F
由
200 2 cos
3
2
≤
200,
cos
2
≥
3 2
,
2
≤
6
,
≤
3
.
u ur
u ur
F1 F2
从 而 可 知 0 o , 6 0 o 绳 子 才 不 会 断 .
ur G
例艘4船.如从图A处,一出u条ur发河到的河两对岸岸平,已行知,河船的的宽速度度d=|5vur10| 01m0k,一m/h, ,水流速度 |v2|2km/h,问行驶航程最短时,所用时间 是多少?(精确到0.1min)
2.5平面向量的应用举例 主页
1.平面几何中的向量方法
向量概念和运算,都有明确的物理背景和几何 背景。当向量与平面坐标系结合以后,向量的运 算就可以完全转化为“代数”的计算,这就为我 们解决物理问题和几何研究带来极大的方便。 研究对象: 与向量有关的如距离、平行、三点共线、垂直、夹 角等几何问题
充分利用向量这个工具来解决
2 cos
u ur
2
(1)θ为何值时,| F 1 最| 小,最小值是多少?
答:在上式ur 中,当θ =0º时,
c
o
s
2
最大,|
u ur F1
最| 小
且等于 | G | .
2
u ur
ur
(2)| F 1 | 能等于 | G | 吗?为什么?
答:在上式中,当
cos
2
1 2
,
uur ur
| F1 ||G|
即θ=120º时,
生活中常遇到两根等长的绳子挂一个物体.