初二数学下册知识点总结(非常有用)复习过程
- 格式:doc
- 大小:218.50 KB
- 文档页数:8
八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。
2. 一元一次方程的概念、解法和实际应用。
3. 一元一次不等式的概念、解法和实际应用。
4. 一元二次方程的概念、解法和实际应用。
5. 代数式的加减乘除、化简和因式分解。
6. 二元一次方程组的概念、解法和实际应用。
7. 一元二次不等式的概念、解法和实际应用。
8. 质因数分解和最大公因数、最小公倍数的求法。
9. 分式的基本概念和运算方法。
二、几何1. 平面图形的基本性质和分类。
2. 勾股定理及其应用。
3. 三角形的相似性质和判定方法。
4. 三角形的内角和及其计算。
5. 空间图形的基本性质和分类。
6. 直线与平面的位置关系及其应用。
7. 圆的基本性质和相关定理。
8. 空间中直线与平面的交角问题和判定方法。
9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。
三、概率统计1. 事件和概率的基本概念。
2. 古典概型和几何概型的概率计算。
3. 条件概率和独立性的概念和计算方法。
4. 排列和组合的概念和应用。
5. 随机变量和概率分布的定义和联系。
6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。
7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。
8. 正态分布的概念和应用。
9. 假设检验的基本概念和方法。
以上就是八年级数学下册的全部知识点总结。
在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。
同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。
八年级下册知识点归纳第十六章 二次根式1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
②非负性考点:几个非负数相加为0,那么这几个数都为0.如:-+++=2310a b c 则:30,10,0a b c -=+==2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是小数就化成分数,带分数化成假分数,是多项式就先分解因式。
4.同类二次根式:二次根式化成最简二次根式后,被开方数相同的几个二次根式就是同类二次根式。
5、二次根式有关公式 (1))0()(2≥=a a a (2)⎩⎨⎧<-≥==)0a (a )0a (aa a 2(3)乘法公式)0,0(≥≥∙=b a b a ab (4)除法公式(0,0)a aa b b b=≥> (5)完全平方公式222()2a b a ab b ±=++ 平方差公式:22()()a b a b a b -=+- (6)01(0)a a =≠ 1-=nn aa6、二次根式的加减法则:先将二次根式化为最简,再将被开方数相同的二次根式进行合并。
7、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
二次根式计算的最后结果必须化为最简二次根式.第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
①已知a ,b ,求c ,则c=22a b + ②已知a ,c ,求b,则b=22c a -③已知b ,c 求a ,则a=22c b - 没有指明直角边和斜边时要分类讨论2.勾股定理逆定理:如果一个三角形三边长a,b,c 满足a 2+b 2=c 2。
八年级数学下册知识点总结八年级数学下册知识点总结2篇总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,不妨让我们认真地完成总结吧。
那么你真的懂得怎么写总结吗?下面是小编整理的八年级数学下册知识点总结,仅供参考,希望能够帮助到大家。
八年级数学下册知识点总结11)分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.2)分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.列分式方程基本步骤①审-仔细审题,找出等量关系。
②设-合理设未知数。
③列-根据等量关系列出方程(组)。
④解-解出方程(组)。
注意检验⑤答-答题。
3)解分式方程的基本步骤⑴去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程)⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
4)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
即,(C≠0),其中A、B、C均为整式。
分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
八年级下册数学重点知识归纳摘要:一、引言二、数轴与实数1.数轴的定义与性质2.实数的分类与性质三、代数式与代数表达式1.代数式的基本概念2.代数表达式的运算规则四、方程与不等式1.一元一次方程的解法2.一元二次方程的解法3.不等式的基本概念与解法五、函数1.函数的基本概念2.函数的图像与性质3.函数的解析式与应用六、几何知识1.点、线、面的基本概念2.直线与角的关系3.三角形的基本性质与证明4.四边形的分类与性质七、数据的收集与分析1.数据的收集方法2.数据的整理与展示3.数据的分析与推断八、概率与统计1.概率的基本概念2.事件的概率3.统计的基本概念与方法九、综合应用1.实际问题与数学建模2.数学在生活中的应用十、总结与展望正文:【引言】数学是科学的基础,也是工具。
在八年级下册的数学课程中,我们将学习一系列重要的数学知识,为以后的学习打下坚实的基础。
本篇文章将对这些重点知识进行归纳总结,帮助大家更好地掌握数学知识。
【数轴与实数】数轴是数学中的一个基本概念,它是一个直线,规定了原点、正方向和单位长度。
实数是数学中的基本对象,可以分为有理数和无理数。
有理数又可分为整数、分数和小数。
无理数是不能表示为有理数的实数,如圆周率π。
【代数式与代数表达式】代数式是由数、字母和运算符号组成的式子,如3x+2y。
代数表达式是在代数式的基础上,应用运算律和运算方法得到的式子,如(3x+2y)^2。
【方程与不等式】方程是一个含有未知数的等式,如x+3=5。
解方程就是求出方程中未知数的值。
不等式是表示大小关系的式子,如x>3。
解不等式就是找出满足不等式的所有x 的值。
【函数】函数是一种特殊的关系,它将一个或多个变量映射到另一个变量。
例如,y=2x+1 是一个一次函数,它将x 映射到y。
函数的解析式是表示函数关系的式子。
【几何知识】几何是数学的一个重要分支,主要研究点、线、面的性质和它们之间的关系。
在八年级下册,我们将学习直线与角的关系,三角形的性质和证明,以及四边形的分类和性质。
八年级下册知识点归纳总结数学数学作为一门重要的学科,对于学生的学习和发展具有十分重要的作用。
八年级下册数学内容丰富,其中涵盖了许多重要的知识点。
为了帮助同学们更好地复习和总结这些知识点,下面对八年级下册的数学知识进行归纳总结。
一、代数与函数1. 初步认识函数(1)函数的概念:函数是一种特殊的关系。
(2)函数的表示方法:函数的三要素是输入、输出和对应关系,可以用表格、图象和公式等形式来表示函数。
(3)函数的性质:单调性、奇偶性、周期性等。
2. 一次函数(1)一次函数的概念:一次函数是指次数为1的函数。
(2)一次函数的性质:一次函数的图象是一条直线,可以通过两个点来确定一条一次函数。
(3)一次函数的表达式:函数的表达式通常为y=kx+b,其中k 和b为常数。
3. 二次函数(1)二次函数的概念:二次函数是指次数为2的函数。
(2)二次函数的性质:二次函数的图象是一个抛物线,可以通过顶点、对称轴和焦点等来确定二次函数。
(3)二次函数的表达式:函数的表达式通常为y=ax²+bx+c,其中a、b、c为常数。
4. 等差数列(1)等差数列的概念:等差数列是指数之间的差值相等的数列。
(2)等差数列的通项公式:通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
二、图形与尺度1. 平行线与三角形(1)平行线的判定:根据平行线的性质,可通过角的对应关系和直线之间的交错性质来判定平行线。
(2)三角形内部角的性质:三角形内部的角和为180°,其中等腰三角形、直角三角形有一些特殊的性质。
2. 四边形(1)四边形的分类:四边形可分为平行四边形、矩形、菱形、正方形等。
(2)四边形内角的性质:四边形的内角和为360°,不同类型的四边形有不同的内角性质。
3. 相似与全等(1)相似的概念:相似是指两个图形形状相同但大小可以不同。
(2)相似三角形的性质与判定:相似三角形的对应角相等,对应边成比例。
初二数学下册知识点归纳1.数的运算-自然数、整数、有理数的性质和运算规律-加法、减法、乘法、除法的计算法则-小数与分数的相互转化-分数的加法、减法、乘法、除法运算-幂运算的性质和规律2.比例与比例运算-比例的概念与比例的性质-比例的计算法则,包括比例的化简和比例的扩大-百分数的概念与百分数的换算-百分数间的比较和计算3.代数式与方程-代数式的概念和常见运算法则-使用代数式进行计算-简单方程的概念和解法-一元一次方程的解法-二元一次方程组的解法4.平面图形的认识-角度的概念,包括锐角、钝角、直角和满角-平行线和垂直线的性质-三角形的分类和性质,包括等边三角形、等腰三角形、直角三角形-四边形的性质,包括平行四边形、矩形、正方形、菱形5.坐标系与图像的认识-点的坐标表示方法-直角坐标系的建立和使用-点和图形的位置关系-图形的平移、旋转和对称操作6.数据的图表表示与分析-统计的概念和统计图表的制作方法-根据图表进行数据的分析和解读-中心趋势的度量,包括平均数、中位数和众数-双坐标系的使用和解读7.算法与式子-算法和式子的概念-合并同类项和乘法分配律-算式的简化和推广-使用式子解决实际问题8.一次函数-直线的斜率和截距-一次函数的概念和性质-函数图像的绘制和分析-一次函数的运算和应用9.几何与三视图-点、直线和平面的性质-空间几何图形的认识-立体图形的展开和三视图的绘制-空间的投影和棱柱、棱锥的表面积和体积计算10.平方根与立方根-开方和平方根的概念和性质-开方与乘方的关系-平方根的近似值计算-立方根的概念和性质-立方根的近似值计算11.投影与相似-投影的概念和性质,包括水平投影、垂直投影和斜投影-平行线投影和中点投影的特殊情况-相似的概念和性质,包括相似比例和相似角的性质-利用相似关系进行计算和证明12.函数与图像-函数的概念和性质,包括定义域、值域和图像-函数的分类,包括单调性和奇偶性-复合函数和反函数的概念和性质-利用函数进行实际问题的解决13.圆周率与圆的性质-圆周率的概念和性质-圆的表达式和性质,包括圆心角、弧长和扇形面积的计算-直径和半径的关系-弦和切线的性质14.空间立体图形的认识-空间几何图形的认识和性质,包括球、圆柱体、圆锥体、棱台和组合体-立体图形的体积和表面积计算-等腰三角形、等距离和等比例的性质和应用15.幂运算与根式-幂运算的性质和规律-根式的概念和性质,包括同底数的乘除法和根式的化简和分解-指数和对数的互逆性质-乘方根式的计算和近似值的求取16.几何推理-论证和证明的方法和规则-直角三角形和等腰三角形的性质证明-同位角和内错角的证明-使用平行线性质进行证明17.线性方程组-线性方程组的概念和一般解法-二元线性方程组的解法-三元线性方程组的解法-使用线性方程组解决实际问题18.绝对值与不等式-绝对值的概念和性质-绝对值与不等式的关系和解法-一元一次不等式的解法和图解法-二元一次不等式的解法和图解法以上就是初二数学下册的知识点归纳,涉及了数的运算、比例与比例运算、代数式与方程、平面图形的认识、坐标系与图像的认识、数据的图表表示与分析、算法与式子、一次函数、几何与三视图、平方根与立方根、投影与相似、函数与图像、圆周率与圆的性质、空间立体图形的认识、幂运算与根式、几何推理、线性方程组、绝对值与不等式等方面的内容。
八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。
八年级下册数学重点知识点汇总在八年级下册的数学学习中,有许多重要的知识点需要我们深入学
习和掌握。
下面将对这些知识点进行汇总和总结,帮助同学们更好地
复习和理解。
1. 代数方程
代数方程是数学学习中的重要内容之一,包括一元一次方程、一元
二次方程等。
在解方程的过程中,我们需要掌握变形、消元、代入等
方法,以便准确求解方程的根。
2. 几何图形的性质
在几何学习中,我们需要了解各种几何图形的性质,如三角形的内
角和为180度、平行四边形对角线相等、圆的性质等。
这些性质对于
解题和证明都有重要作用。
3. 几何证明
几何证明是数学学习中的难点之一,需要我们掌握严密的逻辑推理
和证明方法。
在证明过程中,我们需要运用几何知识和常识,合理推
断和演绎,确保证明的正确性。
4. 空间几何体
空间几何体是数学学习中的重要内容,包括立方体、圆柱、圆锥等。
我们需要了解这些几何体的表面积、体积等性质,并能灵活运用到解
题中。
5. 概率统计
概率统计是数学学习中的一大分支,涉及到事件的概率计算、频率统计、抽样调查等内容。
我们需要了解基本概率规律和统计方法,以便分析和研究实际问题。
总的来说,八年级下册数学的重点知识点涵盖了代数、几何、概率统计等多个方面,需要我们全面掌握和理解。
通过不断练习和复习,相信大家一定能够在数学学习中取得更好的成绩!愿大家学有所成,加油!。
数学初二下知识点总结归纳数学是一门理科学科,对于初中生来说,数学的学习是非常重要的。
下面将对初二下学期的数学知识点进行总结归纳,以帮助同学们更好地复习和掌握这些知识。
一、代数方面1. 整式的加减与乘法整式的加法:将同类项相加。
整式的减法:将减数变为它的相反数,再按加法法则进行计算。
整式的乘法:应用分配率进行展开,然后将同类项相加。
2. 分式的加减与乘法分式的加减法:找到公共分母,然后按照公共分母相加或相减。
分式的乘法:将分子与分母分别相乘。
分式的除法:将除数倒数后乘以被除数。
3. 一元一次方程一元一次方程:形如ax+b=0的方程。
解一元一次方程的步骤:去括号、合并同类项、移动项、系数化为1、解方程。
4. 一元一次不等式一元一次不等式:形如ax+b>0或ax+b<0的不等式。
解一元一次不等式的步骤:去括号、合并同类项、移动项、系数化为1、解不等式。
5. 平方根与实数平方根:非负数a的平方根是指满足b²=a的数b。
实数:包括有理数和无理数,其中无理数是不能表示为两个互质整数的比的数。
二、几何方面1. 三角形三角形的分类:根据角度划分为锐角三角形、直角三角形和钝角三角形;根据边长划分为等边三角形、等腰三角形和普通三角形。
三角形内角和:三角形的内角和为180度。
2. 相似三角形相似三角形的条件:对应角相等、对应边成比例。
相似三角形的性质:对应边成比例、对应角相等。
3. 平行线与三角形平行线与一组等角关系:同位角相等、内错角相等、同旁内角互补。
平行线与三角形性质:平行线分割三角形成比例的线段、三角形内两平行线的夹角相等。
4. 三角形的面积三角形面积的计算公式:海伦公式、底边乘高除以2、两边夹角的正弦值乘以两边的乘积的一半。
三、概率与统计1. 事件的概率事件的概率:事件A发生的概率是指A发生的可能性。
事件的概率计算:概率=事件发生的次数/总的可能性次数。
2. 排列与组合排列:从n个不同元素中,取出m(m≤n)个元素进行排列的方法数。
2024年八年级下册数学知识点总结归纳一、实数的认识与运算1. 数轴及实数的表示- 数轴的绘制及利用- 实数的表示及其在数轴上的位置2. 实数的相关性质- 加法运算的性质- 减法运算的性质- 乘法运算的性质- 除法运算的性质3. 实数的运算规则- 加法的运算法则- 减法的运算法则- 乘法的运算法则- 除法的运算法则4. 实数的逆运算- 加法逆元和减法逆元- 乘法逆元和除法逆元5. 有理数的认识与运算- 有理数的表示及其分类- 有理数的加法与减法- 有理数的乘法与除法6. 无理数的认识与运算- 无理数的表示及其性质- 无理数与有理数的关系7. 实数的运算律及运算顺序- 混合运算的顺序和运算律二、线性方程与不等式1. 一元一次方程- 一元一次方程的解的概念- 一元一次方程的解的判断- 一元一次方程的解的求法2. 一元一次方程的应用- 应用问题的方程建立- 使用方程解决实际问题3. 一元一次不等式- 一元一次不等式的解的概念- 一元一次不等式的解的判断- 一元一次不等式的解的求法4. 一元一次不等式的应用- 应用问题的不等式建立- 使用不等式解决实际问题三、平面图形与立体图形1. 平面图形的性质与判断- 五角星和六角星的性质- 四边形的性质- 三角形的性质- 直角三角形的性质2. 平面图形的分类与应用- 三角形的分类- 几何图形的应用3. 立体图形的认识与分类- 立体图形的基本概念- 空间几何图形的识别和分类4. 立体图形的体积与表面积- 直方体和正方体的体积和表面积- 柱体和锥体的体积和表面积四、统计与概率1. 数据的汇总与处理- 数据的收集和整理- 数据的图表表示2. 参数与统计量- 参数的含义与计算- 统计量的含义与计算3. 概率与事件- 概率的概念与性质- 事件与概率的计算4. 概率的应用- 简单事件的计算- 互斥事件的计算- 包含事件的计算五、函数与图像1. 函数的概念与表示- 函数的定义与表示- 函数的自变量和因变量2. 函数的性质与运算- 函数的奇偶性- 函数的增减性- 函数的周期性3. 函数的图像与应用- 函数的图像的绘制- 函数的应用问题解决4. 解析几何的初步认识- 直线的性质与方程- 圆的性质与方程总结:以上是____年八年级下册数学的知识点总结归纳,主要涵盖了实数的认识与运算、线性方程与不等式、平面图形与立体图形、统计与概率、函数与图像等重要内容。
二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=.3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅. 5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 7.二次根式的除法法则: (1))0b ,0a (bab a >≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.四边形 几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理 ※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.※5.梯形中常见的辅助线:平行四边形矩形菱形正方形※6.几个常见的面积等式和关于面积的真命题:几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:成比例线段、第四比例项、比例中项、黄金分割、相似三角形、相似比. 二 定理:※1.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.※2.“平行”出比例定理:平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.※3.“SSS ”出相似定理:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.※4.“HL ”出相似定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 三 常识:1.三角形中,作平行线构造相似形和已知中点构造中位线是常用辅助线. ※2.证线段成比例的题中,常用的分析方法有:(1)直接法:由所要求证的比例式出发,找对应的三角形(一对或两对),判断并证明找到的三角形相似,从而使比例式得证; (2)等线段代换法:由所证的比例式出发,但找不到对应的三角形,可利用图形中的相等线段对所证比例式中的线段(一条或几条)进行代换,再利用新的比例式找对应的三角形证相似或转化;(3)等比代换法(即中间比法):用上述的直接法或间接法都无法解决的证比例线段的问题,且题目中有两对或两对以上的相似形,可考虑用等比代换法,两对相似形的公共边或图形中的相等线段往往是中间比,即要证dc ba =时,可证f eb a =且fed c =从而推出dc ba =;(4)线段分析法:利用相似形的对应边成比例列方程,并求线段长是常见题目,这类题目中如没有现成的比例式,可由题目中的已知线段和所求线段出发,找它们所围成的三角形,若能证相似,即可利用对应边成比例列方程求出线段长. 3.相似形有传递性;即: ∵Δ1∽Δ2 Δ2∽Δ3∴Δ1∽Δ3重新认识备课备课的实质是教师对自己学科思想的阐释,对学科知识体系的梳理,更是对教学活动的组织过程以及所涉及的时间、内容和空间结构的规范和优化的过程。
八年级数学下册知识点总结一、实数1.1 实数的定义及分类实数包括有理数和无理数。
有理数是可以表示为两个整数比的数,包括整数、分数、小数(有限小数和无限循环小数)。
无理数是不能表示为两个整数比的数,例如√2和π。
1.2 实数的性质(1)实数具有加法、减法、乘法、除法四种运算。
(2)实数具有相反数、倒数等概念。
(3)实数可以进行大小比较。
1.3 实数与数轴数轴是一条直线,规定了原点、正方向和单位长度,实数与数轴上的点一一对应。
二、整式与函数2.1 整式的定义及分类整式是只有加、减、乘运算,且运算对象为整数的代数式。
整式包括单项式和多项式。
2.2 整式的运算(1)单项式的运算:加、减、乘、除。
(2)多项式的运算:加、减、乘、除。
2.3 函数的定义及性质函数是一种对应关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的元素。
函数具有唯一性、连续性、单调性等性质。
2.4 一次函数一次函数是形如y=kx+b(k、b为常数,k≠0)的函数。
一次函数的图像是直线。
2.5 二次函数二次函数是形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数。
二次函数的图像是一条抛物线。
三、三角形3.1 三角形的定义及性质三角形是由三条边和三个角组成的图形。
三角形的内角和为180∘,任意两边之和大于第三边。
3.2 三角形的分类(1)锐角三角形:三个内角都小于90∘。
(2)直角三角形:一个内角为90∘。
(3)钝角三角形:一个内角大于90∘。
3.3 三角形的判定(1)SSS 判定:三角形的三边分别相等,则这三个三角形全等。
(2)SAS 判定:三角形的两边和它们夹角分别相等,则这两个三角形全等。
(3)ASA 判定:三角形的两角和它们夹边分别相等,则这两个三角形全等。
(4)AAS 判定:三角形的两角和其中一边分别相等,则这两个三角形全等。
四、平行四边形4.1 平行四边形的定义及性质平行四边形是具有两对平行边的四边形。
最全面八年级下册数学知识点归纳总结八年级下册数学知识点归纳总结一、代数基础1.数的基础知识正数、负数的概念,求相反数,绝对值。
2.代数式代数式的概念,如何列代数式,代数式的简单加减乘除。
3.一元一次方程一元一次方程的概念,如何列一元一次方程,方程的解。
4.解一元一次方程组一元一次方程组的概念,如何列一元一次方程组,解一元一次方程组。
二、图形的性质1.平面图形各种多边形的定义、性质和判定方法。
2.圆的相关知识圆的定义和性质、弧、圆周角、相交弧、相切弧的性质。
3.相似三角形相似三角形的概念、性质、判定方法及三倍线定理。
4.勾股定理勾股定理的概念、性质、证明及应用场景。
5.解锐角三角函数正弦、余弦、正切函数,锐角函数基本关系式。
三、空间几何1.空间图形的计算长方体、正方体、球体等几何体的体积、表面积的计算。
2.解同面直线和平面的关系两个平面的交线是直线,两个直线的位置关系是什么,两个直线的夹角,两条垂直直线之间的夹角。
3.平面与立体图形的关系平面和立体图形的交、相交线,截面的形状及性质。
四、统计数学1.概率的基本概念概率的概念、事件、随机事件的计算公式,样本空间、基本事件。
2.事件的独立性事件的并、交、余、互斥,两个事件的独立性及其判定。
3.频率与概率的关系频率与概率的定义及其区别,频率越大,概率越小。
五、函数初步1.函数的定义函数的概念及表示方法,自变量、因变量和函数值。
2.函数的图像与性质函数图像的概念,单调性、奇偶性、周期性、对称性等。
3.函数的应用如何应用函数进行模型建立,自变量和因变量的定量关系。
六、反比例函数1.反比例函数的概念反比例函数的定义,反比例函数图像。
2.反比例函数的性质反比例函数的单调性、渐近线、变化率,反比例函数与直线的关系。
3.应用反比例函数如何应用反比例函数进行模型建立,自变量和因变量的定量关系。
七、数列1.等差数列等差数列的概念、通项公式、通项公式的推导及应用。
2.等比数列等比数列的概念、通项公式、通项公式的推导及应用。
初二数学下册知识点总结(非常有用) 初二数学下册知识点总结,这可是个大活儿!咱们得好好聊聊这个话题,毕竟数学可是咱们生活中必不可少的一部分。
今天,我就来给大家讲讲初二数学下册的一些知识点,让大家对数学有更深入的了解。
咱们来说说代数部分。
代数嘛,就是让咱们用字母来表示数字和运算。
在初二数学下册中,咱们学了一些新的字母,比如x、y、z等等。
这些字母可以代表任何数字,只要你知道它们的名字就行。
而且,咱们还学了一些新的运算,比如加法、减法、乘法、除法等等。
这些运算可以让咱们解决很多问题,比如计算面积、体积、速度、时间等等。
咱们来说说几何部分。
几何嘛,就是让咱们用图形来表示空间中的物体和关系。
在初二数学下册中,咱们学了一些新的图形,比如三角形、四边形、五边形等等。
这些图形可以代表很多不同的物体和关系,比如角的大小、边的长度、面积等等。
而且,咱们还学了一些新的定理,比如勾股定理、相似三角形定理、圆周率定理等等。
这些定理可以帮助咱们更好地理解图形和空间关系。
再来说说函数部分。
函数嘛,就是让咱们用一个变量来表示另一个变量之间的关系。
在初二数学下册中,咱们学了一些新的函数,比如正比例函数、反比例函数、二次函数等等。
这些函数可以代表很多不同的关系,比如速度与时间的关系、价格与数量的关系等等。
而且,咱们还学了一些新的性质,比如对称性、奇偶性、周期性等等。
这些性质可以帮助咱们更好地理解函数和它们之间的关系。
咱们来说说概率部分。
概率嘛,就是让咱们用数学方法来描述随机事件的发生可能性。
在初二数学下册中,咱们学了一些新的概率概念,比如期望值、方差、协方差等等。
这些概念可以帮助咱们更好地理解随机事件和它们的规律性。
而且,咱们还学了一些新的概率计算方法,比如条件概率、贝叶斯公式等等。
这些方法可以帮助咱们更好地处理实际问题中的随机事件。
今天就跟大家聊到这里啦!希望这篇文章能让大家对初二数学下册的知识点有更深入的了解。
记住哦,数学虽然是一门严谨的学科,但也有很多趣味性和实用性。
八年级数学下册知识点总结八年级数学下册知识点总结八年级数学下册知识点总结1数学数轴知识点①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
初一数学概念知识点复习1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的'角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
初二下学期数学八年级下学期数学知识点总结(精选8篇)初二下册数学知识点篇一1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析加权平均数、中位数、众数、极差、方差初二下册数学知识点归纳北师大版篇二第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
初二下数学知识点归纳总结初二下学期的数学课程内容丰富多样,包括了各种数学知识点。
本文将对初二下数学知识点进行归纳总结,以供学生们复习和巩固。
一、代数与方程式1. 代数表达式与多项式- 代数表达式的定义与运算规则- 多项式的概念与分类- 完全平方公式的运用2. 一元一次方程与一元一次不等式- 解一元一次方程的基本步骤- 一元一次不等式的解集表示与图像表示3. 二元一次方程组- 解二元一次方程组的常用方法(代入法、消元法)- 二元一次方程组的应用题4. 整式的加减法- 整式加减的运算法则与步骤- 同类项的概念与合并5. 分式- 分式的概念与基本性质- 分式的四则运算(加减乘除)二、函数与图像1. 函数的概念与性质- 自变量、函数值、函数图像的关系 - 函数的奇偶性与周期性2. 一次函数- 一次函数的定义与性质- 斜率的计算与意义- 一次函数图像的绘制与变换3. 二次函数- 二次函数的定义与性质- 二次函数图像的绘制与变换- 二次函数的最值与解析式4. 指数函数与对数函数- 指数函数的概念与性质- 对数函数的概念与性质- 指数函数与对数函数的应用题三、几何与三角学1. 平行四边形- 平行四边形的性质与判定定理 - 平行四边形的周长与面积计算2. 直角三角形- 直角三角形的性质与定理- 三角比的计算与应用- 直角三角形的勾股定理与逆定理3. 图形的相似与全等- 图形相似的判定条件- 图形全等的判定条件与性质- 图形相似与全等的应用题4. 圆的性质与相关公式- 圆的定义与性质- 弧长与扇形面积的计算- 圆内接四边形性质与相交弦定理四、数据与统计1. 统计图- 条形图、折线图、饼图的绘制与解读- 不同统计图的适用场景2. 概率- 事件、样本空间与概率的基本概念- 基本概率公式与计算方法- 多个事件的概率运算以上是初二下学期数学知识点的归纳总结。
希望本文对于初二学生复习和巩固数学知识有所帮助。
同学们在学习过程中,要注重理解每个知识点的概念与性质,掌握解题方法与技巧,并进行大量的练习和应用。
八年级下册数学总知识点中学数学是学生从小学数学到高中数学的桥梁,是数学的重要阶段之一。
八年级下学期数学包括代数、几何、三角函数、数列等多个部分,这些知识点是数学学科中的基础性内容。
为了帮助各位同学更好地掌握八年级下学期数学的知识,本文总结了八年级下学期数学的重点知识点,供各位同学参考。
一、代数部分1.括号与分配律(1)数学表达式中的一对括号,可用分配律分离成两个单独的数(2)使用分配律将多个括号中的项相加减2.一元一次方程组的解法(1)图解法(2)代入法(3)消元法(4)坐标法二、几何部分1.图形的认识(1)直线和角的概念(2)点、线、面的基本关系:直线和平面分割(3)三角形的定义及性质2.三角形的相似(1)相似三角形的定义和性质(2)通过比例计算相似三角形的边长3.勾股定理(1)勾股定理的概念和证明(2)用勾股定理求直角三角形的斜边或直角边长三、三角函数部分1.三角函数的概念(1)正弦函数、余弦函数、正切函数的定义及周期性性质(2)余切函数、正割函数和余割函数的定义2.三角函数与三角恒等式(1)差角公式(2)和角公式(3)正弦定理和余弦定理四、数列部分1.数列定义及其常用符号(1)数列概念和表示(2)常见符号含义2.数列的通项公式(1)整数数列、等差数列、等比数列和几何数列的概念和求和公式(2)通项公式的求解方法总结八年级下学期数学知识点较为密集,需要反复学习复习才能掌握。
本文列举了代数、几何、三角函数、数列等多个部分的知识点,同学们应该按照知识点的重要性,认真复习,并结合相关习题来检验自己的掌握程度。
只有通过反复的学习和复习,才能在数学学科中取得更好的成绩。
初二数学下册知识点总结(非常有用)
收集于网络,如有侵权请联系管理员删除
初二数学(下)应知应会的知识点
二次根式
1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.
2.重要公式:(1))0a (a )a (2≥=,(2)⎩
⎨⎧<-≥==)0a (a )
0a (a a a 2 ;注意使用
)0a ()a (a 2≥=.
3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅. 5.二次根式比较大小的方法: (1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (b
a b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 7.二次根式的除法法则: (1)
)0b ,0a (b
a
b a >≥=
; (2))0b ,0a (b a b a >≥÷=÷;
(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同
乘分母的有理化因式,使分母变为整式.
8.常用分母有理化因式: a a 与,b a b a +-与,
b n a m b n a m -+与,它们也叫互为有理化因式.
9.最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式
是整式,② 被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式.
10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题. 11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.
12.二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.
四边形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
收集于网络,如有侵权请联系管理员删除
精品文档
收集于网络,如有侵权请联系管理员删除
6. 矩形的判定:
几何表达式举例: E
F
D C
E D
A E D C B
收集于网络,如有侵权请联系管理员删除
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四
边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理 ※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于
这一点对称. 三 公式:
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)
3.S 梯形 =2
1(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)
3n (n . 2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
※5.梯形中常见的辅助线:
平行四边形
矩形
菱形
正方形
※6.几个常见的面积等式和关于面积的真命题:
明)
收集于网络,如有侵权请联系管理员删除
精品文档
收集于网络,如有侵权请联系管理员删除
4.定理:“AA ”出相似 几何表达式举例: 一 基本概念:成比例线段、第四比例项、比例中项、黄金分割、相似三角形、相似比. 二 定理:
※1.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. ※2.“平行”出比例定理:平行于三角形的一边,并且和其它两边相交的直线,所截得的三角
形的三边与原三角形三边对应成比例.
※3.“SSS ”出相似定理:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那
么这两个三角形相似.
※4.“HL ”出相似定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边
和一条直角边对应成比例,那么这两个直角三角形相似. 三 常识:
1.三角形中,作平行线构造相似形和已知中点构造中位线是常用辅助线. ※2.证线段成比例的题中,常用的分析方法有:
(1)直接法:由所要求证的比例式出发,找对应的三角形(一对或两对),判断并证明找
到的三角形相似,从而使比例式得证;
(2)等线段代换法:由所证的比例式出发,但找不到对应的三角形,可利用图形中的相等
线段对所证比例式中的线段(一条或几条)进行代换,再利用新的比例式找对应的三角形证相似或转化;
(3)等比代换法(即中间比法):用上述的直接法或间接法都无法解决的证比例线段的问
题,且题目中有两对或两对以上的相似形,可考虑用等比代换法,两对相似形的公共边
精品文档
收集于网络,如有侵权请联系管理员删除
或图形中的相等线段往往是中间比,即要证d
c b
a
=
时,可证f e b a =且f e d c =
从而推出d
c b a =; (4)线段分析法:利用相似形的对应边成比例列方程,并求线段长是常见题目,这类题目
中如没有现成的比例式,可由题目中的已知线段和所求线段出发,找它们所围成的三角形,若能证相似,即可利用对应边成比例列方程求出线段长. 3.相似形有传递性;即: ∵Δ1∽Δ2 Δ2∽Δ3
∴Δ1∽Δ3。