术成为了必不可少的材料处理方法,它可以使得金属材料表面硬度提高,更加耐用。
1. 什么是金属材料的加工硬化金属材料加工硬化是利用外部力量对金属材料进行变形处理,增效材料的硬度和耐磨性。
该技术常应用于车床加工、冲压、拉伸、滚压等工艺中。
2. 加工硬化的原理金属材料加工硬化的原理源于材料在加工过程中的塑性变形。
加工硬化的基本过程是:当材料受力变形后,内部原子之间的距离发生了变化,原子充分之间的作用力增强,晶粒变得更加细小,这些变化使得金属材料表现出更高的硬度和强度。
3. 加工硬化的方法冲压加工:冲压加工的原理就是通过模具将金属材料强制成形,以增加材料的硬度,提高其耐磨性。
常见的冲压加工方式有压铸、剪切、拉伸、展开等方法。
滚压加工:滚压加工是一种可以在材料表面产生加工硬化效果的方法。
它通过滚动来产生塑性变形,以达到材料表面硬度增加的目的。
滚压加工通常应用于金属管道制造。
淬火:淬火是指把金属材料在高温下快速冷却的方法,可以通过改变淬火时的温度和冷却速度来改变材料的硬度和强度。
4. 加工硬化的应用金属材料加工硬化技术在现代工业中应用广泛,特别是在高强度、高耐磨、高密度等工程领域中得到了广泛的应用。
比如汽车制造、航空航天、核能领域。
5. 加工硬化的优缺点加工硬化技术的优点是可以使得金属材料硬度增加、延展性减弱、耐磨型能更好、细晶粒化更好,从而更适合现代工业的需求。
然而,加工硬化技术并不是毫无缺点的,存在以下几个问题:- 可能会增加材料的疲劳断裂风险;- 如果工艺不当,可能会导致材料发生开裂和变形等问题;- 加工硬化后的材料难以修复和加工,因此制造费用较高。
综上,金属材料加工硬化是一种常用的金属处理技术,可以显著提高材料的硬度和耐用性。
8.金属的塑性变形和加工硬化1.加工硬化:金属在冷塑性变形过程中,随着变形程度增加,其强度和硬度提高而塑性(延伸率、面缩率)则降低,这种现象称为加工硬化。
2.面心立方金属单晶体的应力-应变曲线。
ⅰ硬化系数θ较小,一般认为在此阶段只有一个滑移系统起作用,强化作用不大,称位易滑移阶段。
ⅱ硬化系数θ最大且大体上是常数,对于各种面心立方金属具有相同的数量级,故称为线性硬化阶段。
ⅲ硬化系数θ随变形量的增加而逐渐减小,故称为抛物线强化阶段。
3.对应力-应变曲线影响的主要因素。
4.面心立方金属形变单晶体的表面现象。
ⅰ除了照明特别好(暗场),用光学显微镜一般看不到滑移线。
ⅱ光学显微镜在暗场下可以看到滑移线,线长随应变的增加而递减,电镜观察到的单个滑移线比第一阶段粗而短。
ⅲ出现滑移带,带中包括许多靠的很近的滑移线,应变增加,带间不在增加新的线,形变集中在原来的带中,滑移带端出现了碎化现象。
5.面心立方金属单晶体的加工硬化理论。
6.多晶体是通过晶界把取向不同,形状大小不同,成分结构不同的晶粒结合在一起的集合体。
晶界对塑性变形过程的影响,主要是在温度较低时晶界阻碍滑移进行引起的障碍强化作用和变形连续性要求晶界附近多系滑移引起的强化作用。
ⅰ障碍强化作用ⅱ多系滑强化作用ⅲ多晶体变形的不均匀性7.金属多晶体应力-应变曲线ⅰ点阵类型和金属种类的影响ⅱ变形温度于应变速率的影响a.随温度升高可能开动新的滑移系统。
b.随温度升高可在变形过程中出现回复和再结晶现象,引起金属软化,减弱加工硬化。
c.随温度升高可能出现新的塑性变形机理,使加工硬化减弱。
8.细化晶粒对金属材料的力学性能有何影响?有哪些途径可以细化晶粒?细化晶粒可以提高韧性,有助于防止脆性断裂发生,可以降低脆性转化温度,提高材料使用范围,在低强度钢中,利用细化晶粒来提高屈服强度有明显效果。
细化途径:(1)改变结晶过程中的凝固条件,尽量增加冷却速度,另一方面调节合金成分以提高液体金属过冷能力,使形核率增加,进而获得细化的初生晶粒。
金属塑性加工原理
金属塑性加工原理是指在适当的工艺条件下,通过施加外力使金属材料发生塑性变形的过程。
金属塑性加工原理的基础是金属的塑性特性,即金属材料在受力作用下能够发生可逆的形状变化。
金属塑性加工原理涉及到金属材料的结晶学、力学性能和变形机制等方面的知识。
在金属塑性加工中,通过外力的作用,原材料的形状和尺寸可发生变化,实现所需的加工目标。
金属塑性加工原理主要可以归纳为以下几个方面:
1. 金属材料的结晶学:金属材料由多个晶粒组成,晶粒内部有晶界,而晶界是塑性变形的主要路径。
在金属的塑性加工过程中,晶粒的滑移和再结晶是主要的塑性变形机制。
2. 应力和变形:金属在受力作用下,原子间的键合力会发生改变,使得晶体发生滑移。
滑移可以使晶体的形状发生变化,从而完成金属的塑性加工。
在金属的塑性加工过程中,需要合理控制应力和变形,以使材料达到所需的形状和尺寸。
3. 材料的加工硬化:金属经过塑性变形后,晶粒内部会发生位错的堆积,使材料的晶界和晶内的位错密度增加,从而增加材料的硬度和强度。
这种加工硬化现象可以通过热处理来消除或减轻。
4. 金属材料的可塑性和加工性:金属材料的可塑性是指金属在
塑性变形过程中的变形能力。
不同种类的金属材料具有不同的可塑性和加工性能,需要根据实际情况选择合适的金属材料进行塑性加工。
综上所述,金属塑性加工原理是通过施加外力使金属材料发生塑性变形,实现所需形状和尺寸的改变。
金属材料的结晶学、力学性能、变形机制和加工硬化等方面的知识对于金属塑性加工具有重要意义。
在实际加工过程中,需要综合考虑材料的可塑性和加工性能,以确保加工过程的稳定性和质量。