焊接物理冶金 第一、二章课件
- 格式:ppt
- 大小:17.03 MB
- 文档页数:79
绪论焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程称为焊接。
焊接实质:当两个被焊的固体金属表面接近到相距r时,就可以在接触表面上A进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。
为了克服阻碍金属表面紧密接触的各种因素,两种措施:1.对被焊接的材质施加压力2.对被焊材料加热(局部或整体)焊接热源:1.电弧热2.化学热3.电阻热4.高频感应热5.摩擦热6.等离子焰7.电子束8.激光束焊接接头的形成:一般要经历加热、熔化、冶金反应、凝固结晶、固态相变,直至形成焊接接头提高焊缝韧性:加入微量合金元素(Ti、Mo、Nb、V、Zr、B和稀土等)排除焊缝杂质(S、P、O、N、H等)焊缝缺陷:偏析、夹杂、气孔、热裂纹、冷裂纹、脆化等第一章焊接化学冶金1.1熔池:母材上由熔化的焊条金属与局部熔化的母材所组成的具有一定几何形状的液体金属叫做熔池熔池中流体的运动:1.原因1)温度分布不均匀由液态金属的密度差造成自由对流运动2)表面张力差所引起的强对流运动3)热源的各种机械力所产生的搅拌作用 2.作用:1)使熔池中焊丝金属和母材金属混合均匀,使冶金反应顺利进行2)获得成分均匀的焊缝金属,有利于气体和非金属夹杂逸出1.2焊接过程中对金属的保护熔渣:埋弧焊、电渣焊、不含造气成分的焊条和药芯焊丝焊接。
利用焊剂以及其熔化以后形成的熔渣隔离空气保护金属的,焊接的保护效果取决于焊剂的粒度和结构、混合气体)中焊接。
保护效气体:气焊、在惰性气体和其他保护气体(如CO2果取决于保护气的性质与纯度、焊炬的结构、气体的特性等因素熔渣和气体:具有造气成分的焊条和药芯焊丝焊接。
一般由造气剂、造渣剂和钛合金等组成的。
造渣剂融化以后形成熔渣,覆盖在熔滴和熔池表面上将空气隔开。
熔渣凝固以后,在焊缝上面形成渣壳,可以防止处于高温的焊缝金属与空气接触。
1.第一章1、氮对焊接质量的影响?(1).有害杂质(2).促使产生气孔(3).促使焊缝金属时效脆化。
影响焊缝含氮量的因素及控制措施?1)、机械保护2)、焊接工艺参数(采用短弧焊;增加焊接电流; 直流正接高于交流,高于直流反接(焊缝含N量); 增加焊丝直径;N%,多层焊>单层焊;N%,小直径焊条>大直径焊条3)合金元素( 增加含碳量可降低焊缝含氮量;Ti、Al、Zr和稀土元素对氮有较大亲和力2.、氢对焊接质量的影响?1).氢气孔2)、白点3)、氢脆4)、组织变化和显微斑点5)、产生冷裂纹控制氢的措施?1)、限制焊接材料的含氢量,药皮成分2)、严格清理工件及焊丝:去锈、油污、吸附水分3)、冶金处理4)、调整焊接规范5)、焊后脱氢处理3、氧对焊接质量的影响?1)、机械性能下降;化学性能变差2)、产生CO气孔,合金元素烧损3)、工艺性能变差应采取什么措施减小焊缝含氧量?1)纯化焊接材料2)控制焊接工艺参数3)脱氧4.CO2保护焊焊接低合金钢时,应采用什么焊丝,为什么?答:采用高锰高硅焊丝,原因:(1)Mn,Si被烧损;(2)Mn,Si联合脱氧。
5.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低?答:L=(FeO)/[FeO] T↑L↓,焊接温度下L>1同样温度下,FeO在碱性渣中比酸性渣中更容易向金属中分配在熔渣含FeO量相同的情况下,碱性渣时焊缝含氧量比酸性渣时多。
然而碱性焊条的焊缝含氧量比酸性焊条低碱性焊条药皮的氧化势小的缘故6为什么焊接高铝钢时,即使焊条中不含SiO2,只是由于水玻璃作粘结剂焊缝还会严重增硅?答:Al和O的亲和力比Si和O的亲和力大,Si烧损少,水玻璃中的Si能大量的过渡到金属中。
7.为什么酸性焊条用锰铁作为脱氧剂,而碱性焊条用硅铁、锰铁和钛铁为脱氧剂?答:酸性焊条含SiO2多,与MnO2 (脱氧产物)形成复合氧化物,,降低O含量,使渣中MnO2含量降低,浓度降低,从而使熔敷金属中的氧化物向渣中过渡,达到脱氧的目的。
焊接冶金学结论一、焊接过程的物理本质1、焊接定义被焊工件的材质通过加热或加压或二者并用,用或不用添充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程称为焊接。
定义掌握三个要点:一是材料,可以是金属、非金属;可以是同种材料、异种材料。
二是达到原子间的结合。
三是永久性。
2、金属连接的障碍1)金属表面只有个别微观点接触;2)材料表面存在着氧化膜、油、杂质、污物、锈等。
3、解决的方法1)加热加热到熔化状态——熔化焊2)加压(加热或不加热)——压力焊4、分类1)冶金角度分:液相焊接:指熔化焊,利用热源加热侍焊部位,使之发生熔化,利用液相的相溶,达到原子间的结合。
它包括电弧焊、电渣焊、气焊、电子束焊、激光焊等。
固相焊接:指压力焊,是焊接时必须使用压力,使待焊部位的表面在固态下达到紧密接触,并使待焊表面的温度升高(一般低于材料的熔点),通过调解温度、压力和时间,造成接头处材料进行扩散,实现原子间的结合。
它包括电阻焊、磨擦焊、超声波焊等。
固-液相焊接:待焊表面并不直接接触,通过两者毛细间隙中的中间液相联系。
在待焊的同质或异质材质固态母材与中间液相之间存在两个固-液界面,由于固液相间能充分进行扩散,可实现原子间的结合。
2)从焊接方法上分:一是熔化焊:a、电弧焊:手工电弧焊、埋弧焊、气电焊。
b、气焊c、电渣焊d、等离子焊e、真空电子束焊f、激光焊二是压力焊:a、磨擦焊、b、接触焊:点焊、对焊、闪光焊、缝焊等。
c、超声波焊d、扩散焊三是钎焊:真空钎焊、火焰钎焊、感应钎焊等。
二、焊接热源种类及其特性1、热源的发展上个世纪80年代发现碳弧焊;1891年金属极电弧焊;本世纪初薄皮焊条电弧焊和氧乙炔气焊;30年代,厚皮焊条电弧焊、氢原子焊、氦气保护焊;40年代,埋弧焊和电阻焊;50年代,CO2气体保护焊和电渣焊;60年代,电子束焊和等离子弧焊与切割;70年代,激光焊焊接与切割;80年代,逐步完善电子束焊接和激光焊接工程;90年代,寻找新能源,如太阳能、微波等。