最新六年级数学整式的加减单元测试题
- 格式:doc
- 大小:143.00 KB
- 文档页数:7
整式的加减单元测试题一.选择题1.(3分)计算222a a -+的结果为(D )A .3a-B .a-C .23a -D .2a -2.(3分)下列各组整式中不是同类项的是(D)A .23a b 与22ba -B .2xy 与12yx C .16与12-D .22xy -与23yx 3.(3分)下列合并同类项的结果正确的是(D)A .233a a a +=B .32a a -=C .33ab ab +=D .22232a a a -=-4.(3分)下列各式中,正确的是(A)A .2222x y x y x y -=-B .235a b ab +=C .734ab ab -=D .325a a a +=5.(3分)下列变形中,不正确的是(C)A .()a b c d a b c d ++-=++-B .()a b c d a b c d --+=-+-C .()a b c d a b c d ---=---D .()a b c d a b c d+---=+++6.(3分)下列说法正确的是(C)A .23x -的项是2x ,3B .1x -和11x-都是整式C .222x xy y ++与5x y+都是多项式D .2321x y xy -+是二次三项式7.(3分)如果整式3252n x x --+是关于x 的三次三项式,那么n 等于(D)A .3B .4C .5D .68.(3分)已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为(B )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z -+9.(3分)计算2653a a -+与2521a a +-的差,结果正确的是(D)A .234a a -+B .232a a -+C .272a a -+D .274a a -+10.(3分)已知2210ab --=,则多项式2242a b -+的值等于(B)A .1B .4C .1-D .4-二.填空题11.(3分)代数式223a π-的系数是π32-,次数是2.12.(3分)若32n x y 与25m x y -是同类项,则m =3,n =2.13.(3分)当k =251时,代数式643643154105x kx y x x y --++中不含43x y 项.14.(3分)当31<≤m 时,化简|1||3|m m ---=42-m .15.(3分)若关于a ,b 的多项式22223(2)(2)a ab b a mab b ---++中不含有ab 项,则m =6-.三.解答题16.(10分)去括号,并合并相同的项:(1)2(1)3x x x-++222)321(2)32(322-=-+-=-+-=+--=x x x x x xx x (2)()(52)y x x y -+--yx y y x x yx x y +-=+-+--=+---=6)2()5(2517.(10分)已知14n xy +-与452m x y 是同类项,求2m n +的值.5312423,1,41,1254-41=+⨯=+===+=+m n m n m y x xy m n 所以解得所以是同类项,与解:因为解:原式解:原式18.(10分)先化简再求值:223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-.12)3()218-3,2180)8(0)22()26()33(222363)2223(63222222-=-⨯-⨯=-=-=-=+-+=-+--+-=--+--=++---=(原式时,当y x xyxy y y xy xy x x y xy y x xy x y xy y x xy x 19.(10分)某同学做一道数学题:已知两个多项式A 、B ,计算2A B +,他误将“2A B +”看成“2A B +”,求得的结果是2927x x -+,已知232B x x =+-,求2A B +的正确答案.2013152223161423221614)23()1187221187476229462729)23(2)729(22222222222222+-=-++-+=-+++-=-+++-=++-=++---=+--+-=-+-+-=x x x x x x x x x x x x x x BA x x x x x x x x x x x x x x (则20.(15分)设223A a b ab =-,222B ab a b =-+.(1)化简23A B -;(2)若2|2|(3)0a b -++=,求A B -的值.解:原式解:根据题意可得A12-3-2322323)2()3(32,0302,0)3(2)2(32666326)2(3)3(232)1(2222222222222222222222222222=⨯=-===+--=-+-=+---=--===+=-=++-=+--=-+-=+---=-)(原式时,,当则且解得且所以因为b a ba ab ab b a b a b a ab ab b a b a ab ab b a BA b a b a b a ab ab ab b a b a b a ab ab b a b a ab ab b a BA 解:。
整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
《整式的加减》专项练习100题(有答案)哎,说起《整式的加减》,这可是我们数学学习中的基本功啊!今天,我就来给大家分享一组我精心准备的专项练习题,一共100题,每题都有答案哦!准备好了吗?咱们开始吧!首先,咱们来点简单的,比如这样一道题:1. 3a + 2b 4a + b = ?哎呀,这个题很简单,先把同类项放一起,3a和4a,2b和b,然后相加减,不就出来了嘛!答案是a + 3b。
再来一道稍微有点挑战性的:2. 5x^2 3x + 2 2x^2 + 4x 1 = ?这个题,咱们先把同类项合并,5x^2和2x^2是同类项,3x和4x也是同类项,常数项2和1也是同类项。
合并后,5x^2 2x^2等于3x^2,3x + 4x等于7x,2 1等于1。
所以答案是3x^2 + 7x + 1。
好啦,接下来咱们来点更有趣的:3. 如果a = 2,b = 3,那么2a^2 + 3b^2 a b等于多少?这个题,咱们先把a和b的值代入进去,2 * 2^2 + 3 * 3^2 2 3。
计算一下,4 * 2 + 9 * 3 2 3等于8 + 27 5,答案是30。
哎呀,做数学题真是件开心的事情,尤其是当你看到那些复杂的式子在你手里变得简单时,心里那个美啊!现在,让我们来点更有挑战性的:4. (x + y)(x y) + 2xy = ?这个题,我们要用到平方差公式,x^2 y^2 + 2xy。
然后,我们可以把它写成(x + y)^2的形式。
所以答案是(x + y)^2。
好啦,做到这里,我已经有点累了,但是我知道你们肯定还意犹未尽。
那么,接下来的题目,就交给大家自己挑战吧!5. 4m^2n 3mn^2 + 2mn n^3 = ?6. (2x 3y)^2 (x + 2y)^2 = ?7. 5a^2b 3ab^2 + 2ab b^3 = ?8. (x + 2)(x 3)(x + 1) = ?这些题目,都是我精心挑选的,既有基础的加减法,也有乘法、平方差的应用,还有代数式的化简。
整式及其加减测试题一、选择题1.下列各组中的两项是同类项的是 ( )(A )ab 与 abc . (B )35-与3x -. (C )y x 25与 x y 23. (D )xy 2-与.yx 5-2.下列运算中正确的是 ( )(A )ab b a 532=+; (B )532532a a a =+; (C )06622=-ab b a ; (D )022=-ba ab .3.若m xy 2-和331y x n 是同类项,则 ( ) (A )1,1==n m ; (B )3,1==n m . (C )1,3==n m ; (D )3,3==n m .4.下列运算中,正确的是 ( )(A )c b a c b a 25)2(5-+=+-. (B )c b a c b a 25)2(5+-=+-.(C )c b a c b a 25)2(5++=+-. (D )c b a c b a 25)2(5--=+-.5.)]([c b a ---去括号应得 ( )(A )c b a -+-; (B )c b a +--; (C )c b a ---; (D )c b a ++-.6.不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是 ( )(A ))()23(22a b ab b a +-+++. (B ))()23(22a b ab b a -----+.(C ))()23(22a b ab b a --+-+. (D ))()23(22a b ab b a --+++.7.两个5次多项式相加,结果一定是 ( )(A )5次多项式. (B )10次多项式. (C )不超过5次的多项式. (D )无法确定.8.化简)2()2()2(++---x x x 的结果等于 ( )(A )63-x (B )2-x (C )23-x (D )3-x9.一个长方形的一边长是b a 32+,另一边的长是b a +,则这个长方形的周长是 ( )(A )b a 1612+; (B )b a 86+. (C )b a 83+; (D )b a 46+.10.下列等式成立的是 ( )(A )13)13(--=--m m . (B )123)12(3+-=--x x x x .(C )b a b a -=-5)(5. (D )y x y x 47)4(7+-=+-.二、填空题11.去括号填空:=+--)(3c b a x .12._____)(_________422-=-+-a b ab aa . 13.减去26xy 等于25xy 的代数式是 .14.已知a 是正数,则=-a a 73 .15.三个连续自然数中最小的一个数是14+n ,则它们的和是 .16.大客车上原有)5(b a -人,中途上车若干人,车上共有乘客)58(b a -人,则中途上车的乘客是_____人.三、解答题17.合并同类项(1)a a a 653+- . (2)y x y ax y x 2226-+.(3)n m mn n m mn 2222783+-+-. (4)89266233++---x x x x .18.已知14+-n xy 与425y x m 是同类项,求n m +2的值。
整式的加减专项练习25题练习1:(2x + 3y) - (4x - 5y)解答:使用分配律展开括号,得到2x + 3y - 4x + 5y。
合并同类项,得到-2x + 8y。
练习2:(6a - 4b) + (8a + 9b)解答:使用分配律展开括号,得到6a - 4b + 8a + 9b。
合并同类项,得到14a + 5b。
练习3:(5x^2 - 3xy + 2y^2) - (2x^2 + xy - 4y^2)解答:使用分配律展开括号,得到5x^2 - 3xy + 2y^2 - 2x^2 - xy + 4y^2。
合并同类项,得到3x^2 - 4xy + 6y^2。
练习4:(-2x^2 + 3xy - y^2) + (4x^2 - 2xy + 5y^2)解答:使用分配律展开括号,得到-2x^2 + 3xy - y^2 + 4x^2 - 2xy + 5y^2。
合并同类项,得到2x^2 + xy + 4y^2。
练习5:(-7a^3 + 4a^2b - 3ab^2) - (-2a^3 - 5a^2b + ab^2)解答:使用分配律展开括号,得到-7a^3 + 4a^2b - 3ab^2 + 2a^3 +5a^2b - ab^2。
合并同类项,得到-5a^3 + 9a^2b - 4ab^2。
练习6:(3x - 4y)(5x + 2y)解答:使用分配律展开括号,得到15x^2 + 6xy - 20xy - 8y^2。
合并同类项,得到15x^2 - 14xy - 8y^2。
练习7:(2a^2 - 3ab + 4b^2)(3a + 2b)解答:使用分配律展开括号,得到6a^3 + 4a^2b - 9a^2b - 6ab^2 + 12ab^2 + 8b^3。
合并同类项,得到6a^3 - 5a^2b + 14ab^2 + 8b^3。
练习8:(5x^3 - 2xy^2)(3x^2 + 4y^2)解答:使用分配律展开括号,得到15x^5 + 20x^2y^2 - 6x^3y^2 -8xy^4。
整式的加减单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式有()个。
x + 1,(1)/(x),π,- 2a,0,x^2-y^2A. 4B. 5C. 6D. 7.2. 单项式-3x^2y的系数和次数分别是()A. -3,2B. -3,3C. 3,3D. 3,2.3. 下列各组单项式中,是同类项的是()A. 2a^2b与2ab^2B. 3x与3x^2C. - 5xy^2与5y^2xD. -a与- 24. 化简3x - 2(x - y)的结果是()A. x - 2yB. x + 2yC. 5x - 2yD. x - y5. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 16. 若A = 3x^2-2x + 1,B = 5x^2-3x + 2,则A - B等于()A. -2x^2+x - 1B. -2x^2-x + 1C. 2x^2-x - 1D. 2x^2+x + 17. 当a = - 1,b = 2时,(a + b)(a - b)+b^2的值为()A. -1B. 1C. 3D. -3.8. 已知m - n = 100,x + y=-1,则代数式(n + x)-(m - y)的值是()A. -99B. -101C. 99D. 101.9. 若2x^m + 1y^2与-3x^3y^n - 1是同类项,则m + n的值是()A. 3B. 4C. 5D. 6.10. 若多项式2x^3-8x^2+x - 1与多项式3x^3+2mx^2-5x + 3相加后不含二次项,则m的值为()A. 2B. -2C. 4D. -4.二、填空题(每题3分,共18分)1. 单项式(2)/(3)π r^2的次数是_____。
2. 多项式3x^2y - 4xy^2+x^3-5y^3按y的降幂排列为_____。
整式的加减 单元测试一、选择题(每小题3分,共15分):1.原产量n 吨,增产30%之后的产量应为( )(A )(1-30%)n 吨. (B )(1+30%)n 吨.(C )n+30%吨. (D )30%n 吨.2.下列说法正确的是( )(A )31a 2x 的系数为31. (B )221xy 的系数为x 21. (C )25x -的系数为5. (D )23x 的系数为3.3.下列计算正确的是( )(A )4x-9x+6x=-x. (B )02121=-a a . (C )x x x =-23. (D )xy xy xy 32=-.4.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.(A )4m+7n. (B )28mn. (C )7m+4n. (D )11mn.5.计算:3562+-a a 与1252-+a a 的差,结果正确的是( )(A )432+-a a (B )232+-a a (C )272+-a a (D )472+-a a .二、填空题(每小题4分,共24分):6.列示表示:p 的3倍的41是 . 7.34.0xy 的次数为 .8.多项式154122--+ab ab b 的次数为 . 9.写出235y x -的一个同类项 .10.三个连续奇数,中间一个是n ,则这三个数的和为 .11.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: .三、计算题(每小题5分,共30分):12.计算(每小题5分,共15分)(1)6321+-st st ; (2)67482323---++-a a a a a a ;(3)355264733---+++xy xy x xy xy ; 13. 计算(每小题6分,共12分)(1)2(2a-3b )+3(2b-3a );(2))]2([2)32(3)(222222y xy x x xy x xy x +------.14.先化间,再求值(每小题8分,共16分)(1))23(31423223x x x x x x -+--+,其中x=-3; (2))43()3(5212222c a ac b a c a ac b a -+---,其中a=-1,b=2,c=-2. 15.(9分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径r 米,广场长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留π)。
《整式的加减》单元测试卷班级 姓名 座号一.1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A.3个B.4个C.5个D.6个 2.单项式233xy z π-的系数和次数分别是( )A.-3,5B.-1,6C.-3π,6D.-3,7 3.下面计算正确的是( )A .2233x x -= B.235325a a a += C.33x x += D.10.2504ab ab -+= 4.多项式2112x x ---的各项分别是( ) A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12x x --5.下列去括号正确的是( )A.()5252+-=--x xB.()222421+-=+-x x C.()n m n m +=-323231D. x m x m 232232--=⎪⎭⎫ ⎝⎛--6.下列各组中的两个单项式能合并的是( ) A .4和4x B .32323x y y x -和C .c ab ab 221002和D .m 和2m7.如果51=-n m ,则-3()m n -的值是 ( )A .-53 B.35 C.53 D.1518.已知-51x 3y 2n 与2x 3m y 2是同类项,则mn 的值是( )A .1B .3C .6D .9二.填空题(每小题3分,共18分)9.任写两个与b a 221-是同类项的单项式: ; .10.多项式5253323+-+-y x y x xy 的次数是 ,最高次项系数是 _.11.多项式y x 23-与多项式y x 24-的差是 .12.张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和4块橡皮,则一共需付款 元.13.已知单项式32b a m 与-3214-n b a 的和是单项式,则m = ,n = . 14.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: . 三.解答题(共58分) 15.计算(每题4分共16分) (1)b a b a b a 2222134+-(2) (x -3y )-(y -2x )(3)()()222243258ab b a ab b a --- (4)ab ab a ab a 21]421[2122-)-(-+16.先化简,后求值(每题6分共12分) (1)()()ab b a b a 245352323+++-,其中21,1=-=b a(2)1]242[6422+y x xy xy y x )--(--,其中1,21==y x -.17.(7分)已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是x 千米/时,水流的速度是y 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?18.(7分)有这样一道题:“当a =2010,b =-2011时,求多项式 201292842853233233++++a b a b a a b a b a a ---的值.”小颖说:本题中a =2009,b =—2010是多余的条件;小彤马上反对说:这不可能,多项式中含有a 和b ,不给出b a ,的值怎么能求出多项式的值呢? 你同意哪名同学的观点?请说明理由.参考答案第二章《整式的加减》单元测试卷一、选择题1.B2.C3.D4.B5.A6.D7.C8.A 二.填空题9.b a 2,b a 22 (答案不唯一) 10.5,-2 11.x -12.n m 4030+ 13.4, 3 14.12122+=+n n n -)( 三.解答题15.(1)b a 223(2)y x 43- (3)2232ab b a + (4)ab a 52-16.(1)化简得ab b 22+,值=43- (2)化简得3252-xy y x +,值=47-17.(1)y x -5 (2)295千米 18.同意小颖的观点,因为该式化简得2012,所以值与b a ,无关.。
整式的加减测试题及答案整式的加减测试题》姓名:___________ 班级:_____一、选择题(每题3分,计24分)1.下列各式中不是单项式的是()A。
a^13B。
-C。
0D。
2.甲数比乙数的2倍大3,若乙数为x,则甲数为()A。
2x-3B。
2x+3C。
3.如果2xy与-3xy是同类项,那么m、n的值分别为()A。
m=-2,n=3B。
m=2,n=3C。
4.已知A=a-2ab+1,B=a+ab-3ab,则A+B=()A。
2a-3ab-3ab+1B。
2a+ab-3ab+1C。
D。
5.从减去的一半,应当得到().A。
B。
C。
D。
6.减去-3m等于5m-3m-5的式子是()A。
5(m-1)B。
5m-6m-5C。
5(m+1)D。
-(5m+6m-5)7.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复老师讲的内容,他突然发现一道题(-x+3xy-2y^2)-( -x^2+4xy-y^2)=-x^2+_______+y^2,空格的地方被钢笔水弄污了,那么空格中的一项是()A。
-7xyB。
7xyC。
-xyD。
xy二、填空题(每题4分,计32分)9.单项式-πr的系数是,次数是______。
10.当x=5,y=4时,式子x-3/2y的值是______。
11.按下列要求,将多项式x-5x^3-2x^2+9的后两项用( )括起来。
要求括号前面带有“—”号,则x-5x^3-2x^2+9=__________。
12.把(x-y)看作一个整体,合并同类项:5(x-y)+2(x-y)-4(x-y)=__________。
13.一根铁丝的长为5a+4b,剪下一部分围成一个长为a宽为b的长方形,则这根铁丝还剩下__________。
15.某校为适应电化教学的需要新建阶梯教室。
教室的第一排有a个座位,后面每一排都比前一排多一个座位。
若第n 排有m个座位,则a、n和m之间的关系为:m = a + n - 1.16.小明在求一个多项式减去x-3x+5时,误认为加上x-3x+5,得到的答案是5x-2x+4.则正确的答案是x+2.17.1) 3xy - 2y2) -16x18.1) 62) 103) 154) n(n+1)19.代数式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2010的值与a,b的取值无关。
整式的加减单元测试卷第一部分:选择题1. 根据题意,将下列有理数等式化简,得到的结果是()A. -9x^2 - 5x - 2B. -9x^2 + 5x + 2C. 9x^2 + 5x - 2D. 9x^2 - 5x + 22. 化简表达式:(3a^2 - 2a + 5) + (5a^2 + 3a - 1)。
A. 8a^2 + a + 4B. 8a^2 - 5a + 4C. 8a^2 + a - 4D. 8a^2 - 5a - 43. 下列哪个式子等于 (5x^2 + 3x - 2) - (2x^2 - 4x + 1)?A. 3x^2 + 7x - 3B. 3x^2 - 7x + 1C. 3x^2 + 7x - 1D. 3x^2 - 7x - 34. 缩写:(4x^2 - 5x + 2) + (-2x^2 + 4x - 1) 等于()。
A. 2x^2 - x + 3B. 2x^2 - x + 1C. 2x^2 - 9x + 3D. 2x^2 - 9x + 1第二部分:填空题1. 化简表达式:(7x^2 - 3x + 4) + (4x - 2x^2 + 5) = ______________。
2. 缩写:(6x^3 - 2x^2 + 3x) + (-4x^3 + 5x^2 - 2x) = ______________。
3. 下列哪个式子等于 (-7x^2 + 3x - 2) - (-2x^2 + 3x - 5)?4. 根据题意,将下列有理数等式化简,得到的结果是:(2x^2 + 3x -5) - (-3x^2 + 2x - 1) = ______________。
第三部分:解答题1. 将多项式 (3x^2 + 2x - 1) 和 (2x^2 - x + 3) 相加,并化简结果。
2. 求解:(4x^3 - 3x^2 + 2x - 1) - (-2x^3 - x^2 - 3x + 1)。
3. 将表达式 (5x^2 - 3x + 2) 和 (4x^2 - x + 1) 相减,并化简结果。
鲁教版六年级数学上册第三章 整式及其加减 单元测试题一、选择题:1.下列说法正确的有( )①﹣mn 2和﹣3n 2m 是同类项 ②3a ﹣2的相反数是﹣3a +2③5mR 2的次数是3 ④34x 3是7次单项式.A .1个B .2个C .3个D .4个2.下列说法正确的是( )A .20是单项式,系数是2B .2ab 是二次式,系数是C .3(a +b )是单项式D .m ﹣n 是单项式3.如果单项式342x y 与22a b x y 是同类项,那么a b 、的值分别是( )A .3,2B .2,2C .3,4D .2,44.一个两位数的个位数字是a ,十位数字是b ,则这个两位数可表示为 ( )A. ab B . a +b C . 10a +b D . 10b +a5.化简﹣[﹣(﹣m +n )]﹣[+(﹣m ﹣n )]等于( )A .2mB .2nC .2m ﹣2nD .2n ﹣2m6.已知代数式x −2y 的值是3,则代数式4y +1−2x 的值是( )A. −5B. −3C. −1D. 07.有理数a 、b 、c 在数轴上位置如图,则|c −a |−|a +b |−|b −c |的值为( )A. 0 B . 2a +2b −2c C . −2c D . 2a8. 如果某天北京的最低气温为a℃,中午12点的气温比最低气温高了10℃.那么中午12点的气温为( )A. (10−a)℃B. (a −10)℃C. (a +10)℃D. (a +12)℃9.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy10.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有( )A.145个B.146个C.180个D.181个11.已知关于x的代数式﹣2x2﹣3x﹣ax2+bx+x3+1不含x的一次项和x的二次项,则(﹣a)b的值是()A.6B.8C.﹣6D.﹣812.用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71二、填空题:13.把多项式5x2+4x﹣x3﹣3按x的降幂排列为.14.计算:(3x2+3x﹣1)﹣(3x2﹣2x﹣1)=.15.若2m+n=3,则代数6﹣4m﹣2n的值为.16.代数式2x2﹣3x+2的值为7,则x2﹣x﹣4的值是.17.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m 的值为.18.观察下列图形,用黑白两种颜色的五边形地砖按如图所示的规律,拼成若干个蝴蝶图案,则第9个图案中白色地砖有块,第n个图案中白色地砖有块.三、解答题:19.先化简,再求值:①(18a﹣3a2)﹣5(1+2a+a2),其中a2﹣a+3=0.②2(xy+5x2y)﹣3(3xy2﹣xy)﹣xy2,其中x,y满足x=﹣1,y=﹣.20.如图所示,在长为a,宽为2b的长方形中减去一个直角边为2b的等腰直角三角形和直径为2b的半圆.(1)用含a,b的式子表示阴影部分的面积;(2)当a=8,b=2时,求阴影部分的面积.(π取3)21.已知A=2x2﹣3x﹣1,B=3x2+mx+2.(1)求3A﹣2B;(2)若3A﹣2B的值与x的值无关,求m的值.22.一张长方形桌子可坐6人,将桌子拼在一起.(1)2张桌子拼在一起可坐人,4张桌子拼在一起可坐人,n 张桌子拼在一起可坐人;(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?23.疫情期间,为了满足市场上对口罩的需求,某厂家决定生产A、B两种款式的口罩.每天两种口罩的生产量共500个,两种口罩的成本和售价如下表:成本(元/个)售价(元/个)A58B79若设每天生产A种口罩x个,则每天生产B种口罩个;(1)用含x的代数式表示该工厂每天的生产成本,并进行化简;(2)用含x的代数式表示该工厂每天获得的利润,并将所列代数式进行化简;(3)当x=300时,求每天获得的利润.(利润=售价﹣成本)。
第二章 整式的加减单元测试(时间:90分钟,满分120分)一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x yx m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项.求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
整式的加减一、判断.1.整式与整式的和或差仍为整式.( )2.单项式与单项式的和仍为单项式.( )3.把238332+-+x x x 按x 的降幂排列为.2,3,8,323x x x ()4.单项式与多项式都是整式.( )5.xy x 232-有两项,即3.2,2xy x ( )6.多项式c bx ax +-2是二次三项式.( )7.单项式34x -的系数是–4,单项式ab π3的系数是3,单项式x 54-的系数是.54-( ) 8.0既是代数式,又是单项式.() 9.πab 4不是单项式,xx 3是单项式.( ) 10.n a xy x -,,,32都是单项式.( )二、填空.11.__________和__________统称为整式.12.代数式bx a y xy x ab b a b a y x 222232,2,0,32),)((,,21+--+-中单项式有__________,多项式有__________. 13.写出系数是2,含两个字母b a ,的三次单项式__________.14.多项式1421233--+-y x xy y x 是__________次__________项式,最高次项是__________,常数项是__________,它的三次项是__________,三次项系数是__________.15.多项式3322253y x xy y x +--,按x 的降幂排列为__________,按y 的升幂排列为__________.16.把一个多项式各项的位置按照某一字母的__________从__________的顺序排列起来,叫做这个多项式按这个字母的降幂排列.17.多项式, __________的次数,就是这个多项式的次数.例如:多项式22542y xy x +-是__________次__________项式;多项式32463ax x x ++-是__________次__________项式.18.几个单项式的__________叫做多项式.在多项式中,每个__________叫做多项式的项(多项式的第一项都包括前面的__________).其中, __________的项叫做常数项.例如:多项式12323-+-x x x 有4项,它们是__________,常数项是__________.19.单项式中的数字因数叫做这个单项式的__________,所有__________叫做这个单项式的次数.例如:单项式x 5y z 的系数是__________,次数是__________;单项式y x 3的系数是__________,次数是__________.20.代数式,,,3,23r m ab x π--它们都是由__________与__________的__________组成的,这样的代数式叫单项式.特别地,单独一个__________或一个__________也是单项式.三、选择.21.下列叙述正确的是( ).A.a 2是单项式,系数是2,B.2ab 是二项式,系数是21C.3n m -是多项式,其各项系数都是31D.22b a -是多项式,其各项系数的和等于022.下列多项式中,是三次二项的是( ).A.cx bx ax ++23B.1223+++-a y x xC.c bx ax ++2D.abcd x +4323.将多项式y y y -++-1232按照字母y 升幂排列正确的是( ).A.1223+--y y yB.1232++--y y yC.y y y --+2321D.3221y y y +--24.下列说法正确的是( ).A.7,,2,3,422y x xy y x 分别是多项式723422--+-y x xy y x 的项B.多项式322++-c bx ax 是二次四项式C.代数式y x 23z 3,4abc 都是单项式,也都是整式25.在下列关于单项式x 的说法中正确的是( ).A.是一个系数为0,次数为0的单项式 B. 是一个系数为1,次数为1的单项式C. 是一个系数为1,次数为0的单项式D. 是一个系数为0,次数为1的单项式26.下列说法正确的是( ).A.单项式与单项式的和是单项式B.多项式与多项式的和是多项式C.单项式与多项式的和是单项式D.整式与整式的和是整式27.下列各式中,( )不是整式.A.xy 6B.))((22b ab a b a +-+C.x y 2D.328.下列各式中,( )是多项式.A.y x 27-zB.32xC.x y 12-D.12+x29.下列各式中,( )是单项式.A.x y 12-B.1+xC.422y xD.)1(42+x30.代数式0,,)(2,21,32,,223222中y x y x x x y x x +-+π单项式的个数为( ). A.3 B.4 C.5 D.6四、解答.31.已知多项式12332423+--+n n m mn n m ,分别按字母m 和n 对其作降幂排列,并求当时2,3-==n m 多项式的值.32.对下列多项式分别按字母a 和b 作升幂排列.(1);194231334423+-+-b a b ab b a (2).1252422335+-+-ab b a b a b a33.对下列多项式先按x 降幂排列,再按x 升幂排列.(1);83173322+-+-y x xy y x (2);214331213244--+-y x xy y x (3);12561213234d cx bx ax +-+ (4).21851032x x x +--34.写出下列多项式的次数和项数.(1);43123x x x +--- (2);510754432234b ab b a b a a -+-+- (3);3323y xy y x x +-+ (4).22522323b a b ab a ++-35.指出下列代数式中哪些是单项式,它们的系数和次数;哪些是多项式,它们的项数和次数.(1);425+b a (2);3423y x (3);232b a c ++ (4);4x - (5)31(++22y x z );(6)433.0y x -z .; (7)1; (8);1768485+--x x x (9);2y x +- (10)xy z ;(11).5b a -答案:一、1. √2. × 3. × 4. √ 5. × 6. × 7. × 8. √ 9.×10.√ 提示:2.单项式与单项式的和有可能是多项式,如单项式y x xy 2与的和为,2y x xy +就是多项式.3.多项式按某个字母升(降)幂排列是把多项式各项的位置按照某个字母的升(降)幂顺序重新排列,所以应为.238323+++-x x x5.多项式的每一项都包括它前面的符号,故xy x 232-的项为.2,32xy x -6.c bx ax +-2是三次三项式.(c b a ,,也是字母)7.单项式34x -的系数应为,34-而ab π3的系数为x54,3-π根本就不是单项式. 8.单独的一个数或字母也是单项式. 9.πab4是单项式,系数为,4π注意:π是常数,不是字母.x x 3不是单项式,因为分母中含有字母,一般地,分母中含有字母的代数式不是整式,也不是单项式.二、11. 单项式 多项式12. ,13.14. 四 四 –1 –415.16. 指数 大到小17. 最高项 二 三 四 四提示: 最高项 是四次单项式.18.和 单项式 符号 不含字母 1,,2,323--x x x –119.系数 字母的指数的和 –5 3 1 4 20.数 字母 乘积 数 字母三、21. D 22. C 23. D 24. C 25. B26. D 27. C 28. D 29.C 30.A提示:21.A 中的a 2不是整式,B 中的2ab 是单项式,C 中的多项式3n m -的各项系数分别为平共D ,31,31-中22b a -的各项系数是1,–1,系数和.,0)1(1D 故选=-+22.A 中多项式是四次三项式,B 中多项式是三次四项式,D 中多项式是四次二项式.24.A 中多项式的项应包括前面的符号,即.7,,2,3,422---y x xy y x B 中多项式应为三次四项式.D 中三次多项式并不要求多项式中各项均为三次单项式,而是指最高次项的次数是3.25..1,1,11的单项式次数也是是系数为即x x x ⋅=27.A 反例:单项式x 3-和单项式2x 的和x x 32-是多项式,实际上单项式与单项式的和既可能是单项式也有可能是多项式.B 反例:多项式22y x +-和多项式22y x +的和22y 是单项式.C 反例:单项式–1和多项式12+x 的和2x 是单项式.A,B,C 均不对,故选D.28.A,B 均为单项式,C 不是整式.29.A 中xy 12-分母含有字母,既不是单项式,也不是多项式.B,D 中的代数式都是多项式,故选C. 30.单项式有0,.21,223y x x -π 四、31. 按字母m 降幂排列: 按字母n 降幂排列: 的 变形时应注意: (1)按照哪一个字母的指数来排列;(1)按照哪一个字母的指数来排列;(2)升幂还是降幂;(3)要连同符号一起移动;(4)常数项是多项式的零次项.当 时,多项式32.(1)按a 升幂排列:.433121934234b a b a ab b -+-+按b 升幂排列:.314321943423ab b a b a b --++(2)按a 升幂排列:.2512352342b a b a b a ab +-+-按b 升幂排列:.5212423523b a b a b a ab ++--33.(1)x 降幂排列:.83172233++--xy y x y xx 升幂排列:.73183322y x y x xy --+(2)x 降幂排列:212131434234--+-y xy y x xx 升幂排列:.433121214324x y x xy y +-+--(3)x 降幂排列:.12521613234d bx cx ax ++-x 升幂排列:.32612112543ax cx bx d +-+(4)x 降幂排列:.81052123-+-x x xx 升幂排列:.21510832x x x +-+-34.(1)三次四项 (2)四次五项 (3)四次四项 (4)三次四项. 35.单项式有:(2)3423y x (系数为34,次数为5)(6)433.0y x -z 5(系数为–0.3,次数为12) (4)4x -(系数为–1,次数为4) (7)1(系数为1,次数为0) (10)xy z (系数为1,次数为0) 多项式有:(1)425+b a (七次二项式) (3)232b a c ++(三次三项式) (5)++22(31y x z )(二次三项式) (8)1768485+--x x x (八次四项式) (9)2y x +-(一次二项式) (10)b a -5(五次二项式)。
整式的加减测试题整式的加减法综合练习整式的加减测试题整式的加减法综合练习1. 计算:(3x^2 - 2x + 5) + (-x^2 + 4x - 7) - (2x^2 + 3x - 9)解析:根据整式的加减法原则,合并同类项后进行运算。
= 3x^2 - 2x + 5 - x^2 + 4x - 7 - 2x^2 - 3x + 9= (3x^2 - x^2 - 2x^2) + (-2x + 4x - 3x) + (5 - 7 + 9)= 0x^2 - x + 7答案:-x + 72. 计算:(-2y^3 + 3y^2 - y + 4) - (4y^3 - 2y^2 + 5y - 3)解析:= -2y^3 + 3y^2 - y + 4 - 4y^3 + 2y^2 - 5y + 3= (-2y^3 - 4y^3) + (3y^2 + 2y^2) + (-y - 5y) + (4 + 3)= -6y^3 + 5y^2 - 6y + 7答案:-6y^3 + 5y^2 - 6y + 73. 计算:(4a^2b - 2ab^2 + 7b^2) + (-3a^2b + ab^2 - 5b^2) - (a^2b + ab^2 - 3b^2)解析:= 4a^2b - 2ab^2 + 7b^2 - 3a^2b + ab^2 - 5b^2 - a^2b - ab^2 + 3b^2= (4a^2b - 3a^2b - a^2b) + (-2ab^2 + ab^2 - ab^2) + (7b^2 - 5b^2 + 3b^2) = 0a^2b - 2ab^2 + 5b^2答案:-2ab^2 + 5b^24. 计算:(2x^4 - 5x^3 + 3x^2 - 4x) - (-4x^4 + 3x^3 - 5x^2 + 2x)解析:=2x^4 - 5x^3 + 3x^2 - 4x + 4x^4 - 3x^3 + 5x^2 - 2x= (2x^4 + 4x^4) + (-5x^3 - 3x^3) + (3x^2 + 5x^2) + (-4x - 2x)= 6x^4 - 8x^3 + 8x^2 - 6x答案:6x^4 - 8x^3 + 8x^2 - 6x5. 计算:(a^2 - b^2) + (2b^2 - a^2) - (b^2 - a^2)解析:= a^2 - b^2 + 2b^2 - a^2 - b^2 + a^2= (a^2 - a^2) + (2b^2 + b^2) + (-b^2)= 0a^2 + 3b^2 - b^2答案:2b^26. 计算:(-3x^3 + 4x^2 - 5x + 2) - (2x^3 + x^2 - 2x + 3)解析:= -3x^3 + 4x^2 - 5x + 2 - 2x^3 - x^2 + 2x - 3= (-3x^3 - 2x^3) + (4x^2 - x^2) + (-5x + 2x) + (2 - 3)= -5x^3 + 3x^2 - 3x - 1答案:-5x^3 + 3x^2 - 3x - 1通过以上测试题的练习,我们可以更好地理解整式的加减法。
最新六年级数学整式的加减单元测试题1.试题左侧二维码为该题目对应解析;2.请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查看解析,杜绝抄袭;3.只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师讲解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮.学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据.4.自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏->我的下载”处点击图标查看学生扫描的二维码统计图表,以便确定讲解重点.5.在使用中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优网的支持.整式的加减一.选择题(共10小题)1.(2014•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A .﹣6 B.6 C.﹣2或6 D.﹣2或302.(2015•武汉校级模拟)观察下面的图形,它们是按一定规律排列的,依照此规律,第几个图形共有120个.()A .11 B.13 C.15 D.173.(2014•张家界)若﹣5x2y m与x n y是同类项,则m+n的值为()A .1 B.2 C.3 D.44.(2014•海港区校级一模)如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2010次输出的结果为()A .3 B.6 C.12 D.24 5.(2015•临淄区校级模拟)若2y m+5x n+3与﹣3x2y3是同类项,则m n=()A .B.C.1 D.﹣26.(2014•呼和浩特)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A .a B.0.99a C.1.21a D.0.81a7.(2014•武汉)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A .31 B.46 C.51 D.668.(2013秋•济阳县期末)一个两位数,个位是a,十位比个位大1,这个两位数是()A .a(a+1)B.(a+1)a C.10(a+1)a D.10(a+1)+a9.(2013秋•天柱县期末)已知a是一个两位数,b是一个一位数,若把b置于a的左边可以得到一个三位数,则这个三位数可表示成()A .ba B.10b+a C.100b+a D.100b+10a10.(2013秋•东城区期末)若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,则2014a+b+1+m2﹣(cd)2014+n(a+b+c+d)的值为()A .1 B.﹣1 C.0 D.2014二.填空题(共12小题)11.(2014•永定县校级模拟)若2x2+3x+5=10,则代数式4x2+6x﹣9= .12.(2014•金乡县模拟)若代数式﹣4x6y3n﹣1与x2m y是同类项,则mn的值为.13.(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.14.(2014•毕节市)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.15.(2014•洪泽县二模)妈妈给小明买笔记本和圆珠笔.已知每本笔记本4元,每支圆珠笔3元,妈妈买了m本笔记本,n支圆珠笔.妈妈共花费元.16.(2014秋•市南区校级期中)一本书有m页,第一天读了全书的,第二天读了余下页数的,则该书没读完的页数为页.17.(2014•安溪县校级模拟)如果单项式x2y2b与﹣7x a y b是同类项,则a= ,b=.18.(2014春•南岗区校级期中)若单项式﹣πn y n+1的次数是3,当y=3时此单项式的值是.(结果保留π)19.(2014•武汉模拟)观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为.20.(2014•盐城)“x的2倍与5的和”用代数式表示为.21.(2014•长春)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个8 0元,排球每个60元,购买这些篮球和排球的总费用为元.22.(2014•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为.三.解答题(共8小题)23.(2014秋•曹县期末)已知某船顺水航行2小时,逆水航行3小时.(1)已知轮船在静水中前进的速度是x千米/时,水流的速度是y千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?24.(2014•淮阴区校级模拟)观察如图所示的点阵图,探究其中的规律.(1)摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要个点;摆第3个“小屋子”需要个点.(2)摆第10个这样的“小屋子”需要多少个点.(3)写出摆第n个这样的“小屋子”需要的总点数s与n的代数式:.25.(2014•咸阳模拟)已知,一列火车上原有(6a﹣6b)人,中途下车一半人,又上车若干人,使车上共有乘客(10a﹣6b).(1)问上车的乘客是多少人?(2)当a=200,b=100时,上车的乘客是多少人?26.(2014秋•吴中区期中)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①.方法②;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.27.(2013秋•雁江区期中)如图,已知梯形的下底长为a,高为r,半圆的半径为r.(1)求阴影部分的面积(用含a,r的式子表示);(2)当r=4,a=12时,求阴影部分的面积(结果用π表示).28.(2013秋•太仓市期中)已知a、b互为相反数,c、d互为倒数,m为平方得本身的数.求代数式:(m+a+b)﹣(m﹣cd)2的值.29.(2014秋•昆山市校级期末)某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽x米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)的面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?30.若a、b满足等式:.(1)求a、b的值;(2)求(a﹣b)2+4ab的值.2015年04月17日1577448049的初中数学组卷参考答案一.选择题(共10小题)1.B 2.C 3.C 4.A 5.B 6.B 7.B 8.D 9.C 10.D二.填空题(共12小题)11.1 12.2 13.3n+1 14.15.4m+3n 16.m 17.20 18.-9π2 19.50 20.2x+5 21.(80m+60n) 22.55三.解答题(共8小题)23.24.1117596n-1 25.26.m-n(m+n)2-4mn(m-n)227.28.29.30.。
东营市胜利第五十五中学六年级数学单元测试(范围:《整式的加减》 时间:80分钟,满分100分)一、选择题(将选择题答案写在选择题答题卡内。
每题2分,共20分) 1. 下列各式中,是代数式的有( )个①2ab ;②0;③S=ab ;④x-3<2;⑤a+3;⑥-n ;⑦2m+nA.3B.4C.5D.6 2.下列式子中,符合代数式书写规范的有( )个 ①m×n ;②ab 212;③)(y x +51;④m+2天;⑤2÷x ;⑥a3;⑦3mn A.2 B.4 C.5 D.6 3.下列各式中不是单项式的是( )A .3a B .51- C .0 D .a3 4. 在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( )A .2个B .3个C .4个 D5个5.下列说法正确的有( )个①-7xy²的系数是7;②πr 2h 的系数是 1 ;③是6次多项式;④x 2―2x+5的项是x 2,2x ,5;⑤2x +3y +4z不是整式;⑥是单项式A.1B. 2C.3D.4 6. 下列去括号错误的共有( )① c b a c b a +-=+-)( ②d c b a d c b a +--=-+-)( ③c b a c b a -+=-+2))(2 ④b a a b a a --=+---22)]([ A .1个 B .2个 C .3个 D .4个 7. 下列合并同类项正确的是( )A.ab b a 523=+B.235=-y yC.x x x 853-=+-D. y x y x y x 22223=- 8. 如果多项式A 减去25x -等于3632--x x ,则多项A 为( ) A. 362---x x B.3622---x x C. 3622--x x D.3622+--x x9. 计算)5()3(2222c ab c ab +-+的值( ) A. 与a 的大小无关 B. 与b 的大小无关 C. 与c 的大小无关D. 与a ,b ,c 的大小都有关10. 多项式863322-+--xy y kxy x 化简后不含xy 项,则k 的值为:( ) A.0B.2C.-2D.-6图2请将选择题答案写在下列表格中1 2 3 4 5 6 7 8 910二、填空题(每空2分,共28分)1.笔记本每本m 元,圆珠笔每支n 元,买3本笔记本和2支圆珠笔需要付款__________元;2.单项式2322y x -的系数为 ,次数为 ;单项式522xa π- 的系数为 ,次数为 。
第八章《整式的加减》一、选择题 1.在y 3+1,3m+1,−x 2y ,ab c−1,−8z ,0中,整式的个数是【】A .6B .3C .4D .5 2.单项式-x 3y 2的系数是【】A .-12B .12C .-1D .13. 下列说法中正确的是【】A .a 的指数是0B .a 没有系数C .87-是单项式D.-32x2y3 的次数是7 4. 已知整式252x x -的值为6,则整式2x2-5x+6的值为【】 A .9B .12C .18D .24 5. 如图,阴影部分的面积是【】A .112xyB .132xyC .6xyD .3xy6. 观察如图所示图形,则第n 个图形中三角形的个数是【】A .2n +2B .4n +4C .4nD .4n -47.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为【】A .710b a +B .107b a +C .710ab +D .107a b +8. 当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为【】 A .-16B .-8C .8D .169. 化简()()523432x x -+-的结果为【】A .七次多项式B .四次多项式C .三次多项式D .不能确定10.如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a ,b(a <b),则b -a 的值为【】 A .4B .5C .6D .7 二、填空题11.一个多项式与﹣x2﹣2x+11的和是3x ﹣2,则这个多项式为________。
12.如果单项式xa+1y3与2x3yb 是同类项,那么ab=________。
13.若2x2ym 与-3xny3能合并,则m +n =________。
14.某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a 组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的式子可表示为________。
六年级数学整式的加减单元测试题
1.试题左侧二维码为该题目对应解析;
2.请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查看
解析,杜绝抄袭;
3.只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师讲
解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮。
学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。
4.自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏->
我的下载”处点击图标查看学生扫描的二维码统计图表,以便确定讲解重点。
5.在使用中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优网
的支持。
整式的加减
一.选择题(共10小题)
1.(2014•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()
A .﹣6 B
.
6 C
.
﹣2或6 D
.
﹣2或30
2.(2015•武汉校级模拟)观察下面的图形,它们是按一定规律排列的,依照此规律,第几个
图形共有120个.()
A .11 B
.
13 C
.
15 D
.
17
3.(2014•张家界)若﹣5x2y m与x n y是同类项,则m+n的值为()
A .1 B
.
2 C
.
3 D
.
4
4.(2014•海港区校级一模)如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2010次输出的结果为()
A .3 B
.
6 C
.
12 D
.
24 5.(2015•临淄区校级模拟)若2y m+5x n+3与﹣3x2y3是同类项,则m n=()
A .B
.
C
.
1 D
.
﹣2
6.(2014•呼和浩特)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它
最后的单价是()元.
A .a B
.
0.99a C
.
1.21a D
.
0.81a
7.(2014•武汉)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有1
0个点,第3个图中共有19个点,…
按此规律第5个图中共有点的个数是()
A .31 B
.
46 C
.
51 D
.
66
8.(2013秋•济阳县期末)一个两位数,个位是a,十位比个位大1,这个两位数是()
A .a(a+1)B
.
(a+1)a C
.
10(a+1)a D
.
10(a+1)+a
9.(2013秋•天柱县期末)已知a是一个两位数,b是一个一位数,若把b置于a的左边可以得到
一个三位数,则这个三位数可表示成()
A .ba B
.
10b+a C
.
100b+a D
.
100b+10a
10.(2013秋•东城区期末)若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,则2014a+b+1+m2﹣(cd)2014+n(a+b+c+d)的值为()
A .1 B
.
﹣1 C
.
0 D
.
2014
二.填空题(共12小题)
11.(2014•永定县校级模拟)若2x2+3x+5=10,则代数式4x2+6x﹣9= .
12.(2014•金乡县模拟)若代数式﹣4x6y3n﹣1与x2m y是同类项,则mn的值为
.
13.(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由
个▲组成.
14.(2014•毕节市)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这
一组数的第n个数是.
15.(2014•洪泽县二模)妈妈给小明买笔记本和圆珠笔.已知每本笔记本4元,每支圆珠笔3元,妈妈买了m本笔记本,n支圆珠笔.妈妈共花费元.
16.(2014秋•市南区校级期中)一本书有m页,第一天读了全书的,第二天读了余下页数的
,则该书没读完的页数为页.
17.(2014•安溪县校级模拟)如果单项式x2y2b与﹣7x a y b是同类项,则a= ,b=
.
18.(2014春•南岗区校级期中)若单项式﹣πn y n+1的次数是3,当y=3时此单项式的值是
.(结果保留π)
19.(2014•武汉模拟)观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为.
20.(2014•盐城)“x的2倍与5的和”用代数式表示为.
21.(2014•长春)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个8 0元,排球每个60元,购买这些篮球和排球的总费用为元.
22.(2014•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为.
三.解答题(共8小题)
23.(2014秋•曹县期末)已知某船顺水航行2小时,逆水航行3小时.
(1)已知轮船在静水中前进的速度是x千米/时,水流的速度是y千米/时,则轮船共航行多少
千米?
(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米
?
24.(2014•淮阴区校级模拟)观察如图所示的点阵图,探究其中的规律.
(1)摆第1个“小屋子”需要5个点;
摆第2个“小屋子”需要个点;
摆第3个“小屋子”需要个点.
(2)摆第10个这样的“小屋子”需要多少个点.
(3)写出摆第n个这样的“小屋子”需要的总点数s与n的代数式:.
25.(2014•咸阳模拟)已知,一列火车上原有(6a﹣6b)人,中途下车一半人,又上车若干人,
使车上共有乘客(10a﹣6b).
(1)问上车的乘客是多少人?
(2)当a=200,b=100时,上车的乘客是多少人?
26.(2014秋•吴中区期中)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于;
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①.方法②;
(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?
(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.
27.(2013秋•雁江区期中)如图,已知梯形的下底长为a,高为r,半圆的半径为r.
(1)求阴影部分的面积(用含a,r的式子表示);
(2)当r=4,a=12时,求阴影部分的面积(结果用π表示).
28.(2013秋•太仓市期中)已知a、b互为相反数,c、d互为倒数,m为平方得本身的数.求代
数式:(m+a+b)﹣(m﹣cd)2的值.
29.(2014秋•昆山市校级期末)某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽x米,回答下列问题:
(1)修建十字路的面积是多少平方米?
(2)草坪(阴影部分)的面积是多少?
(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?
30.若a、b满足等式:.
(1)求a、b的值;
(2)求(a﹣b)2+4ab的值.
2015年04月17日1577448049的初中数学组卷
参考答案
一.选择题(共10小题)
1.B 2.C 3.C 4.A 5.B 6.B 7.B 8.D 9.C 10.D
二.填空题(共12小题)
11.1 12.2 13.3n+1 14.15.4m+3n 16.m 17.20 18.-9π2 19.50 20.2x+5 21.(80m+60n) 22.55
三.解答题(共8小题)
23.24.1117596n-1 25.26.m-n(m+n)2-4mn(m-n)227.28.29.30.。