第五章抽样估计3.pptx
- 格式:pptx
- 大小:390.36 KB
- 文档页数:22
第五章抽样估计第一节抽样估计的理论基础抽样估计的基本内容就是研究如何根据总体的部分数据信息(构造样本指标也称统计量)去估计未知总体指标(也称参数)的理论和方法。
学习步骤:抽样估计的理论基础——大数定律和中心极限定理→掌握抽样分布的有关概念及基本原理→抽样估计的理论和方法。
一、大数定律大量的独立重复测量值的算术平均值具有稳定性。
对于这种稳定性的研究构成了大数定律的基本内容。
两个重要的大数定律:贝努里大数定理、辛钦大数定律设事件A在一次试验中发生的概率为p,在n次独立重复试验中,事件A发生了m次,那么对任意给定的正数ε,有其等价形式是贝努里大数定理说明:事件发生的频率m/n,依概率收敛于事件发生的概率p,这个定理用严格的数学形式表达了频率的稳定性,也就是说,当n很大时,事件发生的频率与概率有较大偏差的可能性很小。
因此,当n很大时,可用事件发生的频率m/n近似地代替事件发生的概率p,即p≈m/n,这种方法称为抽样估计,它是数理统计的主要研究课题。
(二)辛钦大数定律设随机变量X1,X2,…,X n相互独立,服从同一分布,且(E(X k)=μ,k=1,2,…),则对任意正数ε,恒有:辛钦大数定律为我们用测量数据的算术平均数代替其真值的方法提供了理论依据。
假定要测量某一物理量μ,在不变条件下测量n次,得到的结果X1,X2,…,X n是不完全相同的,它们可以看作n个独立随机变量X1,X2,…,X n(它们服从同一分布且数学期望均为μ)。
按照辛钦大数定律,当n很大时,我们取n次测量结果的算术平均数作为真值μ的近似值,这时出现较大偏差的可能性很小。
一般说来,测定的次数越多,近似程度越好。
二、中心极限定理当处理大样本问题时,将它作为一个非常重要的工具。
下面介绍两个常用的中心极限定理。
定理1:林德贝格—勒维中心极限定理,也称为独立同分布中心极限定理。
定理2:德莫佛—拉普拉斯中心极限定理。
它表明:二项分布的极限分布是正态分布,因此,当n充分大时,若随机变量X n~B(n,p),则近似地有X n~N(np,np(1-p),于是我们可以利用正态分布近似地计算二项分布的概率。
第五章抽样估计第五章抽样调查与参数估计在实际的统计分析过程中,由于各种因素的限制,我们很少能够将研究对象中所有单位的数据收集起来进行计算分析。
在很多情况下,我们是进行抽样调查,根据样本的信息对研究对象的数量特征进行推断。
参数估计是一种关于如何利用样本的信息对总体特征做出具有一定可靠程度推断的统计分析方法,它是推断统计中非常重要的方法之一。
本章将介绍抽样调查的基本问题,然后在介绍抽样分布的基础上讨论参数估计的基本原理,最后介绍对一个总体参数进行估计的方法。
第一节抽样调查与抽样的组织形式抽样调查是一种非全面调查,它是按照随机原则从总体中抽取部分调查单位作为样本进行调查,以搜集样本数据的调查形式。
抽样调查获取的样本资料是进行参数估计、方差分析、假设检验等推断统计的基本依据。
一、抽样调查的特点与作用(一)抽样调查的特点抽样调查与其他非全面调查方式相比具有以下特点:1.抽样调查是按随机原则抽取总体单位作为样本的。
随机抽样意味着总体中某个单位被抽中与否,不会受到调查者和被调查者主观愿望的影响,从而保证了样本对总体的代表性。
2.抽样调查得到的样本资料可以用来推断总体数量特征。
依据概率论与数理统计的相关原理,在一定的置信水平下,可以估计出总体的数量特征和状态,这种估计有着坚实的理论基础。
3.用抽样调查的数据估计总体的状况必然产生抽样误差,抽样误差虽不可避免,但它是可以估计和控制的。
(二)抽样调查的作用与优点抽样调查是实际中应用最广泛的一种调查方式,它的作用和优点表现在以下几个方面:1.对于一些不可能或者不必要进行全面调查的现象,可以采用抽样调查的方式。
比如对灯泡的使用寿命、轮胎的里程试验、食品的合格率等破坏性检查就不可能进行全面调查;而对于有些社会经济现象,总体单位数多且分布很广,调查资源有限,就没有必要采用全面调查,这时都可以考虑采用抽样调查,然后据之推断出总体的特征。
2.抽样调查可以对全面调查的资料进行补充和修正。