平方差、完全平方公式复习教案
- 格式:doc
- 大小:137.61 KB
- 文档页数:3
专题一平方差公式与完全平方公式(复习)学习目标掌握平方差公式和完全平方公式的特征,并能运用两个公式进行化简和运算。
学习重点利用平方差公式、完全平方公式进行化简和运算学习难点利用平方差公式、完全平方公式进行因式分解。
学习过程一、知识回顾1、识记两个公式平方差公式:。
文字叙述:两个数的与这两个数的等于完全平方公式:。
文字叙述:两数和的平方等于这两个数的加上2、因式分解的定义公因式确定:(1)(2)(3)因式分解的方法:(1)提法(2)套法因式分解的步骤:把一个多项式因式分解,一般先,再。
进行多项式因式分解时,必须把每一个因式都分解到注:怎样验证因式分解的正确性?练习:请你从下列各式中,任选两式作差,并将得到的式子进行因式分解。
24a,2)9b(yx ,1,2二、典型例题例1:计算(1)(2m-3)(2m+3)(2)(a-2b+3c)(a+2b+3c).(3)20052-2006×2004例2:因式分解(1)16-4a 4 (2)42242y y x x +-(3)22341ab b a a -+- (4)222224)(b a b a -+例3:已知,8=+n m ,15=mn 求22n mn m +-的值三:达标测试(一、选择题)1、下列两个多项式相乘,不能用平方差公式的是( )A 、)32)(32(b a b a ++-B 、)32)(32(b a b a --+-C 、)32)(32(b a b a --+D 、)32)(32(b a b a ---2、下列运算正确的是( )A 、a b a b a 2)(222++=+B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+3、下列四个多项式是完全平方式的是( )A 、22y xy x ++B 、222y xy x --C 、22424n mn m ++D 、2241b ab a ++ 4、若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±245、已知5-=+y x ,6=xy ,则22y x +的值为( )A 、12B 、13C 、37D 、16(二、填空题)6、分解因式: x 2+y 2-2xy=7、已知x +y =1,那么221122x xy y ++的值为_______. 8、在多项式4x 2+1中添加 ,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是(三、计算)9、)53)(53(y x y x -+ 10、4(x+1)2-(2x+5)(2x-5)11、2275.7275.82⨯-⨯ 12、121211222112+⨯-(四、分解因式)13、2)2()2(---a a a 14、2241y x +-15、6xy 2-9x 2y-y 3 16、(2a-b)2+8ab17、先化简,再求值:223(2)()()a b ab b b a b a b --÷-+- 其中112a b ==-,.。
《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。
引导学生通过实际例子发现完全平方公式的规律。
1.2 教学内容完全平方公式的定义和表达式。
完全平方公式的推导和证明。
1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。
1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。
观察学生在练习中的表现,及时给予指导和帮助。
第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。
引导学生通过证明理解完全平方公式的正确性。
2.2 教学内容完全平方公式的推导方法。
完全平方公式的证明过程。
2.3 教学方法使用图表和动画演示完全平方公式的推导过程。
引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。
2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。
观察学生在证明过程中的思路和推理是否清晰。
第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。
引导学生通过完全平方公式简化计算过程。
3.2 教学内容完全平方公式在实际问题中的应用。
完全平方公式在简化计算过程中的作用。
3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。
使用图表和动画演示完全平方公式在计算过程中的应用。
3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。
观察学生在解题过程中的思路和计算是否准确。
第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。
引导学生通过完全平方公式的扩展形式解决更复杂的问题。
4.2 教学内容完全平方公式的扩展形式。
完全平方公式的扩展形式在解决问题中的应用。
4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。
使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。
4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。
《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。
2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。
3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。
二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。
2. 教学难点:运用完全平方公式进行整式的乘法运算。
三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。
2. 知识讲解:讲解完全平方公式的推导过程和结构特点。
(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。
3. 练习环节:学生进行练习,教师进行个别指导。
4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。
5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。
五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。
在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。
不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。
完全平方公式与平方差公式教案章节一:完全平方公式的探究与理解1. 导入:通过实际问题引入完全平方公式的概念,例如求(x + 2)²的值。
2. 探究:引导学生通过具体例子,如(x + 2)²= x²+ 4x + 4,发现完全平方公式的规律。
4. 练习:布置一些简单的练习题,让学生运用完全平方公式进行计算。
章节二:平方差公式的探究与理解1. 导入:通过实际问题引入平方差公式的概念,例如求(x 2)²的值。
2. 探究:引导学生通过具体例子,如(x 2)²= x²4x + 4,发现平方差公式的规律。
4. 练习:布置一些简单的练习题,让学生运用平方差公式进行计算。
章节三:完全平方公式与平方差公式的应用1. 导入:通过实际问题引入完全平方公式与平方差公式的应用,例如求(x +1)(x 1) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 1)(x 1) 进行展开和简化。
4. 练习:布置一些实际问题,让学生运用完全平方公式与平方差公式进行解决。
章节四:完全平方公式与平方差公式的巩固与拓展1. 导入:通过实际问题引入完全平方公式与平方差公式的巩固与拓展,例如求(x + 2)(x 2) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 2)(x 2) 进行展开和简化。
4. 练习:布置一些更复杂的实际问题,让学生运用完全平方公式与平方差公式进行解决。
1. 回顾:引导学生回顾本节课学习的完全平方公式与平方差公式。
3. 评价:对学生的学习情况进行评价,鼓励学生积极参与课堂讨论和练习。
4. 布置作业:布置一些相关的练习题,让学生巩固所学知识。
章节六:完全平方公式与平方差公式的综合应用1. 导入:通过实际问题引入完全平方公式与平方差公式的综合应用,例如求(x + y)²(x y)²的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + y)²(x y)²进行展开和简化。
《完全平方公式》教案【通用七篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。
教学设计8.3完全平方公式与平方差公式(第2课时)平方差公式一、教学背景(一)教材分析平方差公式是在学习了完全平方公式之后又一种特殊形式多项式乘法结果的归纳和总结,将这种结果应用于形式相同的多项式乘法,达到简化计算的目的.也是学习因式分解、函数等知识的重要基础;也是考试中考查的重点内容之一. (二)学情分析学生在第 8.2 节学习了多项式乘以多项式的法则,为推导和掌握平方差公式奠定了基础 .学生在经历完全平方公式推导基础上,初步为学习平方差公式提供了思维方式 . 七年级下学生的认知发展已具备了转化、数形结合的能力,富有积极思考、主动探索、合作交流情感基础,为推导平方差公式提供了保证.二、教学目标:1 经历探索平方差公式的过程,培养学生观察、归纳、猜测、验证等能力.2 会推导平方差公式:22a+ba—b=a—b3 了解平方差公式的几何背景,会应用公式计算.4 进一步体会转化、数形结合等思想方法.三、重点、难点:重点:体会平方差公式的发现和推导,会用平方差公式进行熟练地计算.难点:探索平方差公式,并会用几何图形解释公式.四、教学方法分析及学习方法指导教法分析:在教学中要引导学生发现公式,并探究公式的推导过程,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,引导学生借助面积图形对平方差公式做直观说明,加深学生对公式理解。
学法指导:学习中,让学生主动发现公式,并探究公式的推导过程,应着重让学生认识、掌握公式的结构特征和字母表示数的广泛意义,在公式的运用上,把公式中的字母同具体题目中的数或式子,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用平方差公式进行计算.正确地使用公式的关键是确定是否符合使用公式的条件.五、教学过程:(一)情景导入:以前,狡猾的灰太狼,把一块长为 a 米的正方形土地租给懒羊羊种植 . 今年,他对懒羊羊说:“我把你这块地一边减少 4 米,另一边增加 4 米,继续租给你,你也没有吃亏,你看如何?”懒羊羊听了,觉得好像没有吃亏,就答应了. 懒羊羊回到羊村,把这件事跟大伙一说,喜羊羊马上就说懒羊羊吃亏了 . 过了一会儿沸羊羊也说懒羊羊确实吃亏了 . 这是为什么呢?(先独立思考,后小组讨论,列出算式)设计意图:创设情境 ,通过以学生较为熟悉动画人物,让学生探索问题中的关系 ,激发学生求知欲望 .(二)知识回顾:1完全平方公式2多项式与多项式的乘法法则是什么?(三)探究新知:1由多项式乘法,计算下列各题:( 1) 3m 13m 1( 2)(2) x2y x2y解:1)(2)( x2y)( x2y)(1)(3m 1)(3m3m 3m 3m 1 1 3m 1 1x2x2x2 y yx2y y9m2 1x4y22 你能得到 a b a b 的计算公式吗?(a b)(a b)a a a b a b b b a2b2设计意图:利用多项式乘法推导平方差公式,让学生探索问题中发现公式特征 ,培养学生学习兴趣 .平方差公式:两数和与这两数差的积等于这两数的平方差.3 在边长为 a 的大正方形中,割去一个边长为 b 的小正方形 . 小明想将剩下的黄色部分分割后拼成一个长方形,他能拼成功吗 ?a baa-ba abbba b a b a2b2注:这里的两数可以是两个单项式,也可以是两个多项式.思考:(1)( a b)( a b)(b a)(b a)b2a2(2)( a b)(b a)(a b)(a b)a2b2(3)( a b)( a b) (a)2b2a2b2(4)( a b)(a b)(b a)(b a)( b) 2a2b2a2设计意图:联系实际生活,渗透数形结合的思想 ,让学生形象直观的感受平方差公式的构成 .并分类总结 ,使学生更容易理解和掌握.(四)合作学习:例 2利用乘法公式计算:(1)1999 2001 (2)( x 3)(x 3)( x29)解:(1)19992001 (2000 1)(2000 1)(2)(x 3)(x 3)(x2 9) (x2 9)(x2 9)2481=x=20001=39999设计意图:通过合作学习 , 进一步理解掌握平方差公式,并让学生认清解题应规范 , 使学生注重良好学习习惯的培养.(五)自主学习 :1 按要求填写下面的表格 .(a b)( a b) a2b2算式与平方差公式中对应的项a与平方差公式中对应的项b写成“a2-b2 ”的形式(2-3x)(2+3x)(-2m+3n)(2m+3n)2下列计算对不对?如果不对,怎样改正?(1) x 6 x 6x26(2) 2a2 b 2a2b2a4b4 3利用乘法公式计算:(1)(2a 5b)(2a 5b) (2)( 1x 3)(1x3) 2 2(3)( y 2x)( 2x y) (4)( xy 1)(xy 1) (5)598 602(6)9992设计意图:通过自主学习,让学生体验成功的喜悦和探索的乐趣,增强自信心 .(六)课堂小结:这节课你有哪些收获?我们一起来分享一下吧!设计意图:通过小结,让学生谈收获及注意的问题,让学生认识自我,增强自信心 .(七)布置作业 :1必做:课本 71 页习题 8.3 :第 2、4、5、6 题2选做:你能用右图中图形面积割补的方法,说明平方差公式吗?abba板书设计:8.1 平方差公式平方差公式:例2.. 3.计算a b a b a2b2两数和与这两数差的积等于这两数的平方差 .预设反思:本节课从多项式的乘法法则得到平方差公式引入新课,通过学生的合作交流得出平方差公式, 培养了学生归纳总结和数形结合的思想 . 要求学生能熟练掌握这些公式,并能运用它进行计算 .随着新课的进行、问题的提出,学生在教师的引导下充分经历观察、比较、交流、反思、发现问题过程,积极参与教学中;通过从一般到特殊、数形结合等思维活动、不断激起学生的“兴奋点” ,让学生体会到探索的艰辛,也体会到成功喜悦,发挥教师是学生学习的“促进者”的作用。
完全平方公式与平方差公式的教案完全平方公式与平方差公式的教案「篇一」平方差公式的优秀教案篇一:平方差公式的教案编者按:由中国教育部国际交流司与师范司,以及东芝公司共同举办的首届“东芝杯·中国师范大学师范专业理科大学生教学技能创新实践大赛”20xx年11月30日在北京落下帷幕。
在参加数学模拟授课、教案评比、即席演讲三项决赛的12所师范大学中,华南师范大学的林佳佳夺得冠军(三项均列第一),北京师范大学的郗鹏获亚军,南京师范大学的朱嘉隽获季军。
三名获奖选手每人除了获奖励高级笔记本电脑一台之外,并获得免费赴日进行短期访学。
本刊刊登获得第一名的教案,以飨读者。
【课题】 15.2.1 平方差公式【教材】人教版八年级数学上册第151页至153页. 【课时安排】 1个课时. 【教学对象】八年级(上)学生.【授课教师】华南师范大学林佳佳. 【教学目标】 ? 知识与技能(1)理解平方差公式的本质,即结构的不变性,字母的可变性;(2)达到正用公式的水平,形成正向产生式:“﹙□+△﹚﹙□–△﹚”→“□2 –△2”。
过程与方法(1)使学生经历公式的.独立建构过程,构建以数的眼光看式子的数学素养;(2)培养学生抽象概括的能力;(3)培养学生的问题解决能力,为学生提供运用平方差公式来研究等周问题的探究空间。
? 情感态度价值观纠正片面观点: ?数学只是一些枯燥的公式、规定,没有什么实际意义!学了数学没有用?体会数学源于实际,高于实际,运用于实际的科学价值与文化价值。
【教学重点】 1.平方差公式的本质的理解与运用;2.数学是什么。
【教学难点】平方差公式的本质,即结构的不变性,字母的可变性。
【教学方法】讲练结合、讨论交流。
【教学手段】计算机、PPT、flash。
【教学过程设计】二、教学过程设计第 2 页第 3 页第 4 页篇二:平方差公式优秀教案教学目标:一、知识与技能1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
8.3完全平方公式与平方差公式一、教学目标:(一)知识与能力:①学会推导完全平方公式:( a±b)2=a2±2ab+b2.②了解公式的几何背景,会用公式进行简单计算.(二)过程与方法:在观察交流、归纳总结中培养学生的语言表达能力,逻辑思维能力.(三)情感态度与价值观:培养学生积极思考,敢于表达自己观点;进一步体会数形结合的数学思想和方法.二、教学重点:对公式( a±b)2=a2±2ab+b2的理解三、教学难点:①对完全平方公式的运用;②对公式中字母所表示的广泛含义的理解和正确运用.四、教学方法:讲授法五、课型:新授六、课时:1课时七、教学过程:(一)导入新课:请同学们回忆多项式乘法法则并用多项式的乘法法则计算:①(a+b)2=②(a-b)2=说明:①乘法公式实际是几个特殊形式的多项式乘法结果,让学生知道公式的来历.②多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(二)新课讲解:总结:上述两个公式可以直接用于计算.我们把①和②称为完全平方公式.思考:你能用语言表述这两个公式吗?语言叙述:完全平方公式的语言叙述:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.平方差公式语言叙述:两个数的和与这两个数差的积,等于这两个数的平方差.说明:由学生自己总结乘法公式的特点,并用自己的语言叙述出来,让学生记忆深刻.学生看黑板,教师在黑板上用割补法演示完全平方公式几何意义.说明:利用图形的变换直观的说明乘法公式的几何意义,加深对乘法公式的理解,并体会了数形结合的数学思想方法.应用举例:例1:利用乘法公式计算:(1)(2x+y)2(2)(3a-2b) 2说明:此例题强化完全平方公式的应用,利用课件用“↓”符号比较直观的指出公式中字母a、b分别表示什么.※字母a、b可以是数字,也可以是整式.(三)课堂练习:计算:(1)(3x+1)2 (2)(a-3b) 2(3)(2x+y/2)2(4)(-2x+3y) 2(四)课堂小结:这节课我们复习了多项式乘法法则,学习完全平方的两个公式;同学们不仅要记住这两个公式,还要会灵活运用;需要强调的是公式中字母a、b既可以表示数,又可以表示单项式多项式.要符合特征才能用公式.有些题目需要变形后才能用公式.(五)作业布置:P71 第1题(六)板书设计8.3完全平方公式与平方差公式一、计算①(a+b)2=② (a-b) 2=二、完全平方公式:①(a+b)2=a2+2ab+b2②(a-b)2=a2-2ab+b2内容:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.注意:⑴公式中的a和b不仅可以是数字,还可以是单项式和多项式。
教案:初中完全平方公式教学目标:1. 让学生经历探索完全平方公式的过程,理解并掌握完全平方公式的结构特征。
2. 培养学生观察、发现、归纳、概括的能力,提高学生的逻辑思维能力。
3. 培养学生运用完全平方公式进行计算的能力,感受数学公式的魅力。
教学重点:1. 掌握完全平方公式的结构特征。
2. 利用完全平方公式进行计算。
教学难点:1. 理解完全平方公式中的字母含义。
2. 运用图形面积理解完全平方公式,体会数形结合思想。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 复习平方差公式:a² - b² = (a + b)(a - b)。
2. 提问:能否类比平方差公式,推导出一个新的公式呢?二、探索完全平方公式(15分钟)1. 引导学生分组讨论,尝试推导完全平方公式。
2. 每组派代表分享推导过程和结果。
3. 教师总结完全平方公式:a² + 2ab + b² = (a + b)²。
三、理解完全平方公式(10分钟)1. 讲解完全平方公式的结构特征:字母a和b的系数分别为1和2。
2. 引导学生理解完全平方公式中的字母含义:a表示第一个数,b表示第二个数。
3. 举例说明完全平方公式的应用。
四、运用完全平方公式进行计算(10分钟)1. 让学生独立完成练习题,运用完全平方公式进行计算。
2. 教师选取部分学生的作业进行讲解和点评。
五、巩固练习(10分钟)1. 让学生完成一些有关完全平方公式的练习题。
2. 教师解答学生的疑问,给予指导。
六、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结完全平方公式的推导过程和应用。
2. 教师引导学生体会数形结合思想,感受数学公式的魅力。
教学反思:本节课通过引导学生探索、理解和应用完全平方公式,培养了学生的观察、发现、归纳、概括的能力。
在教学过程中,注意让学生充分思考,发挥他们的主观能动性,使他们在探索中体验到数学的乐趣。
一对一教案 学生
伍坤泉 学 校 河实 年 级 七年级 教师
肖佳赟 授课日期 2014.5.11 授课时段 10:10-12:10 课题
平方差公式和完全平方公式复习 重点
难点 平方差公式和完全平方公式的灵活运用
教学步骤及教学内容
1.课前检测:
2.主要知识点:
一、1. 平方差公式:()()22b a b a b a -=-+
即两个数的和与这两个数的差的积等于这两个数的平方差。
2. 公式的结构特征
①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方)。
二、 1.完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 即:
两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
2. 结构特点:左边是二项式(两数和(差))的平方; 右边是两数的平方和加上(减去)这两数乘积的两倍。
3.口诀(记忆方法):首尾先平方,两倍乘积放中央。
题型1: (a+b+3)(a+b-3)
(a -2b +3c )2-(a +2b -3c )2;
))((c b a c b a +-++ (a+b -1)(a -b+1)
当公式中的a 或b 是多项式时,解题的时候要注意将这个多项式看成一个整体作为公式里的a 或b,再利用平方差公式或完全平方公式.
题型2:利用平方差公式和完全平方差公式解决一些复杂数字相乘运算,一定要根据题目,仔细揣摩符合哪个公式。
计算2023×2113 计算2296 计算2
2007200820061
⨯+
题型3: 构造平方差及列项相消法
计算 (3+1)(32+1)(34+1)…(332
+1)-2
364
计算 (1-41)(1-91)(1-161)…(1-811)(1-1001)
题型4:完全平方公式变形的使用
常用的完全平方公式变形:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+
ab b a b a 4)(22=--+)( 221x x +=2)1x x +(—2 2)1(1222+-=+x
x x x
已知()5,3a b ab -==求2()a b +与223()a b +的值。
已知16x x
-
=,求221x x +的值。
题型5:拼凑法,要理解到02≥a
试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
题型6:整体思想在整式运算中的运用:把题目已知的条件作为一个整体,用已知条件表示出未知条件,从而得出结果
已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值
当代数式532++x x 的值为7时,求代数式2932
-+x x 的值.
总结:平方差公式和完全平方公式的灵活运用,重点在于熟练掌握他们的公式以及公式的各种变形。
切记:222)(b a b a +≠+
3.主要练习:
4..错题再练:()()z y x z y x -+++-。