+5 -3.5 +0.7 -2.5 -0.6
指出哪个排球的质量好一些,并用绝对值的知识加以说明.
课堂小结
定义
一般地,数轴上表示数a的点与 原点的距离叫做数a的绝对值.
绝对值 性质
绝对值的性质
(1) |a|≥0; a (a 0)
(2) | a | a (a 0) 0 (a 0) .
课后研讨
1.说一说本节课的收获。 2.谈谈在解决实际问题中有哪些需要 注意或不太懂的地方。
探究新知
例如,下图所示:
-5到原点的距离是5, 所以-5的绝对值是5, 记作|-5|=5.
-6
-5
-4
-3
-2
0 1
|-5| = 5
-1
0到原点的距离是0,所以 0的绝对值是0,记作
|0|=0.
|+4| = 4
2
3
4
5
6
4到原点的距离是4,所 以4的绝对值是4,记作
|4|=4
探究新知
【试一试】利用数轴上点到原点的距离回答:
素养考点 2 已知绝对值求原数
例2 填一填: (1)绝对值等于0的数是_0__, (2)绝对值等于5.25的正数是_5_._2_5_, (3)绝对值等于5.25的负数是_-_5_._2_5_, (4)绝对值等于2的数是__2_或__-_2_.
探究新知
易错提醒:注意绝对值等于某个正数的数有两个,它们互为 相反数,解题时不要遗漏负值.
第一章 有理数
1.2 有理数及其大小比较 1.2.4 绝对值
学习目标
1.理解绝对值的概念及其几何意义. 2.会求一个数(不涉及字母)的绝对值. 3.会求绝对值已知的数. 4.了解绝对值的非负性,并能用其非负性解决相关问题.