人教版八年级数学上册第十三章《等腰三角形》教案
- 格式:docx
- 大小:61.54 KB
- 文档页数:5
13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质●悬念激趣(1)如图是一组含有等腰三角形的生活图片,这些图片有哪些共同点?(2)将一把等腰三角尺和一个铅锤按图放置,就能检查一根横梁是否水平,你知道为什么吗?要想解决这个问题我们需要先研究等腰三角形具有哪些性质.【教学与建议】教学:活跃课堂气氛,让学生带着问题进入学习,也为后面的学习打下基础.建议:尽量给学生制造疑问,如怎样检查一根横梁是否水平;测平仪能测平的道理是什么等.●归纳导入问题1:如图①,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?你能画出具有这种特点的三角形吗?图①图②学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=__AC__.归纳:有两边相等的三角形是__等腰三角形__,相等的两边叫做__腰__,另一边叫做__底边__,两腰的夹角叫做__顶角__,底边和腰的夹角叫做__底角__(如图②).问题2:把问题1中剪下的△ABC沿折痕AD对折,找出其中重合的线段和角,你能填好下表吗?重合的线段重合的角AB=AC∠B=∠CBD=CD∠BAD=∠CADAD=AD∠ADB=∠ADC从上表中你能发现等腰三角形具有什么性质吗?(引入课题)【教学与建议】教学:创设问题情境,激发学生的学习兴趣,归纳等腰三角形的性质.建议:教师引导学生归纳.性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).命题角度1利用等腰三角形的定义(两边相等)解决问题当已知边没有确定为底边或腰时,要分情况讨论求解,并注意三角形的三边关系这一隐含条件.【例1】一个等腰三角形的一边长为2 cm,另一边长为5 cm,那么这个等腰三角形的周长是(B)A.9 cm B.12 cmC.9 cm或12 cm D.以上都不对【例2】等腰三角形的底边长为8 cm,一腰上的中线把这个三角形分成周长差为2 cm的两部分,则腰长为__6__cm或10__cm__.命题角度2利用等腰三角形的性质进行角度计算(1)在等腰三角形中,当已知锐角不能确定是顶角还是底角时,需分类讨论;(2)在等腰三角形中,已知的直角或钝角只能是顶角,不需分类讨论.【例3】如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D 等于(B)A.40°B.50°C.60°D.80°【例4】等腰三角形的一个角是30°,则这个等腰三角形的底角为(C)A.75°B.30°C.75°或30°D.不能确定【例5】等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的顶角为__60°或120°__.命题角度3利用等腰三角形的性质证明有关结论(1)等腰三角形“等边对等角”的性质在证全等三角形时可以得到等角.(2)等腰三角形“三线合一”的性质可以用来证明角相等、线段相等和线段垂直.【例6】如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.证明:过点A作AE⊥BC于点E.∵AB=AC,∴∠BAD=2∠2.∵BD⊥AC于点D,∴∠BDC=90°.∴∠2+∠C=∠C+∠DBC=90°.∴∠DBC=∠2.∴∠BAD=2∠DBC.【例7】如图,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.证明:如图,过点A作AP⊥BC于点P.∵AB=AC,∴BP=PC.∵AD=AE,∴DP=PE.∴BP-DP=PC-PE.∴BD=CE.高效课堂教学设计1.探索并证明等腰三角形的性质.2.运用等腰三角形的性质证明两个角相等或两条线段相等.3.体会轴对称在研究几何问题中的作用.▲重点理解和掌握等腰三角形的性质.▲难点等腰三角形性质证明中辅助线的添加和对性质2的理解.◆活动1新课导入提出问题:(1)把一张长方形的纸片对折,并剪下阴影部分(教材P75图13.3-1),再把它展开,得到一个什么图形?(2)上述过程中得到的△ABC有什么特点?(3)除了剪纸的方法,还可以怎样作出一个等腰三角形?学生动手剪纸、观察,教师在学生观察的同时提出问题.学生讨论问题(3),教师在学生充分发表自己想法的基础上给出画图的方法,并画出图形.◆活动2探究新知1.如图,将一张长方形纸片对折,沿图中虚线剪下一个三角形,把得到的三角形记为△ABC,并将折线的另一端记为D.提出问题:(1)△ABC是什么特殊三角形?为什么?(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:重合的线段 重合的角__AB __与__AC __ __∠B __与__∠C __ __BD __与__CD __ __∠BAD __与__∠CAD ____AD __与__AD __ __∠ADB __与__∠ADC __(3)图中有哪些相等的角?有哪些相等的线段? (4)△ABC 是不是轴对称图形?对称轴是什么?(5)等腰三角形ABC 除两腰相等外,角有什么性质? (6)在等腰三角形ABC 中,AD 有几种角色?各是什么? (7)等腰三角形具有哪些性质? 学生完成并交流展示. ◆活动3 知识归纳1.性质1:等腰三角形的两个__底角__相等(简写成“等边对__等角__”).2.性质2:等腰三角形的__顶角平分线____底边上的高____底边上的中线__互相重合(简写成“__三线合一__”).◆活动4 例题与练习 例1 教材P 76 例1.例2 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.求证:BE =CE .证明:∵AB =AC ,点D 是BC 的中点,∴AD ⊥BC ,∴AD 是BC 的垂直平分线.又∵点E 在AD 上,∴BE =CE .例3 如图,在△ABC 中,AB =AC ,点E 在CA 的延长线上,且∠AEF =∠AFE ,试问直线EF 和BC 有何位置关系?并说明理由.解:EF ⊥BC .理由如下:过点A 作AD ⊥BC 于点D .∵AB =AC ,∴∠BAD =12∠BAC .∵∠BAC =∠AEF +∠AFE ,∠AEF =∠AFE ,∴∠AFE =12∠BAC =∠BAD ,∴EF ∥AD .又∵AD ⊥BC ,∴EF ⊥BC .练习1.教材P 77 练习第1,2,3题.2.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为(B ) A .30° B .45° C .50° D .75°(第2题图) (第3题图)3.如图,在△ABC 中,点D 在边BC 上,BD =AD =AC ,E 为CD 的中点.若∠CAE =16°,则∠B =__37°__.4.如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE .求证:BD =CE .证明:过点A 作AF ⊥BC 于点F ,则AF ⊥DE .∵AB =AC ,AD =AE ,∴BF =CF ,DF =EF ,∴BF -DF =CF -EF ,即BD =CE .◆活动5 课堂小结 1.等腰三角形的性质. 2.等腰三角形性质的运用.1.作业布置(1)教材P81~82习题13.3第1,3,4,6,7,9题;(2)对应课时练习.2.教学反思。
13.3.1《等腰三角形》说课稿20231121130赵兰聪尊敬的各位评委老师好,我说课的内容是《等腰三角形》,接下来我将从以下六个方面展开说课。
一、教材分析(包含教学重点分析)本节选自人教版八年级上册第十三章第三节第一课时等腰三角形,是在学习了轴对称图形及三角形全等的判定的基础上进行的,主要学习“等腰三角形的等边对等角”和“等腰三角形的三线合一”两个性质。
本节内容是对前面知识的深化和应用,性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习等腰三角形判定、线段垂直平分线和等腰梯形的预备知识。
本节内容在教材中具有非常重要的地位,起着承前启后的作用。
因此等腰三角形性质的探究及应用为本节课的重点。
二、学情分析(包含教学难点分析)我所面对的是八年级的学生,学生已经学习了三角形的内角和,三角形的中线、高线、角平分线、三角形全等及轴对称的知识,了解了等腰三角形的定义及两腰相等的特点,这为本节课的学习奠定了理论基础。
同时已经具有初步的合情推理和演绎推理能力,动手操作能力明显增强,他们喜欢动手实验,敢于大胆猜想,愿意与人合作,这些都为探究活动的顺利进行提供了保障。
但是,性质定理的证明涉及到添加辅助线,这对八年级学生来说是一个难点,可能会使学习活动受阻。
因此等腰三角形性质的证明为本节课的难点。
三、教学目标分析根据学生知识能力和心理特征的实际情况,本节课确定的教学目标是:1.理解等腰三角形的性质,会利用等腰三角形的性质进行简单的判断、推理和计算。
2.通过动手操作、观察、证明等腰三角形的性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高学生分析问题、解决问题的能力。
3.在实际动手操作中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。
四、教法学法分析爱因斯坦曾说,发现一个问题往往比解决一个问题更难,教学是引导学生把知识转化为能力的一种形式,所以在教法上我以学生为中心,采用讨论法和引导探究相结合的教学方法,通过精心设问引导学生发现问题、分析问题、解决问题,充分发挥学生的积极性和主动性。
人教版八年级数学上册说课稿13.3 等腰三角形一. 教材分析等腰三角形是八年级数学上册第十三章《三角形》的一个小节,本节内容主要让学生掌握等腰三角形的性质,并能运用等腰三角形的性质解决一些实际问题。
在教材中,通过引入等腰三角形的定义,让学生通过观察、操作、猜想、验证等方法,探究等腰三角形的性质,从而培养学生的动手操作能力和探究能力。
二. 学情分析学生在学习本节内容前,已经学习了三角形的概念、性质和分类,对三角形有了一定的了解。
但等腰三角形作为一种特殊的三角形,学生可能还比较陌生。
因此,在教学过程中,我将会引导学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质,从而加深学生对三角形知识的理解。
三. 说教学目标1.知识与技能目标:让学生掌握等腰三角形的性质,并能运用等腰三角形的性质解决一些实际问题。
2.过程与方法目标:通过观察、操作、猜想、验证等方法,培养学生的动手操作能力和探究能力。
3.情感态度与价值观目标:让学生在探究等腰三角形性质的过程中,体验到数学的乐趣,增强对数学的兴趣。
四. 说教学重难点1.教学重点:等腰三角形的性质。
2.教学难点:如何引导学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、小组合作法等。
2.教学手段:多媒体课件、几何画板、实物模型等。
六. 说教学过程1.导入新课:通过复习三角形的相关知识,引出等腰三角形的概念。
2.探究等腰三角形的性质:(1)让学生观察等腰三角形的模型,引导学生发现等腰三角形的两腰相等。
(2)让学生用几何画板画出一个等腰三角形,并测量其角度,引导学生发现等腰三角形的底角相等。
(3)让学生分组讨论,总结等腰三角形的性质,并展示成果。
3.验证等腰三角形的性质:(1)让学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质。
(2)教师引导学生进行总结,得出等腰三角形的性质。
《13.3.1等腰三角形的性质》说课稿教学内容:义务教育课程标准试验教科书八年级数学上册第十三章第三节等腰三角形的性质,下面我从六个方面对本课的教学设计进行说明:一、说教材本节课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。
因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
二.说教学目标1.探索并证明等腰三角形的两个性质。
2.能利用性质证明两个角相等或两条线段相等。
3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用。
说重点:探索并证明等腰三角形的性质。
说难点:性质1证明中辅助线的添加和对性质2的理解。
三.说教法在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。
根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。
使学生全面参与、全员参与、全程参与,真正确立其主体地位。
而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。
四.说学法只有好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习文教解题方法,并且通过自己动手操作、动脑思考,动口表述,培养学生的观察、猜想、概括、表述、论证的能力。
五.课标对本节课的要求探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。
六.如何利用学案是为了让学生在课前预习时有方向、有目标地进行自主预习,是辅助课堂学习的一种方式。
七.说教学过程(一)知识回顾,导入新课(多媒体出示)学生独立思考,然后回答。
13.3等腰三角形(第1课时)一、内容和内容解析1.内容等腰三角形的性质.2.内容解析本节课是在学生已经学习了三角形的基本概念、全等三角形和轴对称知识的基础上,进一步研究特殊的三角形——等腰三角形.等腰三角形的性质为证明两个角相等、两条线段相等、两条直线垂直提供了方法,也是后续学习等边三角形、菱形、正方形、圆等内容的重要基础.等腰三角形性质的探索是通过轴对称进行的,借助于轴对称发现了等腰三角形的性质,也获得了添加辅助线证明性质的方法.性质的证明是将欲证明相等的两个角(或线段)置于两个全等三角形之中,这是证明两个角相等或两条线段相等的基本策略之一.等腰三角形性质的探索与证明体现了转化的思想.基于以上分析,确定本节课的教学重点:探索并证明等腰三角形性质.二、目标和目标解析1.目标(1)探索并证明等腰三角形的两个性质.(2)能利用性质证明两个角相等或两条线段相等.(3)结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.2.目标解析达成目标(1)的标志是:学生能借助实验发现等腰三角形的两个性质;能正确理解两个性质的含义(会区分命题的条件和结论,能用数学语言准确表述性质的含义,特别是“重合”和“三线合一”的含义,会将性质“三线合一”分解成三个命题);能利用三角形全等证明两个性质.达成目标(2)的标志是:学生能在等腰三角形的情境中利用两个性质证明两个角相等或两条线段相等.达成目标(3)的标志是:学生知道等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴;能借助轴对称发现等腰三角形的性质,并获得添加辅助线证明性质的方法.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于何时需要添加辅助线、如何添加辅助线仍没有规律性了解.表现在“等边对等角”的证明中,为什么要作底边上的中线感到茫然,常常发出“怎么想到的”的疑问.事实上,添加辅助线本身就是一项探究性数学活动,是获得证明所采取的一种尝试,既可能成功,也可能失败;作底边上的中线是受前面“探究”活动的启发——作并出对称轴有可能解决问题,而对称轴是通过底边中点的;由于对称轴垂直于底边,因此,也可以作底边上的高加以尝试;由于对称轴平分对应线段的夹角,因此,也可以作顶角平分线 加以尝试.学生由于认知经验不足,对等腰三角形性质 2 的理解容易出现错误,影响对性质 2 的应用,教师在教学中应引导学生将性质 2 分解为三个结论并逐一证明,以此来加深学生对性质2 的理解.本节课的教学难点是:性质 1 证明中辅助线的添加和对性质 2 的理解.四、教学过程设计引言我们知道,有两边相等的三角形是等腰三角形.下面,我们利用轴对称的知识来研究等 腰三角形的性质.1. 探索并证明等腰三角形的性质问题 1 利用长方形纸片和剪刀,你能按照教科书图 13.3-1 的方式剪出一个等腰三角形吗?你能说明所剪出的图形为什么是等腰三角形吗?师生活动:学生动手操作,剪出等腰三角形,然后小组交流.设计意图:让学生利用轴对称性剪出等腰三角形,为等腰三角形的性质探究作准备.问题 2 仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?师生活动:学生独立思考后尝试着概括自己剪出的等腰三角形纸片的特征, 汇报交流.学生如果不能发现结论,或者对结论概括得不全面,教师作如下提示:把剪出的等腰三角形纸片沿折痕对折,找出其中重合的线段和角,并说明这些线段和角在等腰三角形中的名称, 由此概括出等腰三角形的特征.设计意图:让学生首先从一个等腰三角形开始研究,发现其特殊性.追问 1:剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?师生活动:学生相互比较,得出结论.追问 2:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?师生活动:学生动手操作,相互比较,互动交流,得出性质1 和性质 2.教师给出性质的简写形式,并着重引导学生分析“三线合一”的含义是什么,从而将其分解为如下三个结论.(1)等腰三角形的顶角平分线也是底边上的中线和高;(2)等腰三角形的底边上的中线也是底边上的高和顶角平分线; (3)等腰三角形底边上的高也是顶角平分线和底边上的中线.设计意图:通过丰富的感性材料,让学生在反复比较的过程中发现等腰三角形共同的、本质的特征;体会认识事物的一般方法——由特殊到一般,进一步培养学生抽象概括能力;让学生真正理解“三线合一”的含义,会将“三线合一”分解成三个命题,体会等腰三角形性质2的内容实质.问题3利用实验操作的方法我们发现并概括出等腰三角形的性质1和性质2,对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?师生活动:学生根据结论画出图形,写出已知、求证,并在教师设置的问题串的启发下获得证明思路,即要证明两个底角相等,只需证明这两个角所在的三角形全等即可,由前面的操作可以得到启发,即作出底边上的中线即可.一名学生板书,其他学生自己在本上书写解题过程.学生交流,教师反馈,引导学生说出证明三角形全等是证明角相等的常用方法.已知:如图△1,ABC中,AB=AC.求证:∠B=∠C.证明:作底边的中线AD.∵AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD(SSS).AB D图1C∴∠B=∠C.设计意图:让学生逐步实现由实验几何到论证几何的过渡.追问:你还有其他方法证明性质1吗?师生活动:学生尝试用多种方法证明性质1,可以作底边的高线或顶角的角平分线,然后交流.设计意图:让学生在运用不同方法证明性质1的过程中提高思维的深刻性和广阔性.问题4性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.师生活动:在教师引导下,学生根据结论画出图形,写出已知、求证并证明.设计意图:让在学生经历完整的命题证明过程中,理解等腰三角形性质简捷表述形式的真正含义,会进行文字语言、符号语言、图形语言间的转换,能从操作实验中发现辅助线的添加方法,体验辅助线的添加与解决问题思路的相关性,提高添加辅助线的自觉性和能动性.追问1:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?师生活动:学生回答——等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.设计意图:让学生理解等腰三角形的轴对称性,并体会它在探索和证明等腰三角形性质的过程中的重要作用.追问2:从等腰三角形性质的结论中,你有何收获?师生活动:学生回答——可以用来证明两个角相等、两条线段相等以及线段垂直关系.设计意图:让学生进一步理解等腰三角形的性质的意义——它既是全等知识的运用和延续,又是证明两个角相等、两条线段相等、线段垂直关系的更为简捷的途径和方法.启发学生在对比中建立知识之间的普遍联系,学会辩证地看问题.2.巩固等腰三角形的性质练习(1)填空:①如图△2,ABC中,AB=AC,∠A=36°,则∠B=°;②如图3,△ABC中,AB=AC,∠B=35°,则∠A=°;③已知等腰三角形的一个内角为70°,则它的另外两个内角的度数分别是.AAB C B C图2图3(2)教科书第77页练习第2题.师生活动:学生回答,相互补充,并说明理由.设计意图:练习(1)是有梯度的角度计算题,需综合运用等腰三角形知识、三角形内角和知识解决问题,可以使学生进一步巩固等腰三角形性质1,同时引导学生将与角有关的知识系统化,达到优化学生知识结构的目的.练习(2)是研究特殊的等腰三角形中的特殊角、特殊线段间的关系,让学生熟悉等腰三角形的性质2.例1如图△4,ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.师生活动:学生分析题中条件和解题思路:本题共三个等腰三角形(△ABC,△DAB 和△BCD),设∠A=x,可以利用等腰三角形的性质1和三角形的外角性质,将∠BDC用x 表示;利用等腰三角形的性质1,可知∠C=∠BDC,即∠C也可用x表示;再利用等腰三角形的性质1,可知∠ABC=∠C,即∠ABC也可用x表示;由三角形内角和定理即可求出△ABC 各角的度数.学生解答,一名学生板书,师生共同交流.解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角).A设∠A=x,则∠BDC=∠A+∠ABD=2x,BDC 图4从而∠ABC=∠C=∠BDC=2x.于是,在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°.解得x=36°.∴∠A=36°,∠ABC=∠C=72°.设计意图:通过逻辑推理和方程思想求出等腰三角形中的角的度数,让学生进一步巩固等腰三角形的性质1.3.小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)“三线合一”的含义是什么?请举例说明.(4)本节课你学到了哪些证明线段相等或角相等的方法?设计意图:通过小结,使学生梳理本节课所学内容和研究方法,把握本节课的核心——等腰三角形的性质,体会轴对称在研究几何问题中的作用.4.布置作业教科书习题13.3第1,2,4,6题.证明性质2“三线合一”中的另两个结论:(1)等腰三角形的顶角平分线也是底边上的中线和高;(2)等腰三角形底边上的高也是顶角平分线和底边上的中线.五、目标检测设计1.填空:(1)等腰三角形一个内角等于150°,则它的另外两个内角的度数分别为;(2)等腰三角形一个外角等于100°,则它的另外三个内角的度数分别为.设计意图:考查学生对等腰三角形性质1的掌握.2.如图△,在ABC中,AB=AC,DB=DC.求证:(1)∠BAD=∠CAD;(2)AD⊥BC.设计意图:考查学生对等腰三角形性质2的掌握.ADB C(第2题)。