探索与规律基本方法
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
北师大版初一上册3教材分析:探究规律是北师大版七年级数学上册第三章第五节,探究规律本身是数学课中比较抽象的一部分内容,学生需要积存一定的体会和差不多的探究方法才能够找到题目的规律,本章学习的整式及其加减正好用来表示这种规律,因此表达规律是整式应用专门好的范例,教材在本章安排了几种简单的规律探究问题,其目的要紧是让学生把握解决这类问题的差不多方法即:探究分析——归纳表示——验证结论,体会解决问题的差不多思想即:从专门到一样的思想。
教学目标:1.知识目标:会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探究的规律。
2.能力目标:培养学生的观看能力、动手能力、创新能力以及交往协作能力,并提高其分析问题和解决问题的能力。
3.情感目标:让学生体会数学就在周围,激发学生的探究热情,体验数学活动的探干脆及制造性,培养学生实事求是的科学态度。
教学重难点:【教学重点】探究实际问题中蕴涵的关系和规律。
【教学难点】用字母、运算符号表示一样规律。
课前预备:见PPT教学过程:一、问题引入这是2021年3 月的日历,你能填空吗?【设计意图】通过简单的问题,学生快速回答从而获得对数字规律的直观体验,为用字母表示规律埋下伏笔。
二、合作探究1.学生探究活动项目单:(1)说一说日历中的数字排列有什么规律?(同一排或同一列)(2)若用一个方框任意框出九个数,这九个数字之间有什么数量关系?(3)用字母表示这种数量关系。
(4)这九个数的和与中间数有什么关系?(5)尝试使用较为简练的语言和同桌说一说你发觉的规律。
学生摸索、猜想、交流,个别学生展现。
应鼓舞学生大胆探究,积极发言。
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = __9a____可得到:蓝色方框中九个数之和=9×正中间的数。
进一步挑战:给出几个图形,如“十”字形、“H”形,“W”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,并分小组展现。
5 探索与表达规律1.规律探索 规律探索是数学中常见的类型之一,是指从已知的几个数据或几个图形中发现其中的数据变化情况,并用代数式表示出来.规律探索体现了从特殊到一般,再从一般到特殊的数学思想.探索规律的一般方法是:(1)观察:从具体的、实际的问题出发,观察各个数量的特点及相互之间的变化规律;(2)猜想:由此及彼,合理联想,大胆猜想;(3)归纳:善于类比,从不同的事物中发现其相似或相同点;(4)验证:总结规律,作出结论,并取特殊值验证结论的正确性.探索规律问题,要从给出的几个有限的数据着手,认真观察其中的变化规律,尝试猜想、归纳其规律,并取特殊值代入验证. 在探索规律的过程中,要善于变换思维方式,这样可收到事半功倍的效果.【例1】 观察下列数表:根据数表中所反映的规律,猜想第6行与第6列的交叉点上的数应为__________,第n 行(n 为正整数)与第n列的交叉点上的数应为________.解析:通过观察、分析、比较可知,第1行与第1列的交叉点上的数是1,第2行与第2列的交叉点上的数是3,第3行与第3列的交叉点上的数是5,第4行与第4列的交叉点上的数是7,…,所以可猜想第6行与第6列的交叉点上的数是11,第n 行(n 为正整数)与第n 列的交叉点上的数应为2n -1.答案:11 2n -12.探索规律的常见类型及方法(1)数字规律和代数式规律常见的几种数字规律形式:①②(2)新运算的规律 新运算是指用特定的符号表示与加、减、乘、除不相同的一种规定运算. 新运算的实质是有理数的几种混合运算,关键是观察出用到了哪些运算,要特别注意运算的顺序.(3)图形规律探索图形规律的实质是用字母表示数,即列代数式.要从不同的角度分析,可用去括号、合并同类项验证规律.【例2-1】 符号“§”表示一种运算,它对一些数的运算结果如下:(1)§(1)=0,§(2)=1,§(3)=2,§(4)=3,… (2)§⎝⎛⎭⎫12=2,§⎝⎛⎭⎫13=3,§⎝⎛⎭⎫14=4,§⎝⎛⎭⎫15=5,… 利用上面的规律计算:§⎝⎛⎭⎫12 013-§(2 012).分析:从(1)中的运算可以看出,当括号内的数是整数时,运算的结果等于括号内的数减去1,所以§(2 012)=2011;从(2)中可以看出,当括号内的数是一个分子是1的分数时,运算的结果等于括号内那个数的倒数,所以§⎝⎛⎭⎫12 013=2 013.解:§⎝⎛⎭⎫12 013-§(2 012)=2 013-2 011=2.【例2-2】 观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( ).A .(2n +1)2B .(2n -1)2C .(n +2)2D .n 2解析:观察图形和下面的式子可以知道,1+8=1+8×1=9=32,1+8+16=1+8×1+8×2=52,1+8+16+24=1+8×1+8×2+8×3=72,…,其规律是:计算的结果是连续奇数的平方,所以1+8+16+24+…+8n =(2n +1)2.故选A.答案:A3.探索规律的应用常见的探索规律的应用:探索日历中的规律和折叠中的规律.(1)探索日历中的规律 在日历中一般我们可以从横行、竖列、斜列三个方向去寻找规律,当然也可以从其他角度去探索. ①横行:相邻两数相差1.如左下图所示:②竖列:相邻两数相差7.如右上图所示.③斜列:从左上到右下的斜列相邻两数相差8;从右上到左下的斜列相邻两数相差6.④日历中的3×3方框内的规律:在这9个方格中的数的和是中间方框中的数的9倍.若将中间数设为a ,则其余8个数可按规律如上图所示,则这9个数的和即为(a -8)+(a -7)+(a -6)+(a -1)+a +(a +1)+(a +6)+(a +7)+(a +8)=9a ,正好是中间数a 的9倍.(2)折叠中的规律 将一张纸折叠,每折叠一次就会得到纸的层数、折痕数,将这些数记录下来,找出规律,就可预测当折叠n 次后,相应的层数与折痕数.折叠次数:1,2,3,4,5,…,n .层数:2,4,8,16,32,…,2n .平行对折的折痕数:1,3,7,15,31,…,2n -1.____________________________________________________________________________________________________________________________________________________________________________________________________________________________ _______________________________________________________【例3-1】 2013年的元宵节是阳历2月24日,根据下面的日历,你知道春节和初夕分别是哪一天吗?请你填在下面的横线上:春节:2月__________日,除夕:2月__________日.解析:根据日历中竖列和横列的规律可以求出.如图,春节与元宵节在同一竖列中,根据竖列中相邻两数相差7,可知春节比元宵节少14,即24-14=10,春节是10日,根据横列中相邻相差1的规律,可知除夕是9日.答案:10 9【例3-2】将连续的偶数2,4,6,8,…排列成如右图所示的数表.(1)“十”字框内5个数的和,与框内中间的数18有什么关系?(2)若将“十”字框上、下、左、右平移,框住另外5个数,这5个数还有这样的规律吗?(3)设中间的数为a,用代数式表示“十”字框内5个数之和.分析:观察对比可以发现:左右相邻两数相差2,上下相邻两数相差12.再换另一组数,同样有这样的规律.解:(1)6+16+18+20+30=90,而90÷18=5,所以框内5个数的和是框内中间的数18的5倍.(2)将框上、下、左、右平移,任意框住5个数,同样有这样的规律.(3)若中间的数为a,则框住的5个数分别为a-12,a-2,a,a+2,a+12,其中a为偶数,故它们的和为(a -12)+(a-2)+a+(a+2)+(a+12)=5a.【例3-3】如果将一张长方形的纸,平行对折7次,展开后,会有__________条平行折痕,折痕会把这张长方形的纸分成__________个小长方形.解析:根据折叠中的规律:对折7次,即当n=7时,平行折痕数为2n-1=27-1=127(条),1条折痕能把长方形分成2个小长方形,2条能分成3个,…,127条折痕则分成128个小长方形.答案:127 128。
探索与表达规律一、教学目标:1、知识与技能经历由特殊到一般和由一般到特殊的过程,体会代数推理的特点和作用。
能用代数式表示并借助代数式运算验证所探索规律的一般性。
能用代数式表示并借助代数式运算解释具体问题中蕴含的一般规律或现象。
2、情感与价值观在小组合作,共同学习的课堂环境中,锻炼学生积极思考,勇于探索的科学实践精神。
并培养学生主动与人交流、合作的意识情感。
二、教学重点:能够发现具体情境中的数学规律并用适当的代数式表达发现的数学规律。
三、教学难点:能够用适当的代数式表达发现的数学规律。
四、教学资源:多媒体、PPt课件五、教学方法:教师指导下的小组互助学习六、教学过程:同学们,通过对代数式的学习,我们已经能够利用代数式表达具体的量之间的关系,以及利用代入法求出代数式的值。
在开始今天的新课之前,请同学们完成学案中的课前练习。
1、课前练习:观察规律并完成表格学生自主完成,举手回答。
教师引导验证规律学生小组内交流解题思路,然后举手回答。
教师作适当点评2、通过课前练习,我们发现:代数式可以反映生活中蕴含的数学规律。
大家都熟悉日历吧,你知道它蕴含有哪些数学规律吗?让我们一起来探寻吧例题:(1)请同学们观察2004年10月的日历,找出日历中每个横排,每个纵列之间相邻两数有什么特点?(2)若用黄色横排框出3个数字,你能借助发现的规律,用代数式表示这3个数字吗?想想,有几种表示方法。
(在课件中横排框出3个数,用字母表示出其中任意一个,学生回答另外两个)请分别用写出的代数式,求出横排3个数的和(学生举手回答结果)同学们求出的和有什么特点:(教师引导学生得出和是3的倍数)我们用字母表示哪一位置上的数,求和最简单(学生比较不同情况,得出结论。
)(3)若用黄色纵列框出3个数字,你能借助发现的规律,用代数式表示这3个数字吗?想想,有几种表示方法。
请分别用写出的代数式,求出纵列3个数的和同学们求出的和有什么特点:我们用字母表示哪一位置上的数,求和最简单(4)如果将方框变为蓝色区域的9个数,①用字母表示其中一个位置上的数,有多少种方法?②你怎样又快有准的求出它们的和。
第三章第五节探索与表达规律一、基本知识点1.探究规律;2.计算二、基本方法数字探究;图形探究三、知识讲练【例1】图形题用棋子摆出下列一组图形:(1)(2)(3)图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?〖针对练习1〗1.用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚(用含n的代数式表示).…第1个图第2个图第3个图2. 下列每个图是由若干盆花组成的形如三角形的图案,按此规律写出第n个图形花盆的总数______________________;3. 下列每个图是由若干盆花组成的形如正方形的图案,按此规律写出第n个图形花盆的总数__________4. 下列每个图是由若干盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,花盆的总数S=______________________;5. 下列每个图是由若干盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,花盆的总数S=______________________;6. 下图中所有正方体的边长都是1. 例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(6)个图形的表面积个平方单位。
【例2】数字题1. 有若干个数,第1个数记为1a,第二个数记为2a,第三个数记为3a……,第n个记为na,若211-=a,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数。
”(1)试计算__________,__________________,432===aaa(2)根据以上结果,请你写出___________1999=a,_______2001=a。
探索规律的方法有很多,以下是一些常见的方法:1. **观察法**:观察是思维的眼晴,是探索规律的重要方法。
通过观察数字、图形、变化过程等的变化,找出其中的规律。
2. **归纳法**:通过对一系列特殊事例的研究,归纳出一般性结论,是一种从特殊到一般的推理方法。
3. **类比法**:类比是将相似的事物进行比较,找出它们的共同点,从而推断出它们之间可能存在的其他关系。
类比可以用于不同事物之间的比较,也可以用于同一事物不同方面的比较。
4. **总结法**:通过对已经掌握的数据、信息、知识进行总结,归纳出其中的规律和趋势。
5. **实验法**:通过实验来验证规律的存在,例如通过数学实验来探索某些数学问题的规律。
6. **数形结合法**:通过数字和图形的结合来探索规律,数字和图形可以相互补充,帮助我们更好地理解规律。
在具体操作时,可以根据问题的特点选择合适的方法。
例如,如果问题是寻找一个数字序列的规律,那么观察法、归纳法和总结法可能比较适合。
如果问题是解决一个数学问题,需要运用数形结合的思想,那么数形结合法可能更有效。
同时,还可以结合使用多种方法,以提高解决问题的效率和质量。
此外,在探索规律的过程中,还需要注意一些问题:1. **准确性和严谨性**:在探索规律时,要确保数据的准确性和推理的严谨性,避免因为错误的数据或推理导致结论的错误。
2. **全面性和系统性**:要全面考虑问题,系统地分析数据和信息,不要遗漏任何可能的规律。
3. **耐心和毅力**:探索规律可能需要花费较长时间和精力,需要有足够的耐心和毅力。
4. **交流和协作**:在探索规律的过程中,需要与他人交流和协作,共享资源和信息,共同解决问题。
5. **不断试错和修正**:在探索规律的过程中,可能会遇到很多困难和挫折,需要不断试错和修正,不要轻易放弃。
总之,探索规律需要综合运用多种方法和技能,需要耐心、细致、全面地分析数据和信息,不断试错和修正,才能找到问题的答案。
探索图形规律的方法总结一、规律探索型问题的分类1、数式规律通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
猜想归纳是解决这类问题的有效方法,通过对已给出的材料和信息对研究的对象进行观察、实验、比较、归纳和分析综合,作出符合一定规律与事实的推测性想象,从而发现一般规律。
它是发现和认识规律的重要手段。
平时的教学不能局限于课本,可以设计一些猜想性、类比性的活动,让学生经历一个观察、试验等活动过程,在活动中通过对大量特殊情形的观察猜想出一般情形的结论,从而探索事物的内在规律。
2、图形规律根据一组相关图形的变化规律,从中总结图形变化所反映的规律。
解决这类图形规律问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律。
图案、图表具有直观、形象、简明,包含的信息量多等特点,解决此类问题需要把“形”转化为“数”,考查学生数形结合的数学思想。
二、规律探索型问题常用解法1、抓住条件中的变与不变找数学规律的题目,都会涉及到一个或者几个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
所以,抓住了变量,就等于抓住了解决问题的关键。
而这些变量通常按照一定的顺序给出,揭示的规律,常常包含着事物的序列号。
如:一组按规律排列的式子:,,,,…(),其中第7个式子是,第个式子是(为正整数)。
分子和分母的底数没变,变化的是符号及它们的指数,再把变量和序列号放在一起加以比较,就很容易发现其中的奥秘。
2、化繁为简,形转化为数有些题目看上去很大、图形很复杂,实际上,关键性的内容并不多。
对题目做一番认真地分析,去粗取精,取伪存真,把其中主要的、关键的内容抽出来,题目的难度就会大幅度降低,问题也就容易解决了。
探索规律(基础)知识讲解【学习目标】1. 通过观察、分析、总结等一系列过程,经历探索数量关系,并运用代数式表示规律,通过运算验证规律是否正确的过程;2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律是否正确;3.通过动手操作、观察、思考,体验数学活动是充满着探索性和创造性的过程.【要点梳理】要点一、规律探索型问题常见类型1、数式规律通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了分析、归纳、抽象、概括能力.一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.要点诠释:由于寻找规律并用字母表示这一规律体现了从特殊到一般和归纳、猜想的数学思想的运用.解题中应注意先从特殊的结果入手寻找规律,再用字母表示,最后加以验证.2、图形规律根据一组相关图形的变化,从中总结图形变化所反映的规律.解决这类图形规律问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律.要点诠释:图案、图表具有直观、形象、简明,包含的信息量多等特点,解决此类问题需要把“形”转化为“数”,考查数形结合的数学思想.3、数表规律解决本题的方法一般是先看行(或列)的规律,再以列(或行)为单位用数列找规律方法找规律.有时也需要看看有没有一个数是上面两数或下面两数的和或差等.有时还需要先局部看,再整体找规律.要点二、规律探索型问题解题技巧1、抓住条件中的变与不变找数学规律的题目,都会涉及到一个或者几个变化的量.所谓找规律,多数情况下,是指变量的变化规律. 所以,抓住了变量,就等于抓住了解决问题的关键.而这些变量通常按照一定的顺序给出,揭示的规律,常常包含着事物的序列号.2、化繁为简,形转化为数有些题目看上去很大、图形很复杂,实际上,关键性的内容并不多.对题目做一番认真地分析,去粗取精,取伪存真,把其中主要的、关键的内容抽出来,题目的难度就会大幅度降低,问题也就容易解决了.3、要进行计算尝试找规律,当然是找数学规律.而数学规律,多数是函数的解析式.函数的解析式里常常包含着数学运算.因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子.所以,从运算入手,尝试着做一些计算,也是解答找规律题的好途径.4、寻找事物的循环节有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解. 【典型例题】类型一、数式规律1.按某种规律在横线上填上适当的数:(1)1,3,5,7,9,11,,………;(2)3,6,12,24,48,96,,………;(3)1,4,9,16,25,36,,………;(4)0,3,8,15,24,35,,………;(5)2,-2,2,-2,2,-2,,……….【答案】(1)13;(2)192;(3)49;(4)48;(5)2.【解析】+=;解:(1)这个数列中,后一项与前一项差为定值2,所以第7个数为:11213⨯=;(2)这个数列中,后一项总是前一项的2倍,所以第7个数为:962192(3) 这个数列中,每个数位上的数分别是它所在位置号的平方或立方,所以第7个数为:2=;749+=;(4) 这个数列中,后一项与前一项的差依次多2,所以第7个数为:351348(5)这个数列中,每两个数一个循环,奇数位上的数为2,偶数位的数为-2.所以第7个数为:2.【总结升华】(1)一列数中,后一项与前一项的差是一个固定的数,则这列数的第n 个数为:从左往右数第一个数+固定数值×(n -1).(2)一列数中,相邻两项的后一项与前一项的商为固定值q (q ≠0),则这列数的第n 个数为:从左往右数第一个数×1n q-.(3) 一列数中,每个数位上的数分别是它所在位置号的平方或立方,则第n 个数为:2n 或3n . (4)此数列满足:差值呈固定值2增长,第n 个数为21n -. (5)此数列中的第n 个数可表示为1(1)2n +-⨯.举一反三:【变式1】按某种规律在横线上填上适当的数: (1) -5,-2,1,4, ; (2) 2,5,10,17, ,37; (3) 1,8,27,64, ,216 .【答案】(1) 7 (2), 26 (3) 125【变式2】(德州)一组数1,1,2,x ,5,y …满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( ) A .8 B .9 C .13D .15【答案】A .解:∵每个数都等于它前面的两个数之和, ∴x =1+2=3, ∴y =x +5=3+5=8,即这组数中y 表示的数为8.2.(丹东)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是 .【思路点拨】根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案. 【答案】﹣.【解析】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.【总结升华】此题主要考查了数字变化类,正确得出分子与分母的变化规律是解题关键,另外要注意符号的变化.举一反三:【变式】根据以下等式:1=12,1+2+1=22,1+2+3+2+1=32,… .对于正整数n(n≥4),猜想:1+2+ … +(n-1)+n+(n-l)+ … +2+1=.【答案】n2类型二、图表规律3.用火柴棒按下图的方式搭三角形:(1)填写下表:三角形个数 1 2 3 4 5 火柴棒根数(2)照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?【思路点拨】每多搭一个三角形,就多用两根火柴棒.【答案与解析】解:(1)三角形个数 1 2 3 4 5火柴棒根数 3 5 7 9 11 (2)搭n个这样的三角形需要2n+1 根火柴棒【总结升华】将“形”的规律转换为“数”的规律.举一反三:【变式】观察下列一组图形:它们是按一定规律排列的,依照此规律,第n个图形中共有个★.n【答案】314.(泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252【答案】C.【解析】解:首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4﹣1=3,6﹣2=4,8﹣3=5,10﹣4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209【总结升华】此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.举一反三:【变式】观察下列有序整数对:(1,1).(1,2),(2,1).(1,3),(2,2),(3,1)(1,4),(2,3),(3,2),(4,1).(1,5),(2,4),(3,3),(4,2),(5,1).…它们是按一定规律排列的,依照此规律,第10行从左到右第5个整数对是【答案】(5,6)5.如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“♣”,共个.【思路点拨】本题的关键是要找出4个图形一循环,然后再求2012被4整除,从而确定是共第503♣.【答案】503【解析】解:根据题意可知梅花是1,2,3,4即4个一循环.所以2012÷4=503.所以共有503个♣.【总结升华】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.举一反三:【变式】观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是.(填图形的名称)▲■★■▲★▲■★■▲★▲…【答案】五角星提示:6个一循环.。
探索与规律求通式的基本方法
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量
和序列号放在一起加以比较,就比较容易发现其中的奥秘。
看看每个数与序列号的关系。
如下例题。
例如,观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是(),第n个数是()。
那么这个题的规律就跟序列号有关系。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
例如:1,9,25,49,(),(),的第n项为()
(三)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)技巧找出每位数与位置的关系。
再在找出的规律上加上第一位数,
恢复到原来。
例:2、5、10、17、26、、、
(四)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例:4,16,36,64,?,144,196,。
求问号处是多少,并写出通式。
(五)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、
或除同一数(一般为1、2、3)。
当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(六)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题。
2、如不相等,综合运用技巧(一)、(二)、(三)找规律
3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律
4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题。