陀螺仪和加速计的简要说明
- 格式:ppt
- 大小:555.50 KB
- 文档页数:7
陀螺仪和加速度计的精度漂移原理
陀螺仪和加速度计是惯性传感器,用于测量物体的姿态和加速度。
它们都存在
精度漂移的问题,但原理略有不同。
陀螺仪通过测量物体的角速度来确定其旋转状态。
其精度漂移主要由两个原因
引起:器件内部的噪声和器件本身的不完美特性。
首先,陀螺仪内部存在噪声源,如温度变化、电子元件的不均匀性和机械振动等。
这些噪声会引起输出信号的波动,从而导致精度漂移。
此外,陀螺仪的灵敏度也可能会随时间发生变化,进一步增加了漂移的可能性。
其次,陀螺仪的不完美特性也会导致精度漂移。
例如,陀螺仪的零偏误差(Bias)是指在无旋转状态下输出的非零信号,这会导致姿态测量的误差。
此外,
陀螺仪还可能受到机械结构的非线性影响,进一步增加了精度漂移的可能性。
与陀螺仪不同,加速度计测量的是物体的加速度。
它的精度漂移主要由重力、
振动和温度等因素引起。
首先,重力是一个常量,但在实际应用中,加速度计可能受到非重力加速度的
影响,例如振动或外力干扰。
这些非重力加速度会引起加速度计输出的误差,从而导致精度漂移。
其次,加速度计的灵敏度也可能受到温度的影响。
温度变化会导致加速度计内
部元件的特性发生变化,从而引起输出信号的波动。
综上所述,陀螺仪和加速度计的精度漂移主要受到内部噪声、器件特性、重力、振动和温度等因素的影响。
为了减少精度漂移,常常需要采取校准、滤波、温度补偿等方法来对传感器进行校正和补偿,以提高其测量的准确性和稳定性。
一文了解陀螺仪传感器和加速度传感器的区别
一文了解陀螺仪传感器和加速度传感器的区别
对于不熟悉这类产品的人来说,陀螺仪传感器是一个简单易用的基于自由空间移动和手势的定位和控制系统。
在假想的平面上挥动鼠标,屏幕上的光标就会跟着移动,并可以绕着链接画圈和点击按键。
当你正在演讲或离开桌子时,这些操作都能够很方便地实现。
陀螺仪传感器原本是运用到直升机模型上的,已经被广泛运用于手机这类移动便携设备上(IPHONE的三轴陀螺仪技术)。
陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。
人们根据这个道理,用它来保持方向。
然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。
我们骑自行车其实也是利用了这个原理。
轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。
现代陀螺仪可以精确地确定运动物体的方位的仪器,它在现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器。
传统的惯性陀螺仪主要部分有机械式的陀螺仪,而机械式的陀螺仪对工艺结构的要求很高。
70年代提出了现代光纤陀螺仪的基本设想,到八十年代以后,光纤陀螺仪就得到了非常迅速的发展,激光谐振陀螺仪也有了很大的发展。
光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠。
光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。
光纤陀螺仪同时发展的除了环式激光陀螺仪外。
陀螺仪传感器应用。
“陀螺仪”和“加速度计”工作原理最近看到加速度计和陀螺仪比较火,而且也有很多人都在研究。
于是也在网上淘了一个mpu6050模块,想用来做自平衡小车。
可是使用起来就发愁了。
网上关于mpu6050的资料的确不少,但是大家都是互相抄袭,然后贴出一段程序,看完之后还是不知道所以然。
经过翻阅各个方面的资料,以及自己的研究在处理mpu6050数据方面有一些心得,在这里和大家分享一下。
1、加速度和陀螺仪原理当然,在开始之前至少要弄懂什么是加速度计,什么是陀螺仪吧,否则那后边讲的都是没有意义的。
简单的说,加速度计主要是测量物体运动的加速度,陀螺仪主要测量物体转动的角速度。
这些理论的知识我就不多说了,都可以在网上查到。
这里推荐一篇讲的比较详细的文章《AGuide T o using IMU (Accelerometer and Gyroscope Devices) inEmbeddedApplications》,在网上可以直接搜索到。
2、加速度测量在开始之前,不知大家是否还记得加速度具有合成定理?如果不记得可以先大概了解一下,其实简单的举个例子来说就是重力加速度可以理解成是由x,y,z三个方向的加速度共同作用的结果。
反过来说就是重力加速度可以分解成x,y,z三个方向的加速度。
加速度计可以测量某一时刻x,y,z三个方向的加速度值。
而自平衡小车利用加速度计测出重力加速度在x,y,z轴的分量,然后利用各个方向的分量与重力加速度的比值来计算出小车大致的倾角。
其实在自平衡小车上非静止的时候,加速度计测出的结果并不是非常精确。
因为大家在高中物理的时候都学过,物体时刻都会受到地球的万有引力作用产生一个向下的重力加速度,而小车在动态时,受电机的作用肯定有一个前进或者后退方向的作用力,而加速度计测出的结果是,重力加速度与小车运动加速度合成得到一个总的加速度在三个方向上的分量。
不过我们暂时不考虑电机作用产生的运动加速度对测量结果的影响。
陀螺仪和加速度计原理陀螺仪和加速度计是惯性传感器的两种常见类型,它们经常被用于测量和监测物体的运动状态。
陀螺仪测量物体的角速度,而加速度计测量物体的线性加速度。
陀螺仪的工作原理基于角动量守恒定律。
当物体绕某一轴旋转时,它具有角动量,即物体的质量乘以角速度。
陀螺仪通过使用旋转部件,如陀螺或振荡器,来测量角速度。
当物体进行旋转时,旋转部件会受到作用力,这会导致旋转部件发生位移。
通过测量位移,就可以计算物体的角速度。
然而,陀螺仪存在一个问题,即在长时间的使用中,由于摩擦和其他因素的影响,它会产生漂移,即测量值与真实值之间的误差会逐渐增加。
为了解决这个问题,通常需要使用其他传感器或算法来进行校准和修正。
与陀螺仪相比,加速度计更为简单。
加速度计的工作原理基于牛顿第二定律,即物体的加速度与施加在物体上的力成正比。
加速度计通过测量物体的加速度来确定物体的线性运动状态。
加速度计通常使用微小的弹簧系统或微机电系统(MEMS)来测量物体的加速度。
当物体发生加速或减速时,弹簧系统或MEMS传感器会受到作用力,从而引起位移。
通过测量位移,就可以计算物体的加速度。
然而,与陀螺仪类似,加速度计也存在一些问题。
例如,它对重力的感知会产生误差。
为了解决这个问题,通常需要使用其他传感器或算法来进行校准和修正。
综上所述,陀螺仪和加速度计是常见的惯性传感器,它们可以用于测量物体的角速度和线性加速度。
它们的工作原理分别基于角动量守恒定律和牛顿第二定律。
尽管它们各自具有一些问题,但在现代技术中,它们通常与其他传感器和算法结合使用,以提高测量精度和准确性。
陀螺仪加速度计的工作原理好嘞,今天咱们聊聊陀螺仪和加速度计这俩家伙,它们可是现代科技的“顶梁柱”。
你要是觉得它们听起来高大上,那就真是小看了它们的日常工作。
想象一下,当你在玩手机游戏,手机屏幕上那些炫酷的动作、流畅的操作,背后可少不了它们的功劳。
陀螺仪就像一个聪明的导航员,它能知道你手机的倾斜角度。
比如说你横着玩游戏,陀螺仪会“呐喊”一声:嘿,别忘了,我在这里!然后,屏幕就会跟着你手机的姿势来个大变身,简直酷毙了!再说说加速度计,它可不是一个普通的计数器。
想象一下,你在坐过山车,哇,那个速度真是飞起!这时候,加速度计就开始忙活了。
它能测量你设备的加速、减速,甚至是静止状态。
要是你一不小心把手机掉到地上,加速度计马上就会告诉它:“喂,快点紧急刹车!”就像老司机一样,掌控着整个局面。
你知道吗?这东西可不是凭空冒出来的,它的原理简直像魔法一样。
说到工作原理,这就有意思了。
陀螺仪利用一个快速旋转的转子,那个转子就是它的“心脏”。
转子在旋转的时候,它的转轴会保持一个固定的方向。
想象一下,转子像个勇敢的骑士,无论周围怎么变化,它都坚持自己的立场。
这就让陀螺仪能保持方向感,不管你在什么地方。
就是这股坚持,让它在飞行器、航海等领域大展拳脚,真是神奇的玩意儿!而加速度计则是通过一种叫做“质量块”的小部件来工作的。
它就像一个小小的“游泳健将”,在加速或减速的时候,质量块会向不同的方向移动。
这个移动的过程被传感器捕捉到,结果就变成了你手机里那些好玩又神奇的运动数据。
你可以把它想象成一个在跳舞的小人儿,随着节奏变化,不断地在不同方向上舞动。
这种简单而又灵活的设计,让加速度计在智能手表、健身追踪器等设备中广泛应用。
说真的,这两者在一起,就像是一对完美的搭档,缺一不可。
陀螺仪提供方向,加速度计提供位置,它们互相配合,就能让你的手机、无人机、甚至是汽车都能在复杂的环境中保持稳定。
每次你在开车的时候,车上的陀螺仪和加速度计都在“忙活”。
加速度计:测量物体运动产生的加速度。
加速度使得机械悬臂与两个电极之间的距离发生变化,从而改变了两个电容。
再通过电压输出,电压与加速度成正比。
车体发生倾斜的时候,在与车体垂直的方向上,会有重力加速度g 的分量。
所以测出加速度也就知道了小车的倾角。
但是车子移动的过程中会产生抖动而影响实际需要的重力加速度的分量值。
把原本应该是平滑的曲线,变成为在此平滑曲线上下变化的不规则的曲线。
所以可以将加速度计安装的低一些,这样做会减少距车轴的距离而使运动震动产生的误差减到最小。
在此基础上,可以使用滤波的方法,但滤波的方法可能会使原本的波形信息产生影响。
陀螺仪:测量角度的信息(角速度、倾斜角度)。
陀螺仪输出的是车的角速度(准确无误),经过积分可以得到倾角。
在获得倾角的过程中,如果角速度有微小的误差,在积分后,就会有较大的误差。
解决方案是通过上面的加速度传感器获得的角度信息对此进行校正。
通过对比积分所得到的角度与重力加速度所得到的角度,使用它们之间的偏差改变陀螺仪的输出,减小误差。
[()]d g g T θθθωθ=-÷+⎰准
g θ为加速度计获得的角度信息、θ为陀螺仪角速度积分后的角度、ω为陀螺仪输出的角速度。
g T 为一个参数在调试阶段需要调节。
加速度计测量加速度,陀螺仪测量角速度以及倾角。
陀螺仪的误差可以用加速度计的测量值来消减。
加速度计和陀螺仪传感器原理检测及应用加速度计的原理是基于质量的惯性。
它包含一个质量块,当物体受到加速度时,质量块会受到力的作用,从而产生位移。
位移可以通过电容、压电或压阻等方式检测。
根据牛顿第二定律F=ma,可以通过测量质量块上的力来计算出加速度。
陀螺仪的原理是基于转子的旋转。
转子在其轴向上旋转时,会受到科里奥利力的作用,导致转子发生位移。
位移可以通过电容、压电或压阻等方式检测。
根据角动量守恒定律L=Iω,可以通过测量转子上的力矩和惯性矩来计算出角速度。
在使用加速度计和陀螺仪进行检测时,需要注意其精度和误差。
加速度计的误差包括基线误差(如零偏误差和灵敏度误差)和非线性误差。
陀螺仪的误差包括漂移误差和振动误差。
针对这些误差,可以通过校准、信号处理和滤波等手段进行补偿和消除。
加速度计和陀螺仪的应用非常广泛。
加速度计可以用于物体的运动检测与测量,例如汽车碰撞检测、地震检测、体育运动分析等。
陀螺仪可以用于物体的姿态估计与控制,例如飞行器姿态控制、虚拟现实头显的运动跟踪等。
同时,加速度计和陀螺仪也常常结合使用,以提供更精确的运动状态信息。
总之,加速度计和陀螺仪是两种常用的传感器,用于测量物体的加速度和角速度。
它们的原理基于质量的惯性和转子的旋转,通过检测位移来计算出加速度和角速度。
在应用中,需要注意其精度和误差,并根据具体需求进行校准和补偿。
加速度计和陀螺仪在各种领域都有广泛的应用,如车辆安全、地震监测和虚拟现实等。
陀螺仪与加速度传感器在飞机飞行,航天卫星,导弹巡航等等方面,需要得到精确的运行姿态,这就需要传感器测量。
在地球上,一般是采用陀螺仪,但是陀螺仪积分时有温漂,而且因为是积分,误差会累积,所以一般再采用另一种可以测量角度的来修正陀螺仪。
在这里采用加速度传感器。
陀螺仪的基准是它自己本身,会出现误差,而加速度的基准是水平面,是很准确的,但是,在地球上的任何物体都受到一个很特殊的加速度,那就是重力加速度。
加速度传感器是区分不了重力加速度和物体自身的加速度的,这个时候就需要陀螺仪和加速度传感器互相修正。
举个例子:比如说,我们现在面向正北方,正在军训,教官让我们闭上眼睛,听他口令,他说:向左……转!于是,我们就向西转了90度,这个时候,教官继续说:向右……转,我们就又从西向北转了90度,也就是说,现在就是我们又回到初始位置。
如果教官不停的重复上面的口令,这样,几十次之后,当我们们睁开眼睛的时候,会发现自己原来是面向正北方的,现在已经偏离了。
闭眼转体的时候,基准是自己,所以会出现偏差。
但是,要是我们睁着眼睛做转体动作,别说几十次,就是几万次也不会偏离自己初始的方向,当然,要是真的转体几万次,差不多也快挂了。
我们自己转体,就相当于陀螺仪,以自身为基准会出现偏离,而加上眼睛(加速度传感器),这样,眼睛就会配合我们自己的判断转到正确的角度上了!陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。
陀螺仪测知的是角速度,由物理公式ω=△θ/△t;因此,对角速度积分就可得到角度。
积分就是“狂加”,确切的讲是累加【角速度】×【积分周期Dt】。
注意三点:1是【积分周期Dt】的稳定性,2是陀螺仪信号低通滤波,3是积分饱和。
2、3点互相影响,陀螺仪信号中包含较多高频振动信号时,系统更容易积分饱和。
在惯性应用中,积分饱和可以简单使用加速度倾角缓慢校正,MK四轴就是这样做的。
加速度传感能测量角度,就是因为重力加速度的存在,通过三角变换关系得出来的角度,如图1-1所示:图1-1C表示重力加速度,A,B分别表示重力加速度在Z轴,X轴上的分量,加速度传感器测量的就是A,B。
陀螺仪、加速度之我见作者:茶不思可能一个模块一个模块的讲有些啰嗦,而且这些模块的使用方法网上也有很多教程,我以后就不在说这个了.大家有问题就搜索下吧,很容易找到.我目前用到的外设有:timer,usart,iic,spi,flash,gpio,exit,暂时就这么多.今天想跟大家谈谈加速度计和陀螺仪,不少人在问加速度计陀螺仪的数据读出来了怎么用,咱们就从这两个传感器的特点开始了解下,了解了特点,用法就很容易了.以下仅代表个人观点,有哪里不对,还请指出....做个比喻吧,加速度计,以下简称加计,大家可以把它想象成一个铁块,这个铁块是个立方体,有前后左右上下六个面,每个面连接有一个弹簧,弹簧另一端假设固定在一个卡车的集装箱里面,这样这个铁块就被这六个弹簧吊在集装箱里面了,由于铁块有重力,所以汽车不动时,上面的弹簧被拉长,下面的弹簧被压缩,这里假设是通过测量弹簧的拉力来输出加速度(实际有可能是电容什么的,这里不做讨论,了解特性就好),六个弹簧,两两一组,正好3个轴,这就是3轴加速度了,静止不动时,只有Z轴也就是上下两根弹簧有读数,其他两对弹簧是平衡的.现在假设汽车在做加速运动,那么不仅仅上下两根弹簧不平衡了,前后两根弹簧也会有变化,前面的弹簧拉长,后面的弹簧压缩,就有了前后方向的加速度.左右也是一个道理.知道了加计的大致原理,那么加计有什么特点呢?让我们大家想象一种情况,就是这辆卡车行驶在颠簸的路上,集装箱里面的铁块肯定不会稳稳的吊着了,他会随着汽车左摇右摆,上下颠簸,而且有一点大家注意,铁块的此时的摆动,不是完全和汽车同步的,由于惯性等原因,铁块会在里面"乱动",荡来荡去,此时的加速度输出会是怎么样的呢?肯定也是随着铁块"荡来荡去",所以我们得出加计的一大特点,就是对震动很"敏感",如果把飞控板放在桌子上静止不动,可以说随便一个姿态算法的输出都不错,哪怕不滤波.可以当电机一转动起来,震动来了,加计就有了很大的干扰,此时如果处理不好,姿态就乱掉了.然后我们再说说陀螺仪,陀螺仪顾名思义,肯定和陀螺有很大关系,没错,特点也和陀螺一样.还是假设在这个车里面,我们放上一个小时候玩的陀螺,不管用了什么方法,让它高速旋转起来,大家都知道,这样陀螺是不会倒的,他会尽量保持当前的姿态,陀螺仪正是利用这个特点.我们看两段视频来了解下.通过视频,大家可以看到,陀螺在高速旋转时,是会尽量保持转轴不变的.那么我们就可以想到陀螺仪的特点了,就是对震动是"不敏感"的,因为它会尽量保持自己不被震动改变,但是陀螺会不断累积误差,造成"漂移".好了,这里我们知道了加计和陀螺仪的特点,再考虑怎么使用,就简单多了,总的来说就是加计短时间不可靠,因为震动,陀螺仪长时间不可靠,因为"漂移".那么对于加计的数据和陀螺仪的数据,我们就应该短时间相信陀螺仪,长时间相信加速度.好了,到了这里,再怎么做也就清晰了,对加速度的数据,我们要滤波,平均值滤波等等,方法很多,对陀螺仪数据,我们积分,短时间内,这个积分得到的角度还是准确的,而过一段时间,就用处理过的加速度数据来矫正陀螺仪积分的角度,抑制"漂移".这样利用两个传感器的特点,取长补短,来达到一个相对稳定的输出.以上都是个人看法,有什么不对还请大家指出,大家多多讨论.。
加速度计和陀螺仪的工作原理1. 开场白嘿,朋友们!今天咱们来聊聊一些很酷的东西——加速度计和陀螺仪。
你们知道吗?这两小家伙就像是现代科技中的超级英雄,总是在默默无闻地工作,却又帮我们解决了无数难题。
想想看,手机、飞机、汽车,甚至是你的游戏控制器,里面都有它们的身影呢。
说到这里,你估计得问了,加速度计和陀螺仪到底是啥?别着急,今天咱们就从头开始,一步步揭开它们的神秘面纱。
2. 加速度计的神奇之处2.1 什么是加速度计?首先,加速度计这家伙听起来就很复杂,但实际上,它就是用来测量物体加速的一个超简单的小仪器。
想象一下,你开车的时候,突然踩油门,那时候车子就开始加速,对吧?加速度计就能感知到这种变化,告诉你车子加速了多少。
就像一个特别敏锐的侦探,专门捕捉“一点一滴”的变化。
2.2 加速度计的工作原理那么,加速度计到底是怎么工作的呢?其实,它的原理很简单。
通常,它里面有一些质量块,稍微一加速,这些小家伙就会向反方向移动。
因为根据物理学的惯性定律,物体总是喜欢保持原来的状态。
当它们移动时,加速度计就会记录下这个变化,最终用它的数据来计算出你车子的加速情况。
就好比你在一栋老房子里,墙上的画斜了一点,你的第一反应就是“这幅画怎么了?”只要给它一个小推力,它就会反应过来!3. 陀螺仪的奥秘3.1 什么是陀螺仪?接下来,咱们再聊聊陀螺仪。
这家伙听起来更高大上,但其实同样是个“守护者”。
它主要用来测量旋转和角速度,像是一个永远不昏睡的警卫。
有了它,你可以知道自己手机的屏幕是不是因为你转身就变成了横屏,真是太实用了,别说,年轻人玩手机可是非常讲究的呀!3.2 陀螺仪的工作原理那么,陀螺仪又是如何把旋转和角速度监控得那么严密的呢?这里面又有“戏”了。
通常,陀螺仪里会有一个转动的轮子,它在高速旋转。
想想那种转火旋风的感觉,哇!然后,只要它的旋转方向发生变化,陀螺仪就能感知到。
这就跟你们玩陀螺似的,越转越快,一旦力量改变,它的方向也会立马反馈回去。
陀螺仪、加速器
轴陀螺仪是分别感应Roll(左右倾斜)、Pitch(前后倾斜)、Yaw(左右摇摆)的全方位动态信息。
而iphone的6轴陀螺仪是指三轴加速器和三轴陀螺仪合在一起的称呼。
三轴加速器就是感应XYZ(立体空间三个方向,前后左右上下)轴向上的加速,比如你突然把iphone往前推,iphone就知道你是在向前加速了,从而实现类似赛车加速的操作。
简单的说,6轴具备3轴的功能,但还要高级一点。
三轴加速器是检测横向加速的,三轴陀螺仪是检测角度旋转和平衡的,合在一起称为六轴传感器。
就是用来测量三维空间三个轴向的加速度和角度率,加速度积分可以获得速度和位移;陀螺的话看你怎么用,一般用来测角度的变化,所谓的载体姿态,三轴加速计和三轴陀螺仪一般导航里用,陀螺用来转算坐标系等,从陀螺算出转角,然后将测得的加速度分解到所需的坐标轴上,结算处自己想要的结果。
三轴陀螺仪简单地说就是当你的机器向左转动的时候视角也转动其他方向同理.三轴加速计是一种能够测量加速力的电子设备。
陀螺仪与加速度传感器科普知识加速度传感器测的是什么?我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。
那又有人要问了F=ma惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。
从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。
可惜的是,加速度传感器不会区分重力加速度与外力加速度。
所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z轴的输出分别是g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z轴的输出也分别是g,0,0所以说只靠加速度传感器来估计自己的姿态是很危险而不可取的加速度传感器有什么用?加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也就是横滚角和俯仰角计算公示如下俯仰角横滚角陀螺仪测的是什么?陀螺仪可以测量角速度,具有高动态特性,但是它是一个间接测量器件,它测量的是角度的导数,角速度,显然我们要将角速度对时间积分才能得到角度看到积分我想敏感的同学马上就能发现一个致命的问题积分误差积分误差的来源主要有两个一个是积分时间积分时间Dt越小,输出角度越准一个是器件本身的误差假设陀螺仪固定不动,理想角速度值是0dps(degree per second),但是有一个偏置0.1dps加在上面,于是测量出来是0.1dps,积分一秒之后,得到的角度是0.1度,1分钟之后是6度,还能忍受,一小时之后是360度,转了一圈所以说陀螺仪在短时间内有很大的参考价值陀螺仪另外一个问题是它的测量基准是自身,并没有系统外的绝对参照物重力轴是个绝好的参照物因此需要陀螺仪和加速度传感器的配合使用如果要测偏航角YAW还需要电子罗盘感知地磁方向给出水平方向的绝对参考(当然这个在智能车上不存在吧······——!)陀螺仪和加速度传感器的融合除了给出绝对参考系陀螺仪和加速度传感器相互融合使用的最重要的原因是:综合考虑,加速度计是极易受外部干扰的传感器,但是测量值随时间的变化相对较小。
陀螺仪、加速计和磁力计现代移动及车载终端包含越来越多的传感器,陀螺仪、加速计、磁力计、感光器等等,从原理上讲,这些传感器的本质都是相同的,都是把外部环境变化转化为通信系统可理解的电信号的过程。
像温度计、光感器等传感器,因为功能单一非常容易理解,而陀螺仪、加速计和磁力计则因为原理及结构复杂,导致实际功能出现重叠,但又各有特点和局限性,在实际应用中很容易对其应用边界产生混淆,本文总结它们三者概念要点,如有理解错误,敬请指出。
一、陀螺仪陀螺仪(Gyroscope、GYRO-Sensor)也叫地感器,传统结构是内部有个陀螺,如下图所示(三轴陀螺),三轴陀螺仪的工作原理是通过测量三维坐标系内陀螺转子的垂直轴与设备之间的夹角,并计算角速度,通过夹角和角速度来判别物体在三维空间的运动状态。
三轴陀螺仪可以同时测定上、下、左、右、前、后等6个方向(合成方向同样可分解为三轴坐标),最终可判断出设备的移动轨迹和加速度。
也就是说陀螺仪通过测量自身的旋转状态,判断出设备当前运动状态,是向前、向后、向上、向下、向左还是向右呢,是加速(角速度)还是减速(角速度)呢,都可以实现,但是要判断出设备的方位(东西南北),陀螺仪就没有办法。
传统的陀螺仪属于机械式的,随技术发展,还有出现了振动式陀螺仪、激光陀螺仪、微机电机械陀螺仪等,无论是在体积微型化、测量精度和易用性上都有大大提高。
二、加速计加速计(Accelerometer、G-Sensor)也叫重力感应器,实际上是可以感知任意方向上的加速度(重力加速度则只是地表垂直方向加速度),加速计通过测量组件在某个轴向的受力情况来得到结果,表现形式为轴向的加速度大小和方向(XYZ),这一点又有点类似于陀螺仪,但陀螺仪的更多关注自身旋转情况(原位运动),加速计则主要是测量设备的受力情况,也就是三轴运动情况,尽管加速计也可能在某个小范围换算出角速度的可能,但设计原理决定似乎更适合于空间运动判断。
智能手机的陀螺仪与加速度计技术研究智能手机已经成为我们日常生活中不可或缺的一部分。
平时我们用它来发送信息、浏览新闻、购物、娱乐等。
但是,我们是否真正了解智能手机的组成结构和所使用的技术?今天,我们来探讨一下智能手机中的两种技术:陀螺仪和加速度计。
一、陀螺仪技术陀螺仪是一种能够检测智能手机旋转运动的技术。
它类似于儿童们常玩的陀螺,能够在空间中保持自转,从而实现对旋转运动的感知。
陀螺仪技术的实现需要借助MEMS(微机电系统)技术。
这种技术可以将微小的机械组件集成到芯片上,使得智能手机的体积变得更加小巧。
陀螺仪由一根细而长的柱状陀螺和两个电极组成。
当智能手机发生旋转运动时,柱状陀螺会产生一种叫做科里奥利力的力,这个力会引起两个电极之间的压电效应,最终产生电信号。
陀螺仪技术的应用非常广泛。
首先,它可以用于检测智能手机的旋转方向,比如横屏和竖屏转换。
其次,它还可以用于导航和跟踪系统,并在无载体的情况下执行空间姿态控制。
二、加速度计技术加速度计是一种能够检测智能手机线性运动的技术。
它可以通过测量物体在不同时间段内的速度变化,来计算出物体的加速度。
加速度计同样基于MEMS技术。
它由许多能够在不同方向上弯曲的微小柔性悬臂组成。
当智能手机发生线性运动时,这些悬臂会因为惯性而发生微小的弯曲变化,从而产生电信号。
根据这些电信号,加速度计可以计算出物体的加速度和方向。
加速度计技术在智能手机中的应用非常重要。
首先,它可以用于智能手机的摇一摇功能。
其次,它还可用于检测智能手机的倾斜角度、运动轨迹和速度,从而实现更加精确的计步、定位和导航功能。
总结陀螺仪和加速度计是智能手机中两种非常重要的技术。
它们分别能够检测旋转运动和线性运动,并在智能手机的诸多应用中发挥重要作用。
虽然这些技术在智能手机中是微小的组成部分,但是它们的应用范围非常广泛,为我们的生活带来了很多便利。