发动机活塞连杆组—活塞详解毕业论文外文文献翻译及原文
- 格式:doc
- 大小:166.50 KB
- 文档页数:19
发动机活塞连杆组的结构及功用发动机活塞连杆组的结构及功用发动机活塞连杆组由活塞连杆、活塞连接器及轴承组成,主要功能是在发动机内作传动运动,将活塞上的运动能量传递给发动机的其他部件,实现发动机的正常运行。
活塞连杆的主要结构有:活塞头,活塞杆,活塞头和轴承销,活塞头支架,轴承盖和轴承座,连接器,支撑座和拉杆(调节杆)。
活塞头是活塞连杆组中最重要的部分,它连接活塞和活塞杆,在发动机工作过程中,活塞头上的碳和氮元素材料不仅要能够耐高温,而且要有较强的耐磨性,以便在发动机的工作过程中,可以承受活塞的滑动和冲击力。
活塞杆的结构主要由中间轴承部分和连杆部分组成,它将活塞头和活塞头支架连接在一起,并连接着发动机的机械部件,它在发动机的工作过程中能承受活塞杆上的拉力、扭矩、温度及其他外力,使活塞杆不会发生断裂。
活塞头和轴承销是活塞连杆组的结构部件,它可以起到固定活塞杆和活塞头的作用,并抗震和衰减振动,在发动机的工作过程中,活塞头和轴承销可受高转速带来的冲击和波动,具备良好的抗冲击和抗磨损性能。
活塞头支架是用来支撑活塞杆的部件,使活塞杆和发动机的其他部件紧密结合,拉杆(调节杆)用来调整活塞杆的位置,可使活塞杆连接发动机的其他部件,使发动机的工作流畅。
轴承盖和轴承座是用来安装及保护轴承的设备,在发动机的工作过程中,轴承能够承受活塞杆传递的大量载荷,而轴承盖和轴承座则能够吸收并减少这些力。
连接器用来连接活塞杆和发动机的其他部件,如曲轴、凸轮轴、发电机等,以实现发动机的正常运行,连接器的结构可根据发动机的不同种类和工作要求而有所不同。
支撑座用来保护活塞连杆组的稳定性,可防止活塞运动时产生的振动和震动。
总之,发动机活塞连杆组是发动机的关键部件,它不仅要能够承受活塞的高温、拉力和振动,而且还要具备一定的耐磨性,以保证发动机的正常运行。
活塞连杆组是内燃机中的核心组件之一,负责将燃气产生的热能转化为机械能,从而驱动汽车、发电机等设备运转。
下面将详细介绍活塞连杆组的工作原理。
活塞连杆组主要由活塞、连杆和曲轴组成。
当内燃机工作时,混合气在气缸内被点燃,产生的燃气膨胀推动活塞向下运动。
活塞上的连杆将这一线性运动转化为曲轴的旋转运动。
在这个过程中,连杆起到了传递动力和改变运动方向的作用。
具体来说,当活塞受到燃气压力向下运动时,连杆的一端(小头)与活塞销连接,跟随活塞一起向下移动。
连杆的另一端(大头)与曲轴连接,通过曲轴的旋转,将活塞的线性运动转化为旋转运动。
这个过程中,连杆的长度和角度都是经过精心设计的,以确保在活塞上下运动时,曲轴的旋转运动是平稳且均匀的。
在活塞到达最低点时,燃气压力达到最大,此时连杆将这一最大力量传递给曲轴。
随着燃气的排放和活塞的上升,燃气压力逐渐减小,连杆传递的力量也随之减小。
这个过程中,曲轴在连杆的推动下持续旋转,从而输出动力。
为了保证活塞连杆组的高效运行,需要对其进行定期维护和保养。
例如,定期检查活塞和连杆的磨损情况,确保它们的连接紧固可靠;定期更换机油,以减少摩擦和磨损;定期检查曲轴的平衡性,确保其旋转平稳。
总之,活塞连杆组的工作原理体现了内燃机的基本原理和精密机械设计的结合,是汽车和发动机正常运转的关键所在。
发动机活塞连杆组的组成发动机活塞连杆组的组成部分包括活塞、活塞环、活塞销、连杆等部件,具体的结构组成是:1、活塞活塞是汽车发动机的“心脏”,承受交变的机械负荷和热负荷,是发动机中工作条件最恶劣的关键零部件之一。
活塞的作用用是承受气体压力,并通过活塞销传给连杆驱使曲轴旋转,活塞顶部还是燃烧室的组成部分。
2、活塞环(1)密封:指密封燃气,不让燃烧室的气体漏到曲轴箱,把气体的泄漏量控制在最低限度,提高热效率。
漏气不仅会使发动机的动力下降,而且会使机油变质,这是气环的主要任务;(2)调节机油(控油):把气缸壁上多余的润滑油刮下,同时又使缸壁上布有薄薄的油膜,保证气缸和活塞及环的正常润滑,这是油环的主要任务。
在现代高速发动机上,特别重视活塞环控制油膜的作用;(3)导热:通过活塞环将活塞的热量传导给缸套,即起冷却作用。
非冷却活塞中活塞顶所受的的热量中有70~80%是通过活塞环传给缸壁而散掉的,冷却活塞中有30~40%是通过活塞环传给缸壁而散掉的;(4)支承:活塞环将活塞保持在气缸中,防止活塞与气缸壁直接接触,保证活塞平顺运动,降低摩擦阻力,而且防止活塞敲缸。
一般汽油发动机的活塞采用两道气环,一道油环,而柴油发动机通常采用两道气环,一道油环。
3、活塞销活塞销用来连接活塞和连杆,并将活塞承受的力传给连杆或相反。
活塞销在高温条件下承受很大的周期性冲击负荷,且由于活塞销在销孔内摆动角度不大,难以形成润滑油膜,因此润滑条件较差。
为此活塞销必须有足够的刚度、强度和耐磨性。
4、连杆连杆的作用是把活塞与曲轴联接起来,使活塞的往复直线运动变为曲柄的回转运动,以输出动力。
5、连杆瓦汽车的连杆瓦片起到连杆瓦起连接、支撑、传动作用。
6、连杆螺栓因为连杆需要装在曲轴上使用,连杆大孔就必须剖成两半,连杆螺栓就是在连杆套在曲轴后把连杆瓦盖和连杆这两半连接起来。
7、发动机轴瓦轴瓦的作用主要是用于连杆或者曲轴在高速运转的时候起到摩擦保护作用。
简述活塞连杆组的组成和功用活塞连杆组是汽车发动机中至关重要的一组组件,由活塞、曲轴和连杆三部分组成。
本文将简要介绍活塞连杆组的组成和功用。
1. 活塞活塞是活塞连杆组中的主要部件,位于发动机曲轴下方,是推动曲轴旋转的主要力量来源。
活塞由红黑两种材料制成,黑色材料是炭黑,具有良好的耐磨性,而红色材料则是钢,具有较高的强度和韧性。
活塞的上表面是凸轮轴,下表面是曲轴,它们之间通过连杆连接。
2. 曲轴曲轴是活塞连杆组中的次要部件,位于活塞上方,是旋转的力量来源。
曲轴由铁制成,具有较好的韧性和强度,与活塞通过连杆连接。
3. 连杆连杆是活塞连杆组中的主要部件,由多个零件组成,包括连杆头、连杆颈、连杆体和曲轴柄。
连杆头连接着曲轴和活塞,连杆颈连接着两个曲轴,连杆体连接着曲轴和活塞颈,曲轴柄连接着连杆体和活塞。
4. 连杆头连杆头是连杆组中的重要部件,由多个零件组成,包括上关节、下关节和横销。
上关节连接着连杆颈,下关节连接着活塞,横销连接着两个连杆颈。
5. 连杆颈连杆颈是连杆组中的重要部件,由多个零件组成,包括活塞销、连杆头和曲轴柄。
活塞销连接着活塞和连杆头,连杆头连接着连杆颈和曲轴柄。
6. 曲轴柄曲轴柄是连杆组中的重要部件,由多个零件组成,包括上关节和下关节。
上关节连接着曲轴柄和连杆体,下关节连接着活塞。
7. 活塞销活塞销是活塞组中的重要部件,位于活塞顶部,是连接活塞和连杆头的主要部件。
活塞连杆组的功用是推动发动机运转,将机械能转化为热能,供给汽车燃料消耗和产生动力。
具体来说,活塞连杆组的作用如下:1. 提供动力:活塞连杆组通过曲轴旋转将机械能转化为热能,供给汽车引擎产生动力。
2. 维持曲轴旋转:活塞连杆组将动力传递给曲轴,使曲轴旋转,进而驱动汽车车轮转动。
3. 控制燃烧过程:在燃烧室内,活塞连杆组通过控制燃烧过程,使燃料在缸内燃烧产生能量,进而产生动力。
活塞连杆组是汽车发动机中至关重要的一组组件,不仅为汽车提供了动力,还维持着汽车正常行驶的安全性和稳定性。
387柴油机设计(活塞连杆组)摘要本文主要介绍387柴油机活塞连杆组的设计。
在本次设计中,考虑到387柴油机主要应用于农业生产中的中小型机械,环境往往较为恶劣,需要内燃机具有较好的动力性能为农机产品提供足够的动力。
本次设计在387柴油机基础上加大了活塞的工作行程,改球形燃烧室为W形燃烧室,使其动力性与经济性都有所提高。
但由于工作行程的加大,平衡性变差,噪音与震动加大,在设计时对其采取一定的措施。
燃烧系统采用直喷型,易启动,节能效果明显,可使经济性和动力性大大提高。
发动机转速为3000r/min左右,12h标定功率约27kW,符合当今低速汽车对转速及功率的需求。
通过参数及工艺性能的控制可使燃油消耗率保持在245g/kW.h以内。
本文着重讨论了活塞连杆组部位的设计要求及特点。
本人主要任务是设计387柴油机的活塞连杆组,首先根据柴油机的性能指标对柴油机主要的性能参数进行了选择。
然后在参照387柴油机的活塞连杆组进行结构设计。
在阐述活塞连杆组设计过程的同时也对主要零部件的设计要点作了总结。
本说明书中重点论述了387柴油机活塞连杆组的设计依据与设计过程。
关键词:柴油机,活塞,连杆THE DESIGN OF 387 DIESEL ENGINE (PARTS OFPISTON GROUP)ABSTRACTThis paper mainly introduces the design of the 387 diesel engine parts of piston group. In this design, considering the 387 diesel engines are mainly applied in small and medium-sized machinery, agricultural production environment is bad, need often has better performance for internal machinery products provide enough power. The Diesel 387 which designed this time is on the basis of the old Diesel 387 and increasing the piston stroke, with its power performance and economical efficiency enhanced. However, because of the work itinerary increased, its balance became worse, noise and vibration also increased. So in this design, I have to take some certain measures. Combustion Chamber using injection type, easy to start, energy saving effect, and can make the efficiency and performance improved greatly. The engine speed is 3000r/min, about 27kW/12h calibration power, speed and the current low power of the car needs. Through the parameters and process performance control can make fuel consumption in 245g/kW.This paper discusses the design requirements and characteristics of the cylinder important parts。
北京建筑工程学院机电与汽车工程学院
毕业设计评价手册
学生姓名刘建
专业机械工程及自动化
班级机084
学号2105120812111
指导教师朱爱华
二O一二年二月七日一、毕业设计论文任务书
三、毕业设计(论文)指导书
三、调研提纲
四、调研报告评语及成绩
五、外文翻译评语及成绩
六、学生期中小结
七、期中检查评语及成绩
八、学生出勤情况
九、指导教师评语及建议成绩
十、审核人意见及建议成绩
十一、答辩记录
十二、答辩委员评定成绩记录
十三、答辩委员会评语及总评成绩
十四、学生对毕业设计(论文)题目及指导教师评价
十五、学生对毕业设计过程管理方法的意见及建议
(论文)题目教师
学生姓名专业班级
学生签字:年月日。
第一单元发动机分类及工作原理课文A发动机的分类所有的汽车发动机都是内燃机(ICE),就是将燃油在气缸内进行燃烧,并将燃烧产生的膨胀压力转变成转动力,用来驱动汽车。
所以说,发动机是动力源, 并被认为是汽车的心脏。
汽车发动机根据工作方式分为往复式发动机和转子发动机:报据发动机燃烧的燃料分为汽油机和柴油机:根据发动机的气缸数量和气缸排列方式分为直列发动机、V型发动机、对置式发动机和W型发动机。
往复式发动机和转子发动机往复式发动机也称为活塞式发动机。
该发动机采用一个或多个活塞在气缸内上下运动或前后运动,将压力转变为转动动能传递给汽车驱动轮(见图1-1)。
往复式发动机广泛应用现代汽车上。
转子发动机是于1954年研发出来的。
如图1-2所示,在该发动机中,有个三角形的转子在燃烧室内旋转。
膨胀气体使转子旋转,产生动力并排出废气。
转子发动机没有活塞和气门等往复部件。
转子发动机产生马力大、无振动,但其燃油消耗比往复式发动机要高。
汽油机和柴油机汽油机以汽油作为燃料。
采用火花塞点燃缸内的可燃混合气,产生动力使汽车行驶,如图1-3a所示。
汽油机也称为火花点燃式发动机。
该发动机的特点是转速高,运行平顺,结构简单,重量轻,成本低。
几乎所有轿车都采用汽油机。
柴油机以柴油作为燃料。
该发动机的工作原理足通过压缩缸内的空气使其升温,冉使喷油嘴喷入的柴油燃烧,产生动力驱动汽车(见图1-3b),所以也称为压燃式发动机。
柴油机要比汽油机的动力更强劲,燃油经济性更好。
常见于所有的大型货车、客车和部分轿车上。
直列发动机,V型发动机,水平对置式发动机,W型发动机通过气缸数最和气缸排列方式可以识别发动机结构。
当今所有的紧凑型轿车都配有4缸发动机,一些中型级轿车配有6缸发动机,大型轿车配有8缸或12缸发动机。
在多气缸发动机上,气缸通常以四种排列方式中的一种排列,有:直列式、V型、水平对置式和W型。
直列式发动机中的气缸按直线排列,采用一个气缸蓝。
几乎所有4缸发动机都采用该种排列(兄阁1-4)。
各种发动机工作原理飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。
自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。
飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。
按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示:吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。
一般所说的航空发动机即指这类发动机。
如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。
火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。
它也可用作航空器的助推动力。
按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。
按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。
直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。
直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。
间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。
这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。
而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。
文章标题:活塞连杆组的基本结构组成与作用探析在内燃机中,活塞连杆组是一个至关重要的部件,其结构和作用直接影响着内燃机的性能和效率。
本文将从简述活塞连杆组的基本结构组成和作用入手,深入探讨该主题。
一、活塞连杆组的基本结构组成1. 活塞活塞是活塞连杆组的核心部件,它负责与气缸壁之间形成密闭的工作容积,从而实现压缩、燃烧和排气的功能。
活塞通常由铝合金材料制成,具有较高的强度和耐磨性,同时要求具备轻量化的特点,以减少惯性负荷。
2. 连杆连杆是活塞连杆组中连接活塞和曲轴的部件,其主要作用是将活塞的往复运动转化为曲轴的旋转运动。
连杆一般由合金钢铸造而成,具有较高的强度和耐腐蚀性能,同时要求重量轻、刚性好,以保证内燃机高速运转时的可靠性。
3. 曲轴曲轴是内燃机中的运动部件,其主要作用是将连杆的往复线性运动转化为旋转运动,从而驱动输出轴进行动力传递。
曲轴通常由合金钢材料制成,其表面经过精密加工,以保证其在高速旋转时的平衡性和稳定性。
二、活塞连杆组的作用1. 能量转换活塞连杆组作为内燃机的关键部件,其作用是将燃气压力能量转化为机械能,从而驱动曲轴旋转。
通过活塞向下运动形成的冲击力,驱动曲轴旋转,从而带动机械装置实现运动,实现能量的传递和转换。
2. 运动传递活塞连杆组将活塞的往复线性运动转化为曲轴的旋转运动,通过连杆与曲轴的配合,实现了往复运动到旋转运动的转换,从而驱动发动机的正常工作。
3. 安全保障活塞连杆组的结构合理性和工作稳定性直接关系到内燃机的安全性和可靠性。
通过对活塞连杆组的合理设计和材料选择,可以保证其在高速运转下不产生断裂和严重磨损,从而确保内燃机的正常运行。
活塞连杆组作为内燃机的重要组成部分,其结构和作用对内燃机的性能和可靠性有着重要影响。
只有充分理解活塞连杆组的基本结构组成和作用,才能更好地维护和管理内燃机,使之发挥最佳的性能和效率。
个人观点:活塞连杆组的设计和运行状态直接关系到内燃机的效率和可靠性。
毕业设计活塞连杆组设计毕业设计:活塞连杆组设计引言:毕业设计是每位工程学子的重要任务,它不仅是对所学知识的综合应用,更是对学生能力的全面考验。
在机械工程领域,设计一个高效可靠的活塞连杆组对于发动机的性能至关重要。
本文将深入探讨毕业设计中活塞连杆组设计的关键要素和方法。
一、活塞连杆组的作用与结构活塞连杆组是内燃机中的重要部件,它连接活塞和曲轴,将活塞的往复运动转化为曲轴的旋转运动。
活塞连杆组的结构包括活塞、连杆和曲轴。
活塞通过连杆与曲轴相连,实现能量传递和转换。
二、活塞连杆组设计的关键要素1. 强度与刚度:活塞连杆组在工作过程中承受着巨大的压力和冲击力,因此其强度和刚度是设计中的重要考虑因素。
通过合理选择材料和优化结构,可以提高活塞连杆组的强度和刚度,从而增加其使用寿命。
2. 动力学特性:活塞连杆组的设计还需要考虑其动力学特性,包括质量分布、惯性力和振动等。
合理设计活塞连杆组的质量分布可以降低振动和惯性力对发动机的影响,提高发动机的平稳性和稳定性。
3. 润滑与密封:活塞连杆组在工作过程中需要保持良好的润滑和密封性能,以减少摩擦和磨损。
设计时需要考虑润滑系统和密封结构的合理性,确保活塞连杆组的正常工作。
三、活塞连杆组设计的方法1. 材料选择:活塞连杆组的材料选择应考虑强度、刚度、耐磨性和耐腐蚀性等因素。
常用的材料有铸铁、钢和铝合金等。
根据具体的工作条件和要求,选择适合的材料。
2. 结构设计:活塞连杆组的结构设计需要考虑到强度和刚度的要求,同时要满足动力学特性和润滑密封的需要。
可以利用CAD等软件进行建模和优化,通过有限元分析等方法,评估设计方案的可行性。
3. 工艺制造:活塞连杆组的工艺制造对于其性能和质量同样重要。
在制造过程中,需要保证加工精度和表面质量,以及合理的热处理和装配工艺,确保活塞连杆组的可靠性和稳定性。
结论:活塞连杆组设计是毕业设计中的重要内容,它关系到发动机的性能和可靠性。
合理选择材料、优化结构、考虑动力学特性和润滑密封等因素,是设计一个高效可靠的活塞连杆组的关键。
发动机活塞连杆组是发动机的重要组成部件,主要由活塞、活塞环、活塞销和连杆等部分组成。
以下是活塞连杆组的简介:活塞:活塞的主要作用是承受气缸的气体压力,并将此力通过活塞销传给连杆,以推动曲轴旋转,它把燃烧气体的压力传给曲轴,使曲轴旋转并输出动力。
活塞的顶部还与气缸盖、气缸壁共同组成燃烧室。
活塞环:活塞环的作用是密封气缸,防止气缸内的气体泄漏到曲轴箱内,同时也防止曲轴箱内的机油窜入气缸内。
活塞销:活塞销的作用是将活塞承受的气体压力传递给连杆。
连杆:连杆将活塞的往复运动转变为曲轴的旋转运动。
连杆小头与活塞销连接,同活塞一起做往复运动;连杆大头与曲柄销连接,同曲轴一起做旋转运动。
此外,活塞连杆组的工作原理是将活塞的往复运动通过连杆转化为曲轴的旋转运动,从而驱动车辆前进。
在工作过程中,活塞连杆组受到高温、高压、摩擦和冲击等复杂因素的影响,因此需要具有良好的机械性能和耐久性。
附件1:外文资料翻译译文连杆在活塞往复式发动机内,连杆连接着装在曲柄或曲轴上的活塞。
《巧妙的机械装置知识》一书这样写道:“连杆发明于1174年至1200年的某个时候,当一个名为阿拉-贾扎里的穆斯林发明家、工程师和工匠,制造了5个机器来为土耳其阿尔图格王朝的一位国王泵水——这些机器的其中之一就使用了连杆。
将旋转运动转变成往复运动可能需要依靠连接到曲柄上的连杆。
”双作用往复活塞泵是第一个提供自动运动的机器,但其机构和其他如凸轮一类的机构也有助于工业革命的开启。
内燃机在现代汽车内燃发动机里,用于发动机的连杆通常由钢制造,但也可以用铝(目的是为了减轻重量和获得在牺牲耐久度的条件下吸收强冲击的能力)或钛(目的是为了在需要支持力时提供一种既轻又有足够强度的组合)来制造高性能发动机的连杆,或使用铸铁,如制造摩托车连杆时就使用铸件。
它们不会严格地固定于一端,于是当连杆作上下运动和绕曲柄旋转时连杆与活塞之间的夹角就发生改变。
连杆较小的一端连接活塞销,活塞销(英国用语)或腕销,这通常会给连杆以经常性的压力,但连杆仍能相对于活塞转动即“浮动腕销”。
连杆的大端连接于曲柄上的轴颈处,并随着由连杆螺栓固定的可更换的轴瓦转动,螺栓将轴承“盖”固定在连杆的大端处;通常要钻一个通过轴瓦和连杆的大端小孔,以便使增压润滑油能喷到筒壁的一侧,来使活塞和活塞环的运动得到润滑。
连杆承受着巨大的压力,这些压力来自于由活塞产生的循环载荷,而事实上这些压力来自于每次旋转时的拉伸与松弛,以及随发动机转速增大而急剧增大的载荷。
一个失效的连杆,通常被称为“扔棒”,它是引起汽车引擎灾难性故障最常见的原因之一,经常使失效的连杆穿过曲轴轴箱的一侧,发动机会遭受无法弥补的损坏;它可能源于连杆的疲劳缺陷、轴瓦失去润滑而导致的失效,或源于连杆螺栓的缺陷、不适当的紧固,或重复利用已经使用过的(已变形的)螺栓(这是不允许的)。
尽管这些经常发生在竞争激烈的汽车运动中,但在为日常驾驶生产的汽车中,这种失效是十分罕见。
Connecting rod mechanisms09101203 周凤娥In a reciprocating piston engine, the connecting rod or conrod connectsthe piston to the crank or crankshaft. The connecting rod was invented sometime between 1174 an 1200 when a Muslim inventor, engineer andcraftsman named al-Jazari built five machines to pump water for the kings ofthe Turkish Artuqid dynasty — one of which incorporated the connecting rod. Transferring rotary motion to reciprocating motion was made possible by connecting the crankshaft to the connecting rod, which was described in the "Book of Knowledge of Ingenious Mechanical Devices". The double-acting reciprocating piston pump was the first machine to offer automatic motion, but its mechanisms and others such as the cam, would also help initiate the Industrial Revolution.Crank linkage of the type and characteristicsThe use of the internal combustion engine crank linkage of many types, according to kinematics perspective can be divided into three categories, namely: Heart crank linkage, the eccentric crank linkage and the main vice-link crank linkage. Centre crank linkage is characterized by the cylinder through the centerline of the crankshaft rotation centre and perpendicular to the axis of rotation of the crank. This type of linkage in the internal combustion engine crank in the most widely used. The single-engine general, tied for linkage with the use of the V-shaped chaxing link the internal combustion engine, and the home of the piston internal combustion engine crank linkage fall into this category.Eccentric crank linkage is characterized by vertical cylinder centerline of the crankshaft rotating in the center, but not by crankshaft rotary centre, the cylinder centerline distance between the crankshaft with a rotary axis offset e. This crank linkage institutions can reduce the swelling in the itinerary of the piston and cylinder intramural largest lateral pressure so that the pistons in the expansion programme and pressure reduction programme in the cylinder wall at the role of lateral pressure on both sides of the relatively uniform size. Vice-link the main crank linkage is characterized by: the internal combustion engine cylinder with a main link, the other out vice-link cylinder used, these are not direct link to the bottom of the crank pins, but on sale through the deputy link with in the main link of the big heads, formed a "joint" movement, such institutions also sometimes referred to as "joint song stalk linkage".Crank linkage in the joint, a crank can put a few of connecting rod and piston, This structure will shorten the length of the internal combustion engine, compact and widely used in high-power locomotives used tanks and V-shaped internal combustion engine.连杆机构在活塞往复式发动机内,连杆连接着装在曲柄或曲轴上的活塞。
活塞连杆机构的外文和翻译第一篇:活塞连杆机构的外文和翻译Modeling and Simulation of the Dynamics of Crankshaft-Connecting Rod-Piston-Cylinder Mechanism and a Universal Joint Using The Bond Graph ApproachAbstract This paper deals with modeling and simulation of the dynamics of two commonly used mechanisms,(1)the Crankshaft – Connecting rod – Piston – Cylinder system,and(2)the Universal Joint system, using the Bond Graph Approach.This alternative method of for mulation of system dynamics, using Bond Graphs, offers a rich set of features that include, pictorial representation of the dynamics of translation and rotation for each link of the mechanism in the inertial frame, representation and handling of constraints at joints, depiction of causality,obtaining dynamic reaction forces and moments at various locations in the mechanism, algorithmic derivation of system equations in the first order state-space or cause and effect form, coding for simulation directly from the Bond Graph without deriving system equations,and so on.Keywords: Bond Graph, Modeling, Simulation, Mechanisms.Modeling Dynamics of two commonly used mechanisms,(1)the Crankshaft –Connecting rod –Piston –Cylinder system,and(2)the Universal Joint system, are modeled and simulated using the Bond Graph Approach.This alternative method of formulation of system dynamics, using Bond Graphs, offers a rich set of features [1, 2].These include, pictorial representation of the dynamics of translation and rotation for each link of the mechanism in the inertial frame, depiction of cause and effect relationship,representation and handling of constraints at joints,obtaining the dynamic reaction forces and moments at various locations in the mechanism, derivation of system equations in the first order state-space or cause and effect form, coding for simulation directly from the Bond Graph without deriving system ually the links of mechanisms are modeled as rigid bodies.In this work, we develop and apply a multibond graph model representing both translation and rotation of a rigid body for each link.The links are then coupled at joints based on the nature of constraint [3-5].Both translational and rotational couplings for joints are developed and integrated with the dynamics of the connecting links.A problem of differential causality at link joints arises while modeling.This is rectified using additional stiffness and damping elements.It makes the model more realistic, bringing in effects of compliance and dissipation at joints, within definable tolerance limits.Multibond Graph models for the Crankshaft – Connecting rod – Piston – Cylinder system, and, the Universal Joint system [6], are developed using the BondGraph Approach.Reference frames are fixed on each rigid link of the mechanisms using the Denavit-Hartenberg convention [7].The translational effect is concentrated at the center of mass for each rigid link.Rotational effect is considered in the inertial frame itself,by considering the inertia tensor for each link about its respective center of mass, and expressed in the inertial frame.The multibond graph is then causaled and coding in MATLAB, for simulation, is carried out directly from the Bond Graph.A sketch of the crankshaft mechanism is shown in Fig.1, and its multibond graph model is shown in Fig.2.A sketch of the Universal joint system is shown in Fig.3, and its multibond graph model is shown in Fig.4.Results obtained from simulation of the dynamics of these mechanisms are then presented.1.1CrankshaftPiston-Cylinder Mechanism Fig.1 shows the sketch of the “Crankshaft – Connecting rod – Piston –Cylinder system.”Fig.1: Crankshaft-Connecting Rod-Piston-Cylinder Mechanism.The individual components are considered as rigid links,connected at joints.The first moving link is the crank,the second link is the connecting rod and the third link is the piston.A frame is fixed on each link.Thus frame 1 is fixed on link 1, frame 2 on link 2, and frame 3 on link 3.A fixed inertial frame 0, whose origin coincides with frame 1, is chosen.However, it will neither rotate nor translate.C1, C2 and C3 are centres of mass of respective links.The frames are fixed on respective links using the Denavit-Hartenberg convention [4].Dynamics of the system of Fig.1 is modeled in the multibond graph shown in Fig.2.The model depicts rotation as well as translation for each link in the system.The left side of the bond graph shows the rotational part and right part shows the translational part.We restrict any motion between the origin of inertial frame O and point on the link 1 that is O1 by applying source of flow Sf as zero.Similarly we restrict any relative motion at point A, distinguished by A1 on link 1 and A2 on link 2, by applying source of flow Sf as zero.The piston which is link 3, is constrained to translate only along the X0 direction.Translation along Y0 and Z0 direction is constrained by applying source of flow Sf as zero for these components.Differential causality is eliminated by making the K(1,1)element of the stiffness matrix [K] between link 2 and link 3 as zero.Additional stiffness and damping elements used for eliminating differential causality make the model more realistic, bringing in effects of compliance and dissipation at joints, within definable tolerance limits.These viscoelastic elements are represented in the bond graph by using C and R elements.Wehave a source of effort Se at link 3, which is the pressure force acting on the piston, although this force is also acting only in X direction.Fig.2: Multibond graph model for the Crankshaft –Connecting rod – Piston – Cylinder system of Fig.1.1.2 Universal Joint Mechanism The Fig.3 shows the sketch of the “ Universal Joint” mechanism.Fig.3: Universal Joint Mechanism.It has three rigid links, two are yokes which are attached to rotating shafts and the middle one is the cross connecting the two yokes.The inertial frame is numbered 0,and it is fixed.Frame 1 is on link 1, frame 2 on the cross which is link 2, and frame 3 on the right yoke which is link 3.Origin of the inertial frame coincides with that of frame 1 of link 1.The links 1 and 2 are connected with each other at two coincident end points points AB1 on link 1 and B2 on link 2.Similarly links 2 and 3 are connected at two points DE2 on link 2 and E3 on link 3.Link 1 rotates about Z axis with respect to the inertial frame.The frame 2 is located at the centre of mass of the link 2.Link 2 rotates with respect to the link 1 in direction Z2 as shown in Fig.3.Frame 3 also coincides with frame 2 but it is located on the link 2.The frame 3 on link 3 rotates with respect to the link 2, about Z3, as shown in Fig.3.The bond graph for this system is shown in Fig.4.Fig.4: Multibond graph for the Universal Joint system of Fig.The issue of differential causality arises for this mechanism also.It is eliminated using additional stiffness and damping elements.As discussed earlier, this makes the model more realistic, bringing in effects of compliance and dissipation at joints, within definable tolerance limits.The relative motion between the links at joints, along certain directions, is restrained by applying the source of flow Sf as zero.The constraint relaxation is tuned by changing the values of stiffness and damping at corresponding joints.Here we restrict the motion of the link 3 intwo directions Y and Z, and allow motion in X direction by resolving the source of flow in three parts and by putting Sf as zero in Y and Z directions only.For the simulation, an excitation torque is applied to link 1 about the Z direction 2 Simulation The results of computer simulation for the crankshaft mechanism of Fig.1 are discussed first.The initial position of the crankshaft is at 1 θ = 60o with the X0 axis.It is then released under the effect of gravity.The force of gravity also acts on the connecting rod.No force due to gas pressure is considered for the simulation as it is not the main issue under focus for this paper.The upper row in Fig.5 shows the displacement of the centre of mass C1, as observed and expressed in Frame 0.It moves in a circular arc about the Z0 axis.The first figure in the lower row of Fig.5 shows the oscillation of the crankshaft about the Z0 axis through change in orientation of the unit vectors of Frame 1.The second figure in the second row shows the oscillation of the centre of mass C1 with time.This could perhaps be ascribed to the nonlinearity imposed due to coupling with the connecting rod.Simulation results for the Universal joint system are presented in Fig.8.A constant torque is applied to the driving shaft about i ts axis.The driven shaft makes an angle of 5° with the axis of the driving shaft.The First row shows the response of the driving shaft which is the first link.The component of angular momentum of the driving shaft about its axis increases linearly, which is as expected.The first two figures of the second row show the change in orientation of the cross, which is link 2.Angular motion about all three axes is clearly visible.The driven shaft follows the motion of the driver shaft as is clear from the third row in Fig.8.Conclusions The Bond Graph approach is used to model dynamics of two commonly used mechanisms,(1)theCrankshaft –Connecting rod –Piston –Cylinder system, and(2)the Universal Joint system.Pictorial representation of the dynamics of translation and rotation for each link of the mechanism in the inertial frame, representation and handling of constraints at joints, depiction of cause and effect relationships, coding for simulation directly from the Bond Graph without deriving system equations, have been explained in this work.MATLAB based simulations have been presented and interpreted for both the systems.曲轴连杆活塞机构及使用键合图法的万向联轴器的动力学仿真建模摘要本文论述了与常用的两种机制的动力学仿真模型,(1)曲轴连杆活塞–缸系统,及(2)万向接头系统,使用的键合图方法。
毕业设计(论文)外文文献翻译文献、资料中文题目:发动机活塞连杆组—活塞详解文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14The machine piston connecting rod set- detailedexposition of pistonThe piston connecting rod set is composed of the piston, piston wreath, piston pin, connecting rod, connecting rod axle bush, etc. Ⅰ. effect: The effect of the piston is to bear the air pressure, and pass to connecting rod to drive the bent axle to revolve through connecting rod axle bush, the piston coping is still a part of the burning room. The work condition: Piston works under the condition of heat, high pressure, high speed, and bad lubrication .Piston directly contacts with the heat air. The temperature can amount to above 2500 Ks in a moment .The piston is heated severely, but the condition of spreading the hot is bad .So while the piston works, the temperature is very high and the coping is up to the 600-700 Ks: And the temperature distributes asymmetrically; The piston coping bears great air pressure, especially the pressure is greatest in the route of doingefficacy. The gasoline machine is up to the 3-5MPas, the diesel engine is up to the 6-9MPas.This makes the piston produce pound, and bear the function of the side pressure. Therefore, the piston should have enough heat-proof, try to decrease the heating area,, strengthen the cooling of the piston, to make the highest temperature of the coping descend .The piston moves at very high speed(8-12 ms/ s) back and forth in the air cylinder, and speed changes constantly, This produces very great inertial dint, making the piston bear great additional load working under such bad condition, the piston will become deformed heating power. At the same time ,it slitters the chemical corrosive power of the burning gas .In order to descend the inertial dint of back and forth, we must ease the weight of the piston as possible .Piston works under the condition of the heat, high pressure, high speed(the average speed can amount to the 101115 m/ s), and its lubricant condition is bad and the frication between the piston and the air cylinder wall is very great. In order to descend the friction, the surface of the piston surface must be wear-resistant..Request:(1) To have enough rigidity and strength, and the reliable dint;(2) Transmit heat well, bear the high pressure, bear the heat and bear to wear away;(3) the quantity is small, the weight is light, descend the inertial dint of back and forth as possibleThe aluminum metal alloy material satisfies the top requests basically, therefore, the piston generally adopts the high strength aluminum metal alloy, but some low speed diesel engines adopt high class iron casting or heat-proof steelⅡ, structure: The piston can be divided into three parts, piston coping, the piston head and piston skirt departments.1. The piston copingThe piston coping bears the air pressure, it is a part of the burnable room .Its shape, position, size are relevant to the concrete from of the burnable room. They are made to satisfy the combustible hybrid spirit formation and burnable requests. Its coping shape can be divided into four major types, a flat coping piston, a convex coping piston, a concave coping piston and model piston.A convex coping piston is usually used on the two blunt distanceI.C. engines, It is good to improve the process exchanging the gas .Modern four blunt the distance gasoline machine also adopts the convex coping piston in order to strengthen the effect of pushing the gas or extend the ratio of compressing .Convex of a piston coping presents a form of ball, its coping strength is high, having an effect of leading, being advantageous to improve the process of exchanging the gas, two route of travel gasoline machines often adopt the convex coping pistonA piston coping presents the hollow form, the shape and positions of the cave pit must be advantageous to the combustion of the combustible and hybrid gas, having a pair of eddies concave pit ball, concave pit, U concave pit, and so on.2.Piston headThe piston refers to the first piston wreath to the part above the piston pin.It has several wreath slots, which are used to install the piston wreath and have an effect of sealing completely. It is also called the leak proof department .The diesel engine’s compress ratio is high, and generally have four wreath slots, The three upper wreaths are used to install, the lower part installs the oil wreath.The gasoline machine has three wreath slots generally, which are two jet of gas wreath slots and an oil wreath slots. At the bottom of oil wreath slot many paths toward eyelet are drilled to make the quilt oil wreath flow from the air cylinder wall to the oil bottom hull through these eyelets. The working condition of the wreath slot is the worst and should leave the coping generally a little farther.Above the gas wreath, a narrow insulating slot is usually set to cut off the heat flow which is spread from the piston coping to the first gas wreath and make parts of calories from a piston wreath spread, thus easing the hot burden of the first gas wreath. On some engines small wreathe slots are often made between the coping head and the first gas wreathe, sometimes till a few more wreath. This kind of small wreath can adsorb the lubricant because it accumulates the carbon. It can keep piston and the air cylinder walls from biting to match when it work in the condition of losing oil, so it is called accumulating the carbon slot.The calories that the piston coping absorbs also mainly passes the air cylinder wall through the piston wreath to leak proof。