整式综合运算练习题(含答案)汇编
- 格式:doc
- 大小:209.00 KB
- 文档页数:5
整式计算100道及答案一、整式的加法与减法1. 计算并化简:3x + 2y + 5x + 4y答案:8x + 6y2. 计算并化简:7x^2 - 3xy + 4x^2 + 2xy答案:11x^2 - xy3. 计算并化简:5a + 2ab - 3a + 4ab答案:2a + 6ab4. 计算并化简:12x^2 - 7xy + 4xy^2 - 9x^2答案:3x^2 - 7xy + 4xy^25. 计算并化简:8a - 3b + 2a^2 - 5b答案:10a - 8b + 2a^2二、整式的乘法6. 计算并化简:(3x + 4y) * 2答案:6x + 8y7. 计算并化简:(5a - 2b) * 3答案:15a - 6b8. 计算并化简:(2x^2 + 3y) * 4答案:8x^2 + 12y9. 计算并化简:(7 - 4x) * (2x + 3)答案:14x - 8x^2 - 2110. 计算并化简:(3a + 2b) * (4a - 5b) 答案:12a^2 + ab - 10b^2三、整式的除法11. 计算并化简:(6x + 12) ÷ 3答案:2x + 412. 计算并化简:(14a - 7) ÷ 7答案:a - 113. 计算并化简:(20x^2 - 10x) ÷ 10答案:2x^2 - x14. 计算并化简:(18 - 3y^2) ÷ 3答案:6 - y^215. 计算并化简:(15a^2 + 5ab) ÷ 5a答案:3a + b四、整式的综合运算16. 计算并化简:(3x + 5) * (2x - 4) + (x - 1) * (4 - x) 答案:-3x^2 - 2117. 计算并化简:(5a - 2) * (3a + 4) - (a - 3) * (2 + a) 答案:8a^2 + 21a + 1418. 计算并化简:(7x - 2y) * (3x + y) - (4x + 2y) * (x - y)答案:15x^2 + 4y^2 - 4xy19. 计算并化简:(3a + 2b - 4c) * (2a - 3b + 4c) + (2c - 3b) * (3a - 4b - 2c)答案:a^2 + b^2 - 2c^220. 计算并化简:(2x - y) * (3x - y) + (x - y) * (x - 2y)答案:4x^2 - 7xy + 2y^2五、整式的因式分解21. 因式分解:4x^2 - 9y^2答案:(2x - 3y)(2x + 3y)22. 因式分解:8a^2 + 12ab答案:4a(2a + 3b)23. 因式分解:12x^3 - 18x^2 - 8x答案:2x(2x - 4)(3x - 1)24. 因式分解:16x^4 - 4x^3 - 12x^2答案:4x^2(x + 2)(4x - 3)25. 因式分解:15a^2 + 5ab - 10b^2答案:5(3a + 2b)(a - 2b)六、整式的应用26. 设某物品原价为x元,打折后的价格为0.8x元,某人买了5个该物品,计算并化简他支付的总价格。
整式的混合运算 (习题及答案)整式的混合运算题例题示范1:已知$x=-1$,$y=-1$,求解原式:$(3x+2y)(3x-2y)-5x(x-y)-(2x-y)^2$。
解:原式$=(9x^2-4y^2)-(5x^2-5xy)-(4x^2-4xy+y^2)$9x^2-4y^2-5x^2+5xy-4x^2+4xy-y^2$9xy-5y^2$当$x=-1$,$y=-1$时。
原式$=9\times\frac{-1}{3}-5\times(-1)^2=-2$例题示范2:已知$x^m-n=2$,$x^n=2$,求解$x^{m+n}$。
思路分析:①观察所求式子,根据同底数幂的乘法,$x^{m+n}=x^m\times x^n$,我们需要求出$x^m$,$x^n$的值;②观察已知条件,由$x^{m-n}=x^m\div x^n=2$,$x^n=2$,可求出$x^m=4$;③代入,求得$x^m\times x^n=8$,即$x^{m+n}=8$。
例题示范3:若$4x^2+mx+9$是一个完全平方式,则$m$=________。
思路分析:①完全平方公式是由首平方,尾平方,二倍的乘积组成,观察式子结构,首尾两项是平方项。
②将$4x^2$,$9$写成平方的形式$4x^2=(2x)^2$,$9=3^2$,故$m$应为二倍的乘积。
③对比完全平方公式的结构,完全平方公式有两个。
a\pm b)^2=a^2\pm 2ab+b^2$因此$mx=\pm2\times2x\times3$,所以$m=\pm12$。
巩固练:1.计算:①$\frac{(−3a−b)−(−3a+b)(3a+b)}{2a−3b}$;②$\frac{(xy+1)(xy-1)-2xy+1}{-xy}$;③$(1-2a)(2a+1)(4a^2+1)-1$;④$50^2-49^2+48^2-47^2+…+2^2-1^2$;⑤$-2016\times4028+2014^2$。
初中数学整式的混合运算基础测试卷一、单选题(共9道,每道11分)1.计算的结果是()A.4a-6bB.C. D.答案:C试题难度:三颗星知识点:整式的混合运算2.计算的结果是()A. B.C. D.答案:D试题难度:三颗星知识点:平方差公式3.化简求值:当a=-2,b=1时,代数式的值为()A.1B.-1C.4D.-4答案:C试题难度:三颗星知识点:化简求值4.如果的展开式中不含的项,那么p的值为()A. B.3C.-3D.答案:B试题难度:三颗星知识点:多项式乘以多项式5.已知2x+5y=3,那么的值为()A.4B.6C.8D.16答案:C试题难度:三颗星知识点:幂的运算6.若,,那么的值为()A.2B.4C.8D.16答案:B试题难度:三颗星知识点:幂的运算7.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式()A. B.C. D.答案:C试题难度:三颗星知识点:平方差公式的几何推导8.若x+y=10,xy=24,则的值为()A.100B.52C.48D.124答案:B试题难度:三颗星知识点:完全平方公式的变形应用(知二求二)9.如果,那么的值为()A.5B.7C.9D.11答案:D试题难度:三颗星知识点:整体代入。
《整式的运算》练习题及答案第一篇:《整式的运算》练习题及答案一、选择题。
1、下列判断中不正确的是()①单项式m的次数是0 ②单项式y的系数是1③,-2a都是单项式④ +1是二次三项式2、如果一个多项式的次数是6次,那么这个多项式任何一项的次数()A、都小于6B、都等于6C、都不小于6D、都不大于63、下列各式中,运算正确的是()A、B、C、D、4、下列多项式的乘法中,可以用平方差公式计算的有()A、B、C、D、、在代数式中,下列结论正确的是()A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的是()A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项分别为()A、2和8B、4和-8C、6和8D、-2和-88、若关于的积中常数项为14,则的值为()A、2B、-2C、7D、-79、已知,则的值是()A、9B、49C、47D、110、若,则的值为()A、-5B、5C、-2D、2二、填空题11、=_________。
12、若,则。
13、若是关于的完全平方式,则。
14、已知多项多项式除以多项式A得商式为,余式为,则多项式A为________________。
15、把代数式的共同点写在横线上_______________。
16、利用_____公式可以对进行简便运算,运算过程为:原式=_________________。
17、。
18、,则P=______,=______。
三、解答题19、计算:(1)(2)(3)20、解方程:21、先化简后求值:,其中。
参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C10、C二填空题1、12、2;413、或714、15、(1)都是单项式(2)都含有字母、;(3)次数相同16、平方差;17、18、;三、解答题19、(1)1(2)(3)20、21、34第二篇:第一章整式的运算以下是查字典数学网为您推荐的第一章整式的运算,希望本篇文章对您学习有所帮助。
整式专题训练测试题一、填空题:1、 单项式5)2(32y x -的系数是_________,次数是___________。
2、 多项式π2323232----x xy y x 中,三次项系数是_______,常数项是_________。
3、 若,3,2==n m a a 则___________,__________23==--n m n m a a 。
4、 单项式2222,2,21,2xy y x xy y x ---的和是_____________________________。
5、 若2333632-++=⋅x x x ,则x =_________________。
6、 )2131)(3121(a b b a ---=___________________。
7、 若n mx x x x --=-+2)3)(4(,则__________________,==n m 。
8、 ________________)6()8186(32=-÷-+-x x x x 。
9、 442)(_)(_________5⨯⨯⨯⋅⋅⋅⋅-=x x x x x 。
10、22413)(___)(_________y xy xy x +-=+-。
11、______________42125.0666=⨯⨯。
12、_____________)()(22++=-b a b a 。
二、选择题:1、 代数式4322++-x x 是A 、多项式B 、三次多项式C 、三次三项式D 、四次三项式2、 )]([c b a +--去括号后应为A 、c b a +--B 、c b a -+-C 、c b a ---D 、c b a ++-3、=⋅-+1221)()(n n x xA 、n x 4B 、34+n xC 、14+n xD 、14-n x4、下列式子正确的是A 、10=aB 、5445)()(a a -=-C 、9)3)(3(2-=--+-a a aD 、222)(b a b a -=-5、下列式子错误的是 A 、161)2(22=-- B 、161)2(22-=-- C 、641)2(32-=-- D 、 641)2(32=-- 6、=-⨯99100)21(2 A 、2 B 、2- C 、 21 D 、21- 7、=-÷-34)()(p q q pA 、q p -B 、q p --C 、p q -D 、q p +8、已知,109,53==b a 则=+b a 23 A 、50- B 、50 C 、500 D 、不知道9、,2,2-==+ab b a 则=+22b aA 、8-B 、8C 、0D 、8±10、一个正方形的边长若增加3cm ,它的面积就增加39cm ,这个正方形的边长原来是A 、8cmB 、6cmC 、5cmD 、10cm二、计算:1、42332)()()(ab b a ⋅⋅-2、4)2()21(232÷÷-xy y x 3、3334455653)1095643(y x y x y x y x ÷-+ 4、)3121()312(2122y x y x x -+-- 5、)1(32)]1(21[2-----x x x 6、⎭⎬⎫⎩⎨⎧-÷----)21()]2(3[2522222xy y x xy xy y x xy四、先化简,再求值1、2)3()32)(32(b a b a b a -+-+,其中31,5=-=b a 。
整式加减乘除混合运算练习题及答案一、选择题1、用代数式表示a与-5的差的2倍是A、a-×B、a+×C、2C、a-b=-a+bD、a-b=a-、某班共有学生x人,其中女生人数占35%,那么男生人数是 A、35%x B、xC、xx D、35%1?35%4、若代数式3ax?7b与代数式 ?a4b2y 是同类项,则xy 的值是 A、9B、?C、D、?4、把-x-x合并同类项得A、0B、-C、-2xD、-2x26、一个两位数,十位上的数字是x,个位上的数字是y,如果把十位上的数与个位上的数对调,所得的两位数是A、yxB、y+xC、10y+xD、10x+y227、如果代数式4的值为7,那么代数式2的值等于y?2y?5y?y?1A、2B、3C、?2D、48、下面的式子,正确的是A、3a2+5a2=8a4B、5a2b-6ab2=-abC、6xy-9yx=-3xyD、2x+3y=5xy9、一个多项式加上x2y-3xy2得2x2y-xy2,则这个多项式是 A、3x2y-4xy2;B、x2y-4xy2;C、x2y+2xy2;D、-x2y-2xy10、若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是 A>B A=B A 3a2bc311、单项式?的系数是______,次数是______;5112、?x2?4x?是3其中常数项是;13、为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度....电价按b元收费。
某户居民在一个月内用电160度,他这个月应缴纳电费是元;14、三个连续偶数中,2n是最小的一个,这三个数的和为______ _; 15、如图1是小明用火柴搭的1条、2条、3条“金鱼”??,则搭n条“金鱼”需要火柴根.1条条图13条16、根据如图所示的程序计算,若输入x的值为1,则输出y的值为;三、解答题:17、化简 -3x-4x2+4x-8x2-1 -3x2-[-3x-+3]+4x18、先化简,后求值;-,其中x??5,y??1若a?2??b?3??0,求3a2b-[2ab2-2+ab]+3ab2的值;219、有这样一道题,计算?2x4?4x3y?x2y2??2?x4?2x3y?y3??x2y2的值,其中x=0.25,y=-1;甲同学把“x=0.25”,错抄成“x=-0.25”,但他的计算结果也是正确的,你说这是为什么?20、“十一”黄金周期间,某风景区在7天中来旅游的人数变化如下表:若9月30日来旅游人数记为a万人,请用a的代数式表示10月2日来旅游的人数。
整式的混合运算测试时间:100分钟总分:100一、选择题(本大题共10小题,共30.0分)1.计算的结果是A. B. C. D.2.下列各运算中,计算正确的是A. B. C.D.3.下列各式的计算中不正确的个数是;;;;.A. 4个B. 3个C. 2个D. 1个4.计算的结果,与下列哪一个式子相同A. B. C. D.5.现有7张如图1的长为a,宽为的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分两个矩形用阴影表示设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足A. B. C. D.6.已知,则的值是A. B. 0 C. 2 D. 47.下列计算错误的是A. B.C. D.8.若,则代数式的值为A. B. 8 C. D. 39.下列计算中,正确的是A. B.C. D.10.若,,,,,均为正数,,又,则M与N的大小关系是A. B. C. D. 无法比较二、填空题(本大题共10小题,共30.0分)11.若规定符号的意义是:,则当时,的值为______ .12.已知,,则的值为______.13.计算:______.14.若,,则______.15.如果,,那么______.16.已知:,,则代数式的值是______ .17.已知:,则______ .18.观察下列运算并填空:;:;根据以上结果,猜想并研究:______ .19.若,则______ ,______ ,______ .20.已知,则______.三、计算题(本大题共4小题,共24.0分)21.先化简并求值:,其中,.,其中,.22.先化简,再求值:,其中,;,其中,.23.计算24.已知,求代数式的值.四、解答题(本大题共2小题,共16.0分)25.已知的展开式中不含和项分别求m、n的值;化简求值:26.观察下列各式:,而,;,而,;,而,;______ ______ .根据以上规律填空:______ ______ .猜想:______ .答案和解析【答案】1. B2. D3. A4. B5. B6. B7. D8. D9. C10. C11. 912. 1513.14.15. 416.17. 2518.19. 1;3;420. 121. 解:原式,当,时,原式;原式,当,时,原式.22. 解:原式,当,时,原式;原式,当,时,原式.23. 解:原式;原式;原式.24. 解:原式,由得到:,则原式.25. 解:,的展开式中不含和项,,得,即m的值为2,n的值为3;,当,时,原式.26. ;225;;;11375【解析】1..故选:B.按照整式的计算的方法先去掉括号,再进一步合并得出答案即可.此题考查整式的混合运算,掌握计算方法,注意合并同类项的化简即可.2. 解:原式,故A错误;原式,故B错误;原式,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3. 解:,正确;,错误;,错误;,错误;,错误,则不正确的选项有4个.故选A.原式各项计算得到结果,即可做出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4. 解:原式,故选B原式去括号合并得到最简结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5. 解:法1:左上角阴影部分的长为AE,宽为,右下角阴影部分的长为PC,宽为a,,即,,,即,阴影部分面积之差,则,即.法2:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为x,左上阴影增加的是3bx,右下阴影增加的是ax,因为S不变,增加的面积相等,,.故选:B.表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6. 解:,即,原式.故选:B.原式去括号合并后,将已知等式变形后代入计算即可求出值.此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键.7. 解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项不合题意;D、,本选项符合题意,故选DA、先利用同底数幂的乘法法则计算,再利用积的乘法法则变形,得到结果,即可作出判断;B、利用积的乘方及幂的乘方运算法则计算,得到结果,即可作出判断;C、合并同类项得到结果,即可作出判断;D、利用单项式乘以单项式法则计算,得到结果,即可作出判断.此题考查了整式的混合运算,涉及的知识有:积的乘方及幂的乘方运算法则,同底数幂的乘法、除法法则,熟练掌握法则是解本题的关键.8. 解:,.故选:D.原式计算整理变形后,把已知等式代入计算即可求出数值.此题考查整式的化简求值,注意整体代入思想的渗透.9. 解:A、结果是,故本选项不符合题意;B、结果是,故本选项不符合题意;C、结果是,故本选项符合题意;D、结果是,故本选项不符合题意;故选:C.根据同底数幂的乘法、平方差公式、单项式乘以多项式、单项式除以单项式分别求出每个式子的值,再判断即可.本题考查了同底数幂的乘法、平方差公式、单项式乘以多项式、单项式除以单项式等知识点,能灵活运用知识点进行化简是解此题的关键.10. 解:,,,,,均为正数,,又,,则M与N的大小关系是,故选C.先求出的值,再根据求出的结果比较即可.本题考查了整式的混合运算,能选择适当的方法比较两个数的大小是解此题的关键.11. 解:由题意可得,,,解得:,,将,代入,等式两边成立,故,都是方程的解,当时,,当时,.所以当时,的值为9.故答案为:9.结合题中规定符号的意义,求出,然后根据,求出m的值并代入求解即可.本题考查了整式的混合运算化简求值,解答本题的关键在于结合题中规定符号的意义,求出,然后根据,求出m的值并代入求解.12. 解:原式,故答案为15.先去括号,再整体代入即可.本题考查了整式的混合运算,掌握运算法则是解题的关键.13. 解:原式,故答案为.根据积的乘方、单项式的乘除法进行计算即可.本题考查了整式的混合运算,掌握运算法则是解题的关键.14. 解:,,,故答案为:.先算乘法,再变形,最后整体代入求出即可.本题考查了整式的混合运算的应用,用了整体代入思想,题目比较好,难度适中.15. 解:,,即,,解得,.故答案为:4.根据立方和公式变形,再将已知条件整体代入即可.本题考查了整式的混合运算,化简求值关键是关键是利用立方和公式,完全平方公式将代数式变形,整体代入求值.16. 解:,,原式.故答案为:.原式利用多项式乘以多项式法则计算,把与ab的值代入计算即可求出值.此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键.17. 解:,,.故答案为:25.求出,先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键,用了整体代入思想.18. 解:由;;,观察发现:.证明:等式左边等式右边.故答案为:先根据题中的一系列等式,把5的平方,11的平方以及19的平方变形后,归纳猜想得到所求式子的化简结果,然后进行证明,方法是利用多项式的乘法法则把等式的左边化简,合并后,把平方项的系数拆为,然后利用完全平方公式化简后,即可得到与等式的右边相等.此题考查学生根据已有的等式归纳总结,得出一般性规律的能力,是一道中档题.19. 解:.,,,,,.故答案为:1,3,4.将展开,然后再根据对应项系数相等求解即可.本题考查了整式的混合运算,解答本题的关键在于将展开,然后再根据对应项系数相等求解.20. 解:,,,故答案为1.先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.21. 原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值;原式中括号中利用平方差公式,以及多项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.此题考查了整式的混合运算化简求值,熟练掌握运算法则及公式是解本题的关键.22. 原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把a与b 的值代入计算即可求出值;原式利用多项式乘以单项式,平方差公式化简,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键.23. 原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;原式先计算乘方运算,再利用多项式除以单项式法则计算即可得到结果;原式利用完全平方公式及平方差公式化简,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.24. 原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键.25. 先将题目中的式子化简,然后根据的展开式中不含和项,可以求得m、n的值;先化简题目中的式子,然后将m、n的值代入化简后的式子即可解答本题.本题考查整式的混合运算--化简求值,解题的关键是明确整式化简求值的方法.26. 解:由题意可知:,;.故答案为:;225;;;11375.观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,根据上述规律填空,然后把变为个相乘,即可化简;对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
中考数学专题复习《整式的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算(−x2)3的结果是()A.−x6B.x6C.−x5D.−x82.下列计算正确的是()A.x7÷x=x7B.(−3x2)2=−9x4C.x3•x3=2x6D.(x3)2=x63.下列计算正确的是()A.3x+3y=6xy B.a2•a3=a6C.b6÷b3=b2D.(m2)3=m6 4.下列计算正确的是()A.3a3⋅2a3=6a3B.(−4a3b)2=8a6b2C.(a+b)2=a2+b2D.−2a2+3a2=a25.下列运算正确的是()A.(x−1)(x+1)=x2−x−1B.x2−2x+3=(x−1)2+4C.(x−1)2=x2−2x−1D.(x−1)(−1−x)=1−x26.观察一列单项式:x−3x37x5−15x731x9⋯.则第n个单项式是()A.(−1)n+1(2n−1)x2n−1B.(−1)n(2n−1)x2n+1C.(−1)n+1(2n−1)x2n−1D.(−1)n(2n+1)x2n−17.若k为任意整数则(2k+3)2−4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除8.已知10a=25,100b=40则a+2b的值是()A.1B.2C.3D.49.对于任意自然数n关于代数式(n+7)2﹣(n﹣5)2的值说法错误的是()A.总能被3整除B.总能被4整除C.总能被6整除D.总能被7整除10.若2a-3b=-1 则代数式4a2−12ab+9b2的值为()A.-1B.1C.2D.311.已知关于x的两个多项式A=x2−ax−2B=x2−2x−3.其中a为常数下列说法:①若A−B的值始终与x无关则a=−2②关于x的方程A+B=0始终有两个不相等的实数根③若A ⋅B 的结果不含x 2的项 则a =52④当a =1时 若A B 的值为整数 则x 的整数值只有2个.以上结论正确的个数有( ) A .4B .3C .2D .112.对于若干个单项式 我们先将任意两个单项式作差 再将这些差的绝对值进行求和并化简 这样的运算称为对这若干个单项式作“差绝对值运算”. 例如:对2,3,4作“差绝对值运算” 得到|2−3|+|2−4|+|3−4|=4 则①对1,3,4,7作“差绝对值运算”的结果是19 ②对x 2,x ,−3(x 2>x >−3)进行“差绝对值运算”的结果是38 则x =±4 ③对a ,b ,c (互不相等)进行“差绝对值运算”的结果一共有7种. 以上说法中正确的个数为( ) A .0B .1C .2D .3二 填空题13.已知3x+y=-3 xy=-6 则 xy 3+9x 3y = .14.若实数m 满足(m −2023)2+(2024−m)2=2025 则(m −2023)(2024−m)= .15. 已知 m +n +2m+n =4,则 (m +n )2+(2m+n )2的值为 . 16.小明在化简:(4x 2−6x +7)−(4x 2−□x +2)时发现系数“□”印刷不清楚 老师提示他:“此题的化简结果是常数” 则多项式中的“□”表示的数是 .17.如果一个三位自然数m =abc ̅̅̅̅̅的各数位上的数字互不相等且均不为0 满足a +c =b 那么称这个三位数为“中庸数”.将“中庸数”m =abc ̅̅̅̅̅的百位 个位数字交换位置 得到另一个“中庸数”m ′=cba ̅̅̅̅̅ 记F(m)=m−m ′99,T(m)=m+m ′121.例如:m =792,m ′=297.F(m)=792−29799=5 T(m)=792+297121=9.计算F(583)= 若“中庸数”m 满足2F(m)=s 2,2T(m)=t 2 其中s ,t 为自然数1 2 3…… 则该“中庸数”m 是 .18.一个四位自然数M 若它的千位数字与十位数字的差为3 百位数字与个位数字的差为2 则称M 为“接二连三数” 则最大的“接二连三数”为 已知“接二连三数”M 能被9整除 将其千位数字与百位数字之和记为P 十位数字与个位数字之差记为Q 当PQ 为整数时 满足条件的M 的最小值为 .三 计算题19.计算:(1)x(1−x)(2)(a−1)(2a+3)−2a(a−4)(3)x 2x−1−x−1.20.计算:(1)(−2xy2)2⋅3x2y.(2)(−2a2)(3ab2−5ab3).(3)(3m2n)2⋅(−2m2)3÷(−m2n)2.(4)(a−2b−3c)(a−2b+3c).21.(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1)其中x=−12 ..22.−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)其中x=−2y=12.23.先化简再求值:[(x+2y)2−(x+2y)(x−2y)]÷4y其中x=1y=−1.四解答题24.观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n的等式表示n为正整数)(3)请运用有关知识推理说明这个结论是正确的.25.尝试:①152=225=1×2×100+25.②252=625=2×3×100+25.③352=1225=_▲_...运用:小滨给出了猜想和证明请判断是否正确若有错误请给出正确解答.猜想:(10a+5)2=100a(a+1)+25.证明:(10a+5)2=100a(a+1)+25所以10a2+100a+5=100a2+100a+25.所以10a2=100a2.因为a≠0所以10a2≠100a2.所以等式不成立结论错误.26.已知实数a b满足(2a2+b2+1)(2a2+b2-1)=80 试求2a2+b2的值.解:设2a2+b2=m则原方程可化为(m+1)(m-1)=80 即m2=81 解得:m=±9 ∵2a2+b2≥0 ∴2a2+b2=9 上面的这种方法称为“换元法” 换元法是数学学习中最常用的一种思想方法在结构较复杂的数和式的运算中若把其中某些部分看成一个整体并用新字母代替(即换元)则能使复杂问题简单化.根据以上阅读材料解决下列问题:(1)已知实数x y满足(2x2+2y2-1)(x2+y2)=3 求3x2+3y2-2的值(2)若四个连续正整数的积为120 求这四个正整数.27.阅读下列材料:我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方公式如果一个多项式不是完全平方公式我们常做如下变形:先添加一个适当的项使式子中出现完全平方式再减去这个项使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法可以求代数式的最大值或最小值.例如:求代数式x2+2x-3的最小值.解:x2+2x-3=x2+2x+12-12-3=(x2+2x+12)-4=(x+1)2-4.∵(x+1)2≥0 ∴(x+1)2-4≥-4∴当x=-1时x2+2x-3的最小值为-4.再例如:求代数式-x2+4x-1的最大值.解:-x2+4x-1=-(x2-4x+1)=-(x2-4x+22-22+1)=-[(x2-4x+22)-3]=-(x-2)2+3∵(x-2)2≥0 ∴-(x-2)2≤0 ∴-(x-2)2+3≤3.∴当x=2时-x2+4x-1的最大值为3.(1)【直接应用】代数式x2+4x+3的最小值为(2)【类比应用】若M=a2+b2-2a+4b+2023 试求M的最小值(3)【知识迁移】如图学校打算用长20m的篱笆围一个长方形菜地菜地的一面靠墙(墙足够长)求围成的菜地的最大面积.28.在学习《完全平方公式》时某数学学习小组发现:已知a+b=5 ab=3 可以在不求a b的值的情况下求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.(1)若a+b=7 ab=6 则a2+b2=(2)若m满足(8-m)(m-3)=3 求(8-m)2+(m-3)2的值同样可以应用上述方法解决问题.具体操作如下:解:设8-m=a 8-m=a m-3=b则a+b=(8-m)+(m-3)=5 a+b=(8-m)+(m-3)=5 ab=(8-m)(m-3)=3所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.请参照上述方法解决下列问题:若(3x-2)(10-3x)=6 求(3x-2)2+(10-3x)2的值29.利用完全平方公式a2+2ab+b2=(a+b)2和a2−2ab+b=2(a−b)2的特点可以解决很多数学问题.下面给出两个例子:例1分解因式:x2+2x−3x2+2x−3=x2+2x+1−4=(x+1)2−4=(x+1+2)(x+1−2)=(x+3)(x−1)例2求代数式2x2−4x−6的最小值:2x2−4x−6=2(x2−2x)−6=2(x2−2x+1−1)−6=2[(x−1)2−1]−6=2(x−1)2−8又∵2(x−1)2≥0∴当x=1时代数式2x2−4x−6有最小值最小值是−8.仔细阅读上面例题模仿解决下列问题:(1)分解因式:m2−8m+12(2)代数式−x2+4x−2有最(大小)值当x=时最值是(3)当x y为何值时多项式2x2+y2−8x+6y+25有最小值?并求出这个最小值.30.发现:一个两位数的平方与其个位数字的平方的差一定是20的倍数.如:132−32=160160是20的8倍262−62=640640是20的32倍.(1)请你仿照上面的例子再举出一个例子:(⋅⋅⋅⋅)2−(⋅⋅⋅⋅⋅)2=(⋅⋅⋅⋅⋅)(2)十位数字为1 个位数字为a的两位数可表示为若该两位数的平方与a的平方的差是20的5倍则a=(3)设一个两位数的十位数字为m个位数字为n(0<m<100≤n<10且m n为正整数)请用含m n的式子论证“发现”的结论是否符合题意.31.灵活运用完全平方公式(a±b)2=a2±2ab+b2可以解决许多数学问题.例如:已知a−b=3,ab=1求a2+b2的值.解:∵a−b=3,ab=1∴(a−b)2=9,2ab=2,∴a2−2ab+b2=9∴a2−2+b2=9,∴a2+b2=9+2=11.请根据以上材料解答下列问题.(1)若a2+b2与2ab−4互为相反数求a+b的值.(2)如图矩形的长为a 宽为b 周长为14 面积为8 求a2+b2的值.32.定义:对于一个三位正整数如果十位数字恰好等于百位数字与个位数字之和的一半我们称这个三位正整数为“半和数”.例如三位正整数234 因为3=12×(2+4)所以234是“半和数”.(1)判断147是否为“半和数” 并说明理由(2)小林列举了几个“半和数”:111 123 234 840… 并且她发现:111÷3=37123÷3=41 234÷3=78840÷3=280… 所以她猜测任意一个“半和数”都能被3整除.小林的猜想正确吗?若正确请你帮小林说明该猜想的正确性若错误说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】D10.【答案】B11.【答案】B12.【答案】B13.【答案】-27014.【答案】−101215.【答案】1216.【答案】617.【答案】2 121或484或58318.【答案】9967 885619.【答案】(1)解:x(1−x)=x−x2(2)解:(a−1)(2a+3)−2a(a−4)=2a2+3a−2a−3−2a2+8a=9a−3(3)解:x 2x−1−x−1=x2x−1−(x+1)=x2−(x+1)(x−1)x−1=x2−x2+1x−1=1x−1.20.【答案】(1)解:(−2xy2)2⋅3x2y=4x2y4⋅3x2y=12x4y5(2)解:(−2a2)(3ab2−5ab3)=−6a3b2+10a3b3(3)解:(3m2n)2⋅(−2m2)3÷(−m2n)2=9m4n2⋅(−8m6)÷m4n2=−72m10n2÷m4n2=−72m6(4)解:(a−2b−3c)(a−2b+3c)=[(a−2b)−3c][(a−2b)+3c]=(a−2b)2−9c2=a2−4ab+4b2−9c2.21.【答案】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3当x=−1 2时∴原式=(−12)2+3=31 4.22.【答案】解:−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)=−12xy+12x2+3y2−32x2+12xy−y2=−x2+2y2当x=−2y=1 2时原式=−(−2)2+2×(12)2=−4+2×1 4=−4+1 2=−72.23.【答案】解:化简方法一:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x+2y)(x+2y−x+2y)]÷4y=[(x+2y)·4y]÷4y=x+2y化简方法二:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x2+4xy+4y2)−(x2−4y2)]÷4y=(x2+4xy+4y2−x2+4y2)÷4y=(4xy+8y2)÷4y=4xy÷4y+8y2÷4y=x+2y当x=1y=−1时原式=1+2×(−1)=−1.24.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。
整式运算习题及答案整式运算习题及答案整式运算是数学中的基础知识,它涉及到多项式的加减乘除等运算。
掌握整式运算的方法和技巧对于解决数学问题和应用数学知识都具有重要意义。
本文将通过一些习题和答案的形式,来讲解整式运算的相关知识。
一、多项式的加法和减法1. 将多项式 3x^2 + 2x - 5 和 5x^2 - 3x + 7 相加。
解:按照相同幂次的项进行合并,得到 8x^2 - x + 2。
2. 将多项式 4x^3 - 2x^2 + 3x + 1 和 2x^3 + 5x^2 - 4x + 6 相减。
解:按照相同幂次的项进行合并,得到 2x^3 - 7x^2 + 7x - 5。
二、多项式的乘法3. 计算多项式 (3x + 2)(4x - 5)。
解:使用分配律展开,得到 12x^2 - 7x - 10。
4. 计算多项式 (2x^2 - 3x + 4)(x^2 + 2x - 1)。
解:使用分配律展开,得到 2x^4 + x^3 - 5x^2 + 11x - 4。
三、多项式的除法5. 计算多项式 (6x^3 + 2x^2 - 4x + 3) ÷ (2x - 1)。
解:使用长除法的方法,得到商为 3x^2 + 4x + 2,余数为 5。
6. 计算多项式 (4x^4 - 3x^3 + 2x^2 + 5x - 1) ÷ (x^2 + 2)。
解:使用长除法的方法,得到商为 4x^2 - 11x + 24,余数为 -49x + 47。
四、多项式的因式分解7. 将多项式 2x^3 - 3x^2 + 2x - 1 进行因式分解。
解:通过观察可以发现,该多项式可以因式分解为 (2x - 1)(x^2 - x + 1)。
8. 将多项式 x^4 - 2x^3 + x^2 - 2x + 1 进行因式分解。
解:通过观察可以发现,该多项式可以因式分解为 (x - 1)^2(x^2 + 1)。
五、多项式的求值9. 计算多项式 3x^2 - 2x + 5 在 x = 2 时的值。
整式的运算练习题(共10篇)整式的运算练习题(一): 30道整式的运算练习题快,我很急,最好到答案(x2+ax+b)(x2-3x+4)=x^4-3x^3+4x^2+ax^3-3ax^2+4ax+bx^2-3bx+4b=x^4-(3-a)x^3+(4-3a+b)x^2+(4a-3b)+4b3-a=0 => a=34-3a+b=04-3*3+b=0b=5设任取0-9中3个数X,Y,Z.6个两位数分别是:10X+Y,10Y+X,10X+Z,10Z+X,10Y+Z,10Z+Y. 6个数相加,和是22X+22Y+22Z=22(X+Y+Z).再除以(X+Y+Z)等于22.所以不管X,Y,Z如何,最终结果都是22.1)(x-y)(x+3) (2)(3)(5a2+8a)+(3a2-7a+5) (4)(-3)5 (-3)2 3(5) (6)x2y2 (-x2y)(7)(2a+3b)(a-b) (8)(5a3-2a+a2)÷(-2a)a的平方*b^3ab+5*a的平方*[email protected]=a^2*(b+3ab)+5a^2*(b-4ab)=a^2b+3a^3b+5a^2b-20a^3b=6a^2b-17a^3b=6*(5^2)*3-17*(5^3)*3=5895(2x^2)^3-6x^3(x^3+2x^2+x)=(8x^6)-(6x^6+12x^5+6x^4)=8x^6-6x^6-12x^5-6x^4=2x^6-12x^5-6x^42(x+y+z)(x+y-z)=(x+y)^2 - z^2=x^2 + y^2 -2xy -z^23[(x+y)^2-(x-y)^2]÷(2xy)=[x^2 + 2xy + y^2 -(x^2 - 2xy + y^2)]/(2xy)=[x^2 + 2xy + y^2 - x^2 + 2xy - y^2)]/(2xy)=(4xy)/(2xy)=24a^2 (a+1)^2-2(a^2-2a+4)=a^2[a^2 + 2a +1]-(2a^2-4a+8)=a^4 + 2a^3 + a^2 - 2a^2 + 4a -8=a^4 + 2a^3 - a^2 + 4a - 8【整式的运算练习题】整式的运算练习题(二): 整式的运算练习题 90道快,我只找到这些,不知道你是要找小学的还是初中的:一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(9)(-17/4)+(-10/3)+(+13/3)+(11/3)(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(11)(+1.3)-(+17/7)(12)(-2)-(+2/3)(13)|(-7.2)-(-6.3)+(1.1)|(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(15)(-2/199)*(-7/6-3/2+8/3)(16)4a)*(-3b)*(5c)*1/6还有50道题,不过没有答案1.3/7 × 49/9 - 4/32.8/9 × 15/36 + 1/273.12× 5/6 –2/9 ×34.8× 5/4 + 1/45.6÷ 3/8 –3/8 ÷66.4/7 × 5/9 + 3/7 × 5/97.5/2 -( 3/2 + 4/5 )8.7/8 + ( 1/8 + 1/9 )9.9 × 5/6 + 5/610.3/4 × 8/9 - 1/30.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.411.7 × 5/49 + 3/1412.6 ×( 1/2 + 2/3 )13.8 × 4/5 + 8 × 11/514.31 × 5/6 – 5/615.9/7 - ( 2/7 – 10/21 )16.5/9 × 18 –14 × 2/717.4/5 × 25/16 + 2/3 × 3/418.14 × 8/7 –5/6 × 12/1519.17/32 –3/4 × 9/2420.3 × 2/9 + 1/321.5/7 × 3/25 + 3/722.3/14 ×× 2/3 + 1/623.1/5 × 2/3 + 5/624.9/22 + 1/11 ÷ 1/225.5/3 × 11/5 + 4/326.45 × 2/3 + 1/3 × 1527.7/19 + 12/19 × 5/628.1/4 + 3/4 ÷ 2/329.8/7 × 21/16 + 1/230.101 × 1/5 –1/5 × 2131.50+160÷40 (58+370)÷(64-45)32.120-144÷18+3533.347+45×2-4160÷5234(58+37)÷(64-9×5)35.95÷(64-45)36.178-145÷5×6+42 420+580-64×21÷2837.812-700÷(9+31×11)(136+64)×(65-345÷23)38.85+14×(14+208÷26)39.(284+16)×(512-8208÷18)40.120-36×4÷18+3541.(58+37)÷(64-9×5)42.(6.8-6.8×0.55)÷8.543.0.12× 4.8÷0.12×4.844.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.645.6-1.6÷4= 5.38+7.85-5.37=46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.948.10.15-10.75×0.4-5.749.5.8×(3.87-0.13)+4.2×3.7450.32.52-(6+9.728÷3.2)×2.551.-5+58+13+90+78-(-56)+5052.-7*2-57/(353.(-7)*2/(1/3)+79/(3+6/4)54.123+456+789+98/(-4)55.369/33-(-54-31/15.5)56.39+{3x[42/2x(3x8)]}57.9x8x7/5x(4+6)58.11x22/(4+12/2)59.94+(-60)/10整式的运算练习题(三): 整式的运算练习题1.化简:3(a+5b)-2(b-a).2.有这样一道题:“计算(2x^3-3x^2y-2xy^2)-(x3-2xy^2+y^3)+(-x3+3x^2y-y^3)的值,其中x=1/2,y=-1”.甲同学把“x=1/2”错抄成“x=-1/2”,但他计算的结果也是正确的,试说明理由,并求出这个结果.整式的运算练习题(四): 初一整式加减计算题25道3ab-4ab+8ab-7ab+ab=______.4.7x-(5x-5y)-y=______.5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.6.-7x2+6x+13x2-4x-5x2=______.7.2y+(-2y+5)-(3y+2)=______.11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.12.2a-(3a-2b+2)+(3a-4b-1)=______.13.-6x2-7x2+15x2-2x2=______.14.2x-(x+3y)-(-x-y)-(x-y)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).31.3a-(2a-3b)+3(a-2b)-b=______.32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______. 38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.46.3a-(2a-4b-6c)+3(-2c+2b)=______.48.9a2+[7a2-2a-(-a2+3a)]=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______..(4x2-8x+5)-(x3+3x2-6x+2).72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2). 73.-{2a2b-[3abc-(4ab2-a2b)]}.74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).83.3x-(2x-4y-6x)+3(-2z+2y).84.(-x2+4+3x4-x3)-(x2+2x-x4-5).85.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.86.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).87.2m-{-3n+[-4m-(3m-n)]}.88.5m2n+(-2m2n)+2mn2-(+m2n).89.4(x-y+z)-2(x+y-z)-3(-x-y-z).90.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).92.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).93.2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.94:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.95:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).96:a3-(a2-a)+(a2-a+1)-(1-a4+a3).97.4x-2(x-3)-3[x-3(4-2x)+8].整式的运算练习题(五): 100道整式练习题50个加减50个乘除的...六年级数学期末试卷一、填空.第1题2分,其余每题1分,共22%1、2—公顷=_____公顷____平方米 2—小时=_____小时_____分2、120千克的—是_____千克 72公顷比_____公顷少—3、30:()=——=()÷—=1—=()%4、在()里填“>、<或=”1—÷—()1— 1—÷—()1—÷—1—()1—×— 2—:—()2—×1—5、某班男生25人,女生20人,男生比女生多——,男生比女生多占全班人数的——.6、一个圆的半径2厘米,这个圆的周长_____厘米,面积_____平方厘米.7、一件工程,甲队单独做要20天完成,乙队单独做要30天完成,甲乙两队的工作效率之比是_____.8、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨.9、在推导圆面积计算公式时,将一个圆平均分成16等份,拼成一个近似的长方形;量得长方形宽3厘米,这个长方形长_____厘米,这个圆的面积_____平方厘米.10、在边长4厘米圆内,剪一个最大的正方形,这个正方形的面积_____平方厘米.11、一个比,如果将前项增加30%,后项必须加上3,比值才能不变.这个比的后项是_____.二、判断.5%1、甲数除以乙数等于甲数乘乙数的倒数.()2、男生比女生多25%,也就是女生比男生少25%.()3、周长相等的圆和正方形,面积相比,圆的面积大.()4、圆内最长的线段是直径.()5、某工人生产102个零件,经检验有100个合格,合格率为100%.()三、选择.4%1、甲、乙两件商品,甲比乙贵—,下列说法正确的是()A、乙比甲便宜—B、甲比乙贵的相当于甲的—C、乙比甲便宜的相当于乙的—D、乙比甲便宜的相当于甲的—2、一根绳长—米,剪去它的—,还剩这根绳的()A、—B、—米C、—D、—3、一种商品先涨价—,再降价10%,现价与原价相比()A、贵B、便宜C、一样D、无法确定4、一个半圆的周长10.28厘米,这个半圆的直径()厘米A、2B、4C、6D、8四、计算.34%1、直接写得数.4%—×3.2= —-0.6= 4.8÷1—= 0.8÷—=8.5×—= —+0.5= 0.28÷0.21= —+5÷7=2、用简便方法计算.8%5—-5.3+4—-2.7 3—÷—+5—×1—4.7×—-0.125+12.5%×6.3 79—×—3、解方程.4%2X-—=0.54 8X=17.6-—X4、用递等式计算.(每题3分,计9分)8—+5.6×1— 1.5×—+2.1÷—(4-3.5×—)÷1—5、列综合算式(或方程)解答.(每题3分,计6分)(1)25个—相加的和比什么数(2)2—减去什么数的40%,多4—正好等于2—的一半6、已知下图三角形面积25平方厘米,求圆的面积.3%五、应用题.35%1、一套西服原价480元,因季节调价,降价—出售,现在这套西服卖多少元2、修路队修一条公路,已修了240米,比剩下的少—,这条公路还剩多少米未修3、一项工程,甲队单独修要20天完成,乙队单独修要30天完成;乙队先修几天后,甲队再用8天就能正好修完4、红星小学,五、六年级共有785名学生,其中五年级学生数相当于六年级的—,红星小学六年级有多少名学生5、甲、乙两桶汽油同样多,从甲桶倒—到乙桶,这时乙桶有汽油30.4千克,甲桶原有汽油多少千克6、快、慢两车同时从相距480千米的两地相向而行,3小时后还相距全程的—,照这样的速度,两车还要经过几小时才能相遇7、某工地想用甲乙两辆汽车一次将一堆货物运走,而甲乙两车的运载总量为9.18吨;如甲车多装—或乙车多装—就能一次全部运走,甲车的运栽量是多少吨小学数学六年级期末试卷【打印】【时间:2023-5-23】【关闭】小学数学六年级期末试卷(A卷)一、填空.(6,10题每空2分,其余每空1分,共18分)1、一百零五万八千写作(),改写成以万为单位的数是()万.2、20.08千米=()千米()米3、3时45分写成分数是()时,写成小数是()时.4、的分数单位是(),有()个这样的分数单位.5、把340分解质因数应写成340=().6、10以内所有质数的平均数是().7、7==()%8、8.4:的比值是().9、()米的与6米的相等.10、一个圆柱的高等于底面半径的4倍,这个圆柱的侧面展开图的周长是61.68厘米,这个圆柱体底面半径是().(π取3.14).二、判断题.对的画“√”,错的画“×”.(4分)1、一个自然数没有比它本身再大的约数.()2、97是100以内最大的质数.()3、在一个乘法算式里,乘数是,积与被乘数的比是4:5.()4、任何一个圆柱体的体积都比圆锥体多2倍.()三、选择题.把表示正确答案的字母填在()里.(4分)1、一桶油5千克,先用去全部的,再用去千克,一共用去().A、千克B、千克C、4千克2、用4个体积是1立方分米的正方体木块拼成一个长方体,这个长方体的表面积可能是().A、16平方分米B、18平方分米C、24平方分米四、用简便方法计算(写出简算过程)(6分)1、2、1.25×25×0.4×8五、脱式计算.(20分)1、205×32-6562、2975÷125+26×3.53、4、(2-1.25×)×(5、六、求下面图形中空白部分的面积.(5分)七、列式计算.(8分)1、560的40%比它的多多少2、一个数的15%比12.8多,求这个数.(用方程解)八、应用题.(35分)1、机床厂第一季度生产机床570台,比计划多生产90台,超额完成计划的百分之几2、一项工程,甲队独干3天完成总工程的,照这样计算,完成全部工程的,需要多少天3、A、B两地相距32千米,甲、乙分别从A、B两地同时出发,相向而行,乙和甲的速度之比是 3:5,相遇时,甲行了多少千米4、一个梯形的面积是12平方分米,上底和高都是2.4分米,下底长多少分米(用方程解)5、原来做一套校服需要78元,现在每套提价12元,原来60套校服的钱现在可以做多少套6、张老师借来一本书,第一天看了全书的30%,第二天看的比全书的少14页,两天共看了70页,这本书一共多少页7、一个圆柱形玻璃缸,底面半径2分米,里面盛有1.5分米深的水,将一块不规则的铁放入这缸水中,水面上升0.5分米,这块铁的体积是多少小学数学六年级期末试卷(B卷)一、填空.(每空1分,共19分)1、100个亿,5个千万,4个十万组成的数写作(),用四舍五入法省略“亿”后面的尾数是().2、升=()升()毫升3.45时=()时()分3、先把8.05扩大10倍,再把小数点向左移动两位,得()4、在9、10和18三个数中,()能被()整除,()和()互质.5、18和21的最大公约数是(),最小公倍数是().6、a和b都是自然数,如果>,那么,a和b相比,()大.7、如果把甲数的给乙数,这时甲、乙两个数恰好相等,原来乙数与甲数的最简整数比是().8、六(1)班男生人数是女生人数的125%,男生人数是全班人数的,女生人数比是男生人数少()%.9、把一个棱长4分米的正方体木块削成一个最大的圆柱体,圆柱体的体积是().10、把一块长80米、宽60米的长方形菜地画在比例尺是1:2023的图纸上,图上面积是().二、判断题.对的画“√”,错的画“×”.(4分)1、能被2整除的数一定不能被3整除.()2、把12.5米:千米化成最简单的整数比是1:10()3、一个长方体的棱长和是24厘米,这个长方体的体积一定是6立方厘米.()4、甲数的等于乙数的,甲数比乙数多60%.三、选择题.把正确答案的序号填在()里.(4分)1、已知把3米长的线段平均分成4份,可以得出()①每份是3米的②每份是米③每份是3米的④每份是1米的2、根据甲数除以乙数商是4,可以确定().①甲数一定能被乙数整除②乙数一定能被甲数除尽③甲数与乙数的比是4:1④甲数是甲乙两数的最小公倍数四、用简便方法计算(写出简单过程)(6分)五、脱式计算.(20分)1、98×102-69992、0.4÷2.5+0.07×50六、下图中的排水管,外直径30厘米,管壁厚3厘米,管长4米,求排水管的体积.(4分)七、列式计算.(8分)1、13.6减去9.4的差,除以,商是多少2、3.1比一个数的少1.6,这个数是多少(用方程解)八、应用题.(35分)1、李明把500元存入银行,一年后取回本息537.35元,求年利率.2、果园里的苹果树比梨树多160棵,梨树比苹果树少.果园里有苹果树多少棵3、一辆汽车从东城开往西城,前3小时每小时行41千米,后4小时共行220千米,这辆汽车平均每小时行多少千米4、建筑队用480块方砖可以铺地15平方米,照这样计算,学校的电化教室地面是120平方米,需要购买多少块方砖(用比例方法解)5、用铁皮焊一只底面边长都是25厘米,高40厘米的长方体无盖水桶,至少需要铁皮多少平方厘米(1)求三个植树队共有多少人.把数据填入表内.(2)求三个队平均每人植树多少棵.把得数填入表内.7、上学期红光小学六年级共有学生180人,这学期男生人数增加了16%,女生人数减少6人,这学期全年级共有学生186人,上学期六年级有男生有多少人整式的运算练习题(六): 求初一计算题,整式练习及答案得数就行.计算题要四个数的,整式要四项.2x+17=353x-64=1112+8x=520.8x-4.2=2.22x+5=103x-15=754x+4o=3203x+77=1225x-1.6=0.66x-4=2010x-0.6=2.4500-12x=1401) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2023答案:x=59 y=48(8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95(9) 97x+24y=7202 58x-y=2900答案:x=50 y=98(10) 42x+85y=6362 63x-y=1638答案:x=26 y=62(11) 85x-92y=-2518 27x-y=486答案:x=18 y=44(12) 79x+40y=2419 56x-y=1176答案:x=21 y=19(13) 80x-87y=2156 22x-y=880答案:x=40 y=12(14) 32x+62y=5134 57x+y=2850答案:x=50 y=57(15) 83x-49y=8259x+y=2183答案:x=37 y=61(16) 91x+70y=5845 95x-y=4275答案:x=45 y=25(17) 29x+44y=5281 88x-y=3608答案:x=41 y=93(18) 25x-95y=-4355 40x-y=2023答案:x=50 y=59(19) 54x+68y=3284 78x+y=1404答案:x=18 y=34(20) 70x+13y=3520 52x+y=2132答案:x=41 y=50(21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99(22) 36x+77y=7619 47x-y=799答案:x=17 y=91(23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78(24) 28x+28y=3332 52x-y=4628答案:x=89 y=30(25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54(26) 79x-76y=-4388 26x-y=832答案:x=32 y=91(27) 63x-40y=-821 42x-y=546答案:x=13 y=41(28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78(29) 85x+67y=7338 11x+y=308答案:x=28 y=74(30) 78x+74y=12928 14x+y=1218答案:x=87 y=83(31) 39x+42y=5331 59x-y=5841答案:x=99 y=35(32) 29x+18y=1916 58x+y=2320答案:x=40 y=42(33) 40x+31y=604345x-y=3555答案:x=79 y=93(34) 47x+50y=8598 45x+y=3780答案:x=84 y=93(35) 45x-30y=-1455 29x-y=725答案:x=25 y=86(36) 11x-43y=-1361 47x+y=799答案:x=17 y=36(37) 33x+59y=3254 94x+y=1034答案:x=11 y=49(38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41(40) 28x-62y=-4934 46x+y=552答案:x=12 y=85(41) 75x+43y=8472 17x-y=1394答案:x=82 y=54(42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 3X+18=52 x=34/3 4Y+11=22 y=11/4 3X*9=5 x=5/278Z/6=48 z=363X+7=59 x=52/34Y-69=81 y=75/4 8X*6=5 x=5/487Z/9=4 y=63/715X+8-5X=54 x=4.6 5Y*5=27 y=27/40 8x+2=10 x=1x*8=88 x=11y-90=1 y=912x-98=2 x=506x*6=12 x=1/35-6=5x x=-1/56*x=42 x=755-y=33 y=2211*3x=60 x=20/11 8-y=2 y=-61.x+2=32.x+32=333.x+6=184.4+x=475.19-x=86.98-x=137.66-x=108.5x=109.3x=2710.7x=711.8x=812.9x=913.10x=10014.66x=66015.7x=4916.2x=417.3x=918.4x=1619.5x=2520.6x=3621.8x=6422.9x=8123.10x=10024.11x=12125.12x=14426.13x=16927.14x=19628.15x=22529.16x=25630.17x=28931.18x=32432.19x=36133.20x=40031.21x=44132.22x=48433.111x=1232134.1111x=123432135.11111x=12345432136.111111x=1234565432137.46/x=2338.64/x=839.99/x=1140.1235467564x=041.2x+1= -2+x42.4x-3(20-x)=343..-2(x-1)=444.3X+189=52145.4Y+119=22 546.3X+77=5947.4Y-6985=8148.X=0.149.5X=55.550.Y=50-85(-8)-(-1) =-745+(-30) =15-1.5-(-11.5) =10-0.25-(-0.5) =0.2515-【1-(-20-4)】 =-10-40-28-(-19)+(-24) =-7322.54+(-4.4)+(-12.54)+4.4 =10(2/3{三分只二“/”是分数线}-1/2)-(1/3-5/6)=2/3 2.4-(-3/5)+(-3.1)+4/5 =0.7(-6/13)+(-7/13)-(-2) =13/4-(-11/6)+(-7/3) =1/411+(-22)-3×(-11) =22(-0.1)÷0.5×(-100) =20(-2)的3次方-9 =-1723÷[-9-(-4)] =-23/5(3/4-7/8)÷(-7/8) =1/7(-60)×(3/4+5/6)=-95给我分吧整式的运算练习题(七): 急求300道初一整式运算题目(最好带答案)看清楚,是正是运算题带xy的那种,不要带有中文,在一小时之内出完的, 从发布问题至今,已超过2小时无追加100和50只能追加20至30(看时间而定)于09年7月31日11:58 公告答案一、填空题(每小题2分,共16分)1、多项式-abx2+ x3- ab+3中,第一项的系数是 ,次数是 .2、计算:①100×103×104 =;②-2a3b4÷12a3b2 = .3、(8xy2-6x2y)÷(-2x)=4、一个正方体的棱长为2×102毫米,则它的体积是毫米3.5、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )] .6、(-3x-4y) ·( ) = 9x2-16y2.7、已知正方形的边长为a,如果它的边长增加4,那么它的面积增加 .8、如果x+y=6,xy=7,那么x2+y2= ,(x-y)2= .三、计算题(每小题5分,共30分)15、2(x3)2·x3-(2 x3)3+(-5x)2·x716、(-2a3b2c) 3÷(4a2b3)2-a4c·(-2ac2)17、-2a2( ab+b2)-5a(a2b-ab2)18、(3x3-2)(x+4)-(x2-3)(3x-5)19、9(x+2)(x-2)-(3x-2)220、[(x+y)2-(x-y2)+4xy] ÷(-2x)四、先化简,再求值(每小题7分,共14分)21、(3a-7)(3a+7)-2a( -1) ,其中a=-322、[(3x- y 2)+3y(x-)] ÷[(2x+y)2-4y(x+ y)] ,其中x=-7.8,y=8 检举回答人的补充 2023-08-17 09:12 (1).(x-1)-(2x+1)=-x-2(2).3(x-2)+2(1-2x)=-x-4(3).3(2b-3a)+3(2a-3b)=-3a-3b(4).(3x^2-xy-2y^2)-2(X^2+xy-2y^2)=(3x-y)(x+2y)-(x+2y)(x-y)=3y(x+2y)(5)7a^b-(-4a^b+5ab^2)-2(2a^2b-3ab^2)=7a^b+4a^b-5ab^-4a^b+6ab^=-a^b+ab^=ab(b-a)100×103×104 =;②-2a3b4÷12a3b2 =、(8xy2-6x2y)÷(-2x)=、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )]、(-3x-4y) ·( ) = 9x2-16y2.、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )]2(x3)2·x3-(2 x3)3+(-5x)2·x71.(2a+3b)*(2a-b)2.(2x+y-1)的平方解1.(2a+3b)*(2a-b) 用十字相乘法吧2 2 =4a2-3b2+4ab3 -12.(2x+y-1)的平方 =4x2+y2+4xy +1-4x-2y(3) 2(ab-3)(4)-3(ab2c+2bc-c) (5)(―2a3b) (―6ab6c) (6)(2xy2) 3yx(1)2ab(5ab2+3a2b)(2)三、巩固练习:1、判断题:(1) 3a3·5a3=15a3 ()(2) ( )(3) ( )(3) -x2(2y2-xy)=-2xy2-x3y ( )2、计算题:(3) (4) -3x(-y-xyz)(5) 3x2(-y-xy2+x2) (6) 2ab(a2b- c)(7) (a+b2+c3)·(-2a) (8) [-(a2)3+(ab)2+3]·(ab3)检举回答人的补充 2023-08-17 09:13 脱式计算:(15.6+9.744/2.4)*0.52.881/0.43-3.5*0.2413.5*0.68/8.543.6-7.6*4.1(86.9+667.6)/50.3(73.5+80.5)/(10+12)(7.8*15+5.1*10+6*5)/(15+10+5)12.53-1.35*2-9.30.8*(4-3.75)/0.16-1.3*(10-7.3)3/7 × 49/9 - 4/38/9 × 15/36 + 1/2712× 5/6 –2/9 ×38× 5/4 + 1/46÷ 3/8 –3/8 ÷64/7 × 5/9 + 3/7 × 5/95/2 -( 3/2 + 4/5 )7/8 + ( 1/8 + 1/9 )9 × 5/6 + 5/63/4 × 8/9 - 1/37 × 5/49 + 3/146 ×( 1/2 + 2/3 )8 × 4/5 + 8 × 11/531 × 5/6 – 5/69/7 - ( 2/7 – 10/21 )5/9 × 18 –14 × 2/74/5 × 25/16 + 2/3 × 3/414 × 8/7 –5/6 × 12/15 17/32 –3/4 × 9/24 3 × 2/9 + 1/35/7 × 3/25 + 3/7.3/14 ×× 2/3 + 1/61/5 × 2/3 + 5/69/22 + 1/11 ÷ 1/25/3 × 11/5 + 4/345 × 2/3 + 1/3 × 157/19 + 12/19 × 5/61/4 + 3/4 ÷ 2/38/7 × 21/16 + 1/23/7 × 49/9 - 4/32.8/9 × 15/36 + 1/273.12× 5/6 –2/9 ×34.8× 5/4 + 1/45.6÷ 3/8 –3/8 ÷66.4/7 × 5/9 + 3/7 × 5/97.5/2 -( 3/2 + 4/5 )8.7/8 + ( 1/8 + 1/9 )9.9 × 5/6 + 5/610.3/4 × 8/9 - 1/311.7 × 5/49 + 3/1412.6 ×( 1/2 + 2/3 )13.8 × 4/5 + 8 × 11/514.31 × 5/6 – 5/615.9/7 - ( 2/7 – 10/21 )16.5/9 × 18 –14 × 2/717.4/5 × 25/16 + 2/3 × 3/418.14 × 8/7 –5/6 × 12/1519.17/32 –3/4 × 9/2420.3 × 2/9 + 1/3整式的运算练习题(八): 求15道初一上学期整式计算求值的题,.2X―[6-2(X-2)] 其中 X=-22.(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-23.(2m2n+2mn2)-[2(m2n-1)+2mn2+2],其中m=-2,n=24.(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-25、(2m2n+2mn2)-[2(m2n-1)+2mn2+2],其中m=-2,n=26.3(ab+bc)-3(ab-ac)-4ac-3bc 其中:a=2023/2023,b=1/3,c=1 7.(3xy+10y)+[5x-(2xy+2y-3x)]其中xy=2,x+y=38.已知a=-2,b=-1,c=3,求代数式5abc-2a2b+[3abc-(4ab2-a2b)]的值.9. 2 ( a2b + ab2)- [ 2ab2 - (1- a2b) ] - 2,其中a= -2,b=0.510.(-3x2-4y)-(2x2-5y+6)+(x2-5y-1) 其中 x=-3 ,y=-1【整式的运算练习题】整式的运算练习题(九): 整式的加减附加题1.填空::1.X与-20‰X的和是()2.(2X-3Y )与(X-Y)的2倍的差是()二.一个长方形的宽为A,长比宽大1 ,那么这个长方行的周长为()三.先化简,在求值(2)5(3A二的平方B-AB的平方)-(AB的平方+3A的平方B),其中A=2分之一,B=-1.四.已知一个三角形的周长为3A+2B,其中第一条边长为A+B,第二条边长比第一条边长小1 ,求第三边的长.综合运用五.列式比Y的2分之一大5的数与比Y的2倍小6的数,并计算这两个数的和6:已知A=X3的立方+3Y的立方-XY平方,B=-Y的立方+X的立方+2XY的平方,其中X=3分之一,Y=2,求A-B的值7:已知:(m-2)a的2次方b|m+1|的次方是关于a,b的五次单项式,求下列代数式的值,并比较(1)(2)两题结果:1m的2次方-2m+1. (2)(m-1)的2次方1.字母能表示什么初一数学习题精选一、填空题1.一打铅笔12支, 打铅笔______支;2.小明上学走的路程是 ,所用的时间是 ,则小明上学行走的速度是______;3.一种本的单价是元,问个本需要______元.二、解答题1.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.2.如图所示一个边长为1的正方形的分割方法,当分割n次时其中最小的四边形的面积是多少.参考答案:一、1. 2. 3.二、1.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是 .2.(提示:当分割一、二、三…次所得的最小四边形的面积依次是 ,分 2.代数式习题精选一、选择题1.下面选项中符合代数式书写要求的是()A B C D2.火车速度是千米/小时,则分钟可行驶()A 千米B 千米C 千米D 千米3.用代数式表示“ 与的差的2倍”正确的是()A B C 2 D4.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为()A 元B 元C 元D 元二、填空题1.如果圆锥体的底面半径为 ,高为 ,则圆锥体的体积是_______;2.一个长方体的长、宽、高分别是、、 ,则这个长方体的表面积是_______;3.一所小学,女教师人数占教师总人数的90%,男教师人数是 ,这所学校教师的总数是_______;4.代数式的项是_______和_______,它们的系数分别是_______和_______.5.在下边的日历中,任意圈出一竖列上相邻的三个数,设中间一个数为a,则这三个数之和为_______.(用含a的代数式表示)6.观察下列各式:请你将猜想到的规律用自然数表示出来_______.7.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降低20%,现售价为n元,那么该电脑的原售价为_______元.8.如图,观察下列各正方形图案,每条边上有个圆点,每个图案圆点的总数是S,按此规律推断S与n的关系式是_______.三、解答题1.一种蔬菜x千克,不加工直接出售每千克可卖y元,如果经过加工重量减少了20%,价格增加了40%,问x千克这种蔬菜加工后可卖多少钱;如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱比加工前多卖多少钱2.举出三个实际问题,其中的数量关系可以用a、b来表示.3.如图,用a来表示阴影部分的面积.4.2.写出一个只含字母x的代数式.要求:(1)要使此代数式有意义;(2)字母x的取值范围为全体实数;(3)此代数式的值恒为正数.参考答案:一、1.C 提示:看课本第92页“注意”.2.D 提示:分钟即小时,时间速度=路程,即.3.C 提示:注意运算顺序.4.D 提示:原价现售价.二、1. 2. 3.(提示:女教师占教师总数的90%,则男教师应占教师总数的10%).4..5.提示:多做几次试验,即可得到答案.6.提示:纵向观察各列数的特点.7.提示:先表示第一次降价后的.8.有不同思路,比如可把组成正方形的点看做是如答图所示的4部分,答案为或者三、1.1.12xy元,1680元,180元2.(1)a、b分别表示长方形的长和宽,则长方形的面积是(2)如果a表示某种物品的单价、b表示某种物品的数量,则这种物品的总价可表示为 ,(3)a表示汽车行驶的速度,b表示汽车行驶的时间,则可表示汽车行驶的路程.3.(提示:如答图,其中阴影面积的一半,等于以a为半径的四分之一的圆的面积减去以a为两直角边的直角三角形的面积)4.答案不确定,如3.代数式求值习题精选一、选择题1.下列代数式:的值,肯定为正数的有()A.1个 B.2个 C.3个 D.以上答案都不对2.下表表示每给x的一个值,某个代数式的相应的值.满足表中所列所有条件的代数式是()0 1 2 3代数式的值 2 -1 -4 -7A. B. C. D.3.当时,代数式的值是()A.13 B. C. D.4.根据如图所示的计算程序计算代数式的值.若输入的x值为 ,则输出的结果为()A. B. C. D.二、填空题1.如图,填表:2.如图,填数:1.答如下表格2.答如图参考答案:一、1.A 提示:只有代数式的值悟为正数.2.D3.B 提示:易断定之值为整数,故代数式的值是带分数,其分数部分是 ,故不必动笔便可得出结果.4.C 提示:所以应计算代数式当时的值.二、1.答如下表格2.答如图三、1.(1)(2)177元2.(1) ,(2)403.(1)平方厘米(2)当时原式平方厘米整式的运算练习题(十): 初一上册数学有理数运算的练习题!1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数;③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的A.1B.2C.3D.42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:a 0 b把a,-a,b,-b按照从小到大的顺序排列 ( )A. -b<-a<a<bB.-a<-b<a<bC. -b<a<-a<bD.-b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数; ④两个数比较,绝对值大的反而小A.①②B.①③C.①②③D.①②③④4.下列运算正确的是 ( )A. B.-7-2×5=-9×5=-45C.3÷D.-(-3)2=-95.若a+b<0,ab<0,则 ( )A.a>0,b>0;B.a<0,b<0;C. a,b两数一正一负,且正数的绝对值大于负数的绝对值;D.a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kgB.0.6kgC.0.5kgD.0.4kg7.一根1m长的小棒,第一次截去它的 ,第二次截去剩下的 ,如此截下去,第五次后剩下的小棒的长度是()A .( )5m B. [1-( )5]m C. ( )5m D. [1-( )5]m8.若ab≠0,则的取值不可能是()A.0B.1C.2D.-2二、填空题:9.比大而比小的所有整数的和为 .10.若那么2a一定是 .11.若0<a<1,则a,a2, 的大小关系是 .12.多伦多与北京的时间差为–12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是 .13上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min.14.规定a*b=5a+2b-1,则(-4)*6的值为 .15.已知 =3, =2,且ab<0,则a-b= .16.已知a=25,b= -3,则a99+b100的末位数字是 .三、计算题.17. 18. 8-2×32-(-2×3)219. 20.[-38-(-1)7+(-3)8]×[- 53]21. –12 × (-3)2-(- )2023×(-2)2023÷22. –16-(0.5- )÷ ×[-2-(-3)3]-∣ -0.52∣四、解答题.23.已知1+2+3+…+31+32+33==17×33.求 1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少请列出算式解答.25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次-4 +7 -9 +8 +6 -5 -2(1)求收工时距A地多远(2)在第次纪录时距A地最远.(3)若每km耗油0.3升,问共耗油多少升26.如果有理数a,b满足∣ab-2∣+(1-b)2=0试求+…+ 的值.答案:一、选择题:1-8:BCADDBCB二、填空题:9.-3;10.非正数;11.;12.2:00;13.3.625×106;14.-9;15.5或-5;16.6三、计算题17.-9;18.-45;19.;20.;21.;22.四、解答题:23.-2×17×33;24.0;25.(1)1(2)五(3)12.3;26.我劝你做题要答案干嘛,要答案是害了自己!希望能解决您的问题.。
整式专题训练测试题
一、填空题:
1、 单项式5
)2(3
2y x -的系数是_________,次数是___________。
2、 多项式π2323232---
-x xy y x 中,三次项系数是_______,常数项是_________。
3、 若,3,2==n m a a 则___________,__________23==--n m n m a a 。
4、 单项式2222,2,21,2xy y x xy y x --
-的和是_____________________________。
5、 若2333632
-++=⋅x x x ,则x =_________________。
6、 )2
131)(3121(a b b a ---=___________________。
7、 若n mx x x x --=-+2)3)(4(,则__________________,==n m 。
8、 ________________)6()8186(32=-÷-+-x x x x 。
9、 442)(_)(_________5⨯⨯⨯⋅⋅⋅⋅-=x x x x x 。
10、22413)(___)(_________y xy xy x +
-=+-。
11、______________42125.0666=⨯⨯。
12、_____________)()(22++=-b a b a 。
二、选择题:
1、 代数式4322++-x x 是
A 、多项式
B 、三次多项式
C 、三次三项式
D 、四次三项式
2、 )]([c b a +--去括号后应为
A 、c b a +--
B 、c b a -+-
C 、c b a ---
D 、c b a ++-
3、=⋅-+1221)()(n n x x
A 、n x 4
B 、34+n x
C 、14+n x
D 、14-n x
4、下列式子正确的是
A 、10=a
B 、5
445)()(a a -=-
C 、9)3)(3(2-=--+-a a a
D 、222)(b a b a -=-
5、下列式子错误的是
A 、161)2(2
2=-- B 、16
1)2(22-=-- C 、641)2(32-=-- D 、 64
1)2(32=-- 6、=-⨯99100)2
1(2 A 、2 B 、2- C 、 21 D 、21- 7、=-÷-3
4)()(p q q p
A 、q p -
B 、q p --
C 、p q -
D 、q p +
8、已知,109,53==b a 则=+b a 23 A 、50- B 、50 C 、500 D 、不知道
9、,2,2-==+ab b a 则=+22b a
A 、8-
B 、8
C 、0
D 、8±
10、一个正方形的边长若增加3cm ,它的面积就增加39cm ,这个正方形的边长原来是
A 、8cm
B 、6cm
C 、5cm
D 、10cm
二、计算:
1、42332)()()(ab b a ⋅⋅-
2、4)2()21(232÷÷-
xy y x 3、333445565
3)1095643(y x y x y x y x ÷-+ 4、)3121()312(2122y x y x x -+-- 5、)1(3
2)]1(21[2-----x x x 6、⎭
⎬⎫⎩⎨⎧-÷----)21()]2(3[2522222xy y x xy xy y x xy
四、先化简,再求值
1、2)3()32)(32(b a b a b a -+-+,其中31,5=
-=b a 。
2、 已知,13,53122x x B x x A +-=+-= 当3
2=x 时,求 B A 2-的值。
五、利用整式的乘法公式计算:(每小题2分,共计4分)
① 20011999⨯ ②1992-
六、(4分)在一次水灾中,大约有5105.2⨯个人无家可归,假如一顶帐篷占地100米2,可以放置40个床位,为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?估计你的学校的操场可安置多少人?要安置这些人,大约需要多少个这样的操场?
七、探究题:(每小题5分,共计10分)
1、 求1)12
()12)(12)(12)(12)(12(32842++++++- 的个位数字。
七下第一章参考答案:
一、填空题:
1、9;58-
2、π2;1--
3、9
8;32 4、223xy - 5、7 6、229141b a - 7、12;1- 8、23
431x x +- 9、x 2- 10、22412y xy x +- 11、1 12、ab 4- 二、CDACD ;BCBBC
三、
四、1、1010b a - 2、y x 41281-
3、x y x y x 2
3245223-+ 4、x - 5、6
1367+-
x 6、x y y x xy 442522--- 四、1、135,652ab a - 2、2743,77352+--x x
五、①399999914000000)12000)(12000(=-=+-
②980098100)199)(199(=⨯=-+
六、6250顶帐篷,占51025.6⨯米2的地方,后面答案视操场的大小定。
七、1、6 2、22
1R π。