质谱法
- 格式:doc
- 大小:41.00 KB
- 文档页数:11
化学实验中的质谱法质谱法(Mass Spectrometry, MS)是一种基于质量分析原理的重要实验技术,在化学领域中得到广泛应用。
质谱法通过测量物质的离子在磁场中偏转的弧线,来确定分子的质量、结构以及化学性质。
本文将介绍质谱法的原理、仪器设备以及实验步骤等内容,以帮助读者更好地了解并运用质谱法在化学实验中。
一、质谱法的原理质谱法的核心原理是根据化合物中分子离子的质荷比,在磁场中偏转的情况来测量离子的质量。
当样品被电子轰击时,化合物中的分子会发生解离生成离子,并通过加速装置使得离子速度加快。
离子进入磁场后,受到洛伦兹力的作用,发生偏转。
偏转的程度与离子质量成正比,由此可以推断出离子的质量。
二、质谱法的仪器设备质谱法所需的主要仪器设备包括质谱仪、进样系统、离子生成器、磁场等。
其中质谱仪是整个质谱法的核心部分,其主要由质量分析器和检测器构成。
质量分析器负责对离子进行分离和质量测量,常见的有磁扇形质量分析器和四极杆质量分析器等。
检测器负责测量和记录离子的信号强度,常见的有电子倍增器检测器和离子计数器等。
进样系统用于将样品引入质谱仪,离子生成器则是将样品中的化合物转化为气态离子。
三、质谱法的实验步骤1. 样品制备:将待测物质转化为气态或溶解于可以产生气态离子的溶剂中。
适当的样品制备方法有助于获得准确的质谱数据。
2. 进样:将样品引入质谱仪中,通常使用气相色谱仪等进样系统。
进样系统将样品分子转化为气态,然后引入质谱仪中进行质谱分析。
3. 离子生成:样品进入质谱仪后,通过离子生成器将样品分子转化为离子。
常用的离子化方法有电子轰击离子化和化学离子化等。
4. 质谱分析:经过离子生成后的样品进入质量分析器进行分离和质量测量。
分离是通过磁场的作用将不同质量的离子分离出来,而质量测量是通过测量离子偏转的程度来推断离子质量。
5. 数据分析:通过质谱仪中检测器所测得的信号强度,可以获得离子的丰度和质量信息。
质谱仪通常会输出质谱图,通过分析质谱图可以确定样品的化合物质量、结构等信息。
化学分析中的质谱法质谱法是一种在化学分析中常用的手段。
该方法通过对样品分子进行离子化和分离,然后测定质荷比(即质量与电荷的比值),从而获得样品的质谱图。
质谱法在化学分析中具有广泛的应用,如有机化合物结构的鉴定、定量分析、药物代谢研究、环境监测等。
一、质谱法的原理质谱法的原理基于离子在磁场中运动所受到的力受质量和电荷的影响,不同质荷比的离子在磁场中呈现出不同轨道。
质谱仪利用这一特性,将样品分子先转化为离子,再通过加速器和质谱分析仪进行离子排序和分离,最终形成质谱图。
二、质谱仪的组成质谱仪通常由四个主要组件组成,包括样品处理系统、加速器、质谱分析系统和数据处理系统。
1. 样品处理系统样品处理系统用于将待分析的样品分子转化为离子。
常用的方法包括电离法(如电子轰击电离、化学电离、光电离等)和中性气体反应离子源(NGRI)。
2. 加速器加速器用于给质谱仪中产生的离子加速,使其在磁场中能够形成稳定的轨道。
常用的加速器包括电场加速器、气体动力学加速器等。
3. 质谱分析系统质谱分析系统是质谱仪中最重要的部分,用于对离子进行分离和测量。
其中,质谱分析器根据质荷比的不同而采用不同的分析方法,如质谱仪、四级杆质谱仪、飞行时间质谱仪等。
4. 数据处理系统数据处理系统用于处理并解析质谱图数据。
常用的方法包括质谱图的峰定量、峰识别和质谱图的解释。
三、质谱法的应用1. 有机化合物结构的鉴定质谱法可通过对有机化合物的质谱图进行解析,确定化合物的分子式、分子量、官能团以及结构。
这对于有机化学的研究和有机化合物的合成具有重要意义。
2. 定量分析质谱法作为一种高灵敏度的分析方法,在定量分析中有重要应用。
利用标准曲线和内标法,可以准确地确定样品中目标物质的含量。
3. 药物代谢研究质谱法可以用于药物代谢研究中,通过分析药物在体内代谢产物的质谱图,了解药物代谢途径、代谢产物结构以及代谢动力学参数。
4. 环境监测质谱法在环境监测中也有广泛应用。
第四章质谱法(MS)1、质谱:利用离子化技术,将物质分子转化为离子,按其质荷比(m/z)的差异分离测定,从而进行物质成分和结构分析的方法。
2、质谱可以为我们提供以下信息:1. 样品元素组成及分子量;2. 鉴定(别)化合物;3. 推测未知物的结构(骨架、官能团等);4. 测定分子中同位素含量较多元素的原子数(如Cl、Br等)。
一、质谱中的主要离子:(一)分子离子:是样品分子失去一个价电子形成的正离子。
用M 表示。
分子离子在质解图上相应的峰叫做分子离子峰。
(二)碎片离子:是化学键断裂而产生。
碎片离子的类型和丰度与化合物中的化学键的类型、断裂情况有关。
1、化学键裂解的方式:均裂、异裂和半均裂三种。
(先失去一个电子形成离子化键)鱼钩:,表示单电子转移;箭头:,表示两个电子转移。
含奇数个电子的离子:OE ,含偶数个电子的离子: EE ,+电荷位置不清楚的用“┐”表示。
2、化学键易断裂的几种情况:1)α裂解:带有正电荷的官能团与相连的α碳原子之间的断裂。
2) β裂解: 带有正电荷的官能团的α位和β位的两个碳原子之间的断裂。
3) i 裂解: 官能团上的电荷转移的裂解。
或:由电荷中心引发的裂解。
又称诱导裂解。
(三)同位素离子:由于天然同位素的存在,因此在质谱图上出现M+1、M+2等峰,含有同位素的离子称为同位素离子,由这些同位素所形成的峰称之为同位素峰。
峰强比可用二项式 (a+b)n 求出:a 与b 为轻质同位素及重质同位素的丰度比; n 为原子数目。
(四)、亚稳离子: 质量数为m 1的离子离开离子源到达质量分析器之前,其中部分发生裂解失去中性碎片(Δm )而变成低质量的m 2 ,由于部分动能被中性碎片带走,所以这种离子的能量比在离子源中产生的m 2的能量要小,这种离子称为亚稳离子,用m*表示 。
由于亚稳离子的能量 比 在离子源中直接产生的m 2的能量要小,因此亚稳离子 比 在离子源中产生的m 2偏转更大,从而形成亚稳离子峰。
质谱法质谱仪——样品导入系统、离子源、质量分析器、检测器、放大器和记录系统质谱既不属于光谱,也不属于波谱,但它常与UV、IR、NMR联用,是有机化合物结构分析的重要工具常见的质谱是经过计算机处理的棒图,纵坐标是离子的相对强度(以基峰为100%),横坐标是质荷比二、质谱分析法的特点和用途:1 特点(1)应用范围广既可以进行同位素分析,又可以进行化合物分析在化合物分析中既可以做无机成分分析,又可做有机结构分析被分析的样品既可以是气体和液体,又可以是固体(2)灵敏度高、样品量少目前有机质谱仪的绝对灵敏度可以达10-11g(3)分析速度快2 用途(1)测定分子量由高分辨质谱获得分子离子峰的质量数,可测出精确的分子量(2)鉴定化合物(3)推测未知物的结构由分子离子和碎片离子获得的信息可推测分子结构(4)测定分子中Cl,Br等的原子数(5)质谱与色谱联用后,可用于多组分的定性与定量采用选择离子检测(SIM)技术可获得非常高的灵敏度和选择性,是目前痕量有机分析最有效的手段之一第二节质谱仪及其工作原理质谱仪有离子化、质量分离、离子检测三部分组成一、样品的导入与离子源(一) 样品导入系统质谱仪是高真空装置1 直接进样(DPI)适合于单组份、挥发性较低的固体或液体样品2 色谱联用导入样品色谱-质谱联用:色谱将多组分分离成单体,通过“接口”导入离子源进行质谱分析,这种方法称为~“接口”的作用:出去色谱流出的大量流动相,将被测组分导入高真空的质谱仪目前常见的有:气相色谱-质谱联用(GC-MS)高效液相色谱-质谱联用(HPLC-MS)它们的接口种类较多,其中毛细管气相色谱与质谱联用的接口最为简单,细径毛细管柱在保温条件下,直接插入质谱离子源即可(二) 离子源离子源作用:将被分析物质电离为正离子或负离子。
质谱法质谱法是使待测化合物产生气态离子,再按质荷比(m/z)将离子分离、检测的分析方法,检测限可达10-15~10-12mol数量级。
质谱法课提供分子质量和结构的信息,定量测定可采用内标法或外标法。
质谱仪的主要组成如图所示。
在由泵维持的10-3~10-6Pa真空状态下,离子源产生的各种正离子(或负离子),经加速,进入质量分析器分离,再由检测器检测。
计算机系统用于控制仪器,记录、处理并储存数据,党配有标准谱库软件时,计算机系统可以将测得的质谱与标准谱库中图谱比较,获得可能化合物的组成和结构信息。
一、进样系统样品导入应不影响质谱仪的真空度。
进样方式的选择取决于样品的性质、纯度及所采用的离子化方式。
1、直接进样室温常压下,气态或液态化合物的中性分子通过可控漏孔系统,进入离子源。
吸附在固体上或溶解在液态中的挥发性待测化合物可采用顶空分析法提取和富集,程序升温解吸附,再经毛细管导入质谱仪。
挥发性固体样品可置于进样杆顶端小坩埚内,在接近离子源的高真空状态下加热、气化。
采用解吸离子化技术,可以使热不稳定的、难挥发的样品在气化的同时离子化。
多种分离技术已实现了与质谱的联用。
经分析后的各种待测成分,可以通过适当的接口导入质谱仪分析。
2气相色谱-质谱联用(GC-MS)在使用毛细管气相色谱柱及高容量质谱真空泵的情况下,色谱流出物可直接引入质谱仪。
3液相色谱-质谱联用(LC-MS)使待测化合物从色谱流出物中分离、形成适合于质谱分析的气态分子或离子需要特殊的接口。
离子束(PBI)、移动带(MBI)、大气压离子化(API)是可用的液相色谱-质谱联用接口。
为减少污染,避免化学噪声和电离抑制,流动性中所含的缓冲盐或添加剂通常应用具有挥发性,且用量也有一定的限制。
(1)离子束接口液相色谱的流出物在去溶剂室雾化、脱溶剂后,仅待测化合物的中性分子被引入质谱离子源。
离子束接口适用于分子量小于1000的弱极性化合物的分析,测得的质谱可用由电子轰击离子化或化学离子化产生。
质谱法(Mass spectrometry)是一种分析化学物质的技术,用来测定化学物质的分子量和结构。
它通过将化学物质分解为其组成的原子或分子离子,然后测定这些离子的质量,来确定化学物质的分子量和结构。
质谱法是一种高灵敏度的分析方法,能够测定很小的化学物质的质量,常用于分析有机化合物、金属元素和生物分子等。
质谱法通常分为两大类:电离质谱法和离子化质谱法。
电离质谱法是通过将化学物质的分子离子化,然后测定这些离子的质量来确定化学物质的分子量和结构的。
离子化质谱法则是通过将化学物质的原子或分子离子化,然后测定这些离子的质量来确定化学物质的分子量和结构的。
在质谱法中,通常使用质谱仪来进行分析。
质谱仪包括质谱源、质量分析器和检测器等部分。
质谱源用来将化学物质分解成离子,质量分析器用来测定离子的质量,检测器则用来测量离子的数量。
质谱法的分析过程通常包括几个步骤:样品的准备、质谱源的激活、离子的测量和数据处理。
在样品准备阶段,需要将样品进行一定的处理,使其适合进行质谱分析。
在质谱源的激活阶段,需要对样品进行离子化或电离,使其成为离子的形态。
然后,在离子的测量阶段,通过质量分析器和检测器测量离子的质量和数量。
最后,在数据处理阶段,通过计算和分析测量得到的数据,确定样品的分子量和结构。
质谱法的分析结果通常以质谱图的形式呈现,质谱图中纵坐标表示离子的数量,横坐标表示离子的质量。
通过观察质谱图,可以确定样品中不同离子的种类和数量,从而得到样品的分子量和结构信息。
质谱法在分析各种化学物质方面有着广泛的应用。
例如,在药物研发中,质谱法可以用来测定药物分子的结构和分子量,帮助研究人员了解药物的作用机制。
在环境科学中,质谱法可以用来测定环境样品中的有毒物质,帮助研究人员评估环境的污染程度。
此外,质谱法还可以用于分析食品、饮料、农产品等,帮助确保食品安全和质量。
质谱法是一种非常重要的分析技术,在化学、生物学、药学、环境科学等领域都有着广泛的应用。
质谱法的基本原理与应用一、什么是质谱法质谱法(Mass Spectrometry, MS)是一种基于粒子在电场和磁场中运动的质量-电荷比分析仪器的方法。
该方法广泛应用于化学、生物学、环境科学等领域,在化学分析、生物分析、药物研发等方面具有重要的应用价值。
二、质谱法的基本原理质谱法基于粒子在电场和磁场中运动的原理,通过将样品中的分子离子化,并使其带上电荷,然后通过加速器将离子加速到一定速度,进入磁场区域。
在磁场中,离子将按照它们的质量-电荷比比例进行偏转。
通过测量离子在磁场中偏转的程度,可以确定其质量-电荷比,并进一步分析出其具体的分子结构。
质谱法的基本原理可以简化为以下几个步骤:1.离子源:将样品分子离子化产生离子。
离子源常用的方法包括电离和化学离子化。
2.加速器:对离子进行加速,使其获得足够的能量。
3.分离器:通过磁场和电场的作用,将离子按照质量-电荷比进行分离。
4.探测器:测量离子的质量-电荷比,并得到质谱图。
三、质谱法的应用领域质谱法在各个领域都有重要的应用,下面我们分别介绍一些常见的应用领域:1. 化学分析领域质谱法在化学分析领域中扮演着重要的角色。
它可以用于确定化合物的分子结构、分析化合物的组成、检测化合物的纯度等。
质谱法可以通过测量样品中的分子离子的质量-电荷比,来确定样品的组成和结构。
2. 生物分析领域质谱法在生物分析领域中也有广泛的应用。
通过质谱法可以对蛋白质、核酸等生物大分子进行分析和鉴定。
这对于了解生物大分子的结构和功能具有重要意义,有助于深入理解生命的基本过程。
3. 药物研发领域质谱法在药物研发领域中有着重要的地位。
药物的研发需要对化合物的结构、纯度、稳定性等进行分析。
质谱法可以通过对药物候选化合物进行分析,确定其分子结构以及相应的质量信息,有助于药物的合理设计和优化。
4. 环境科学领域质谱法在环境科学领域中也有广泛的应用。
它可以用于分析和检测环境中的污染物和毒性物质,对环境质量进行评估。
质谱法(MS):原理、应用与实践一、简介质谱法(Mass Spectrometry,简称MS)是一种用于测定物质分子质量和结构分析的实验方法。
它通过将物质转化为离子,并根据其质量/电荷比(m/z)进行分离和检测,实现对物质组成的定量和定性分析。
在这份文档中,我们将详细介绍质谱法的基本原理、仪器组成、不同类型的质谱法以及其在各个领域的应用。
二、质谱法的基本原理质谱法的工作原理可以概括为以下几个步骤:1. 电离:首先,待分析的物质被转化为离子。
这个过程可以通过各种方式实现,包括电子撞击、化学电离、光致电离等。
2. 分离:然后,离子根据其m/z进行分离。
这通常是通过磁场或电场实现的。
3. 检测:最后,分离后的离子被检测和量化。
这通常通过检测离子产生的电子或光子来实现。
三、质谱法的仪器组成质谱仪主要由以下几部分组成:1. 电离源:用于将待分析的物质转化为离子。
2. 质量分析器:用于根据离子的m/z进行分离。
3. 检测器:用于检测和量化离子。
4. 数据处理系统:用于处理检测器产生的信号,生成质谱图。
四、不同类型的质谱法根据不同的电离方法和质量分析器,质谱法可以分为多种类型,包括:1. 电子撞击质谱法(EI-MS):在这种方法中,待分析的物质被电子撞击后转化为离子。
2. 磁扇质谱法(MASS):在这种方法中,离子在磁场中运动,根据其m/z进行分离。
3. 飞行时间质谱法(TOF-MS):在这种方法中,离子在电场中飞行,根据其m/z 和飞行时间进行分离。
4. 电喷雾质谱法(ESI-MS):在这种方法中,待分析的物质在电喷雾作用下转化为离子。
五、质谱法的应用质谱法在许多领域都有广泛的应用,包括:1. 生物医学:在生物医学研究中,质谱法被用于蛋白质组学、代谢组学等领域的研究。
2. 环境科学:在环境科学中,质谱法被用于监测环境中的污染物。
3. 化学分析:在化学分析中,质谱法被用于确定化合物的结构和纯度。
4. 食品安全:在食品安全领域,质谱法被用于检测食品中的有害物质。
质谱法+• 第四章 质谱法(MS )1、质谱:利用离子化技术,将物质分子转化为离子,按其质荷比(m/z)的差异分离测定,从而进行物质成分和结构分析的方法。
2、质谱可以为我们提供以下信息:1. 样品元素组成及分子量;2. 鉴定(别)化合物;3. 推测未知物的结构(骨架、官能团等);4. 测定分子中同位素含量较多元素的原子数(如Cl 、Br 等)。
一、质谱中的主要离子:(一)分子离子:是样品分子失去一个价电子形成的正离子。
用M 表示。
分子离子在质解图上相应的峰叫做分子离子峰。
(二)碎片离子:是化学键断裂而产生。
碎片离子的类型和丰度与化合物中的化学键的类型、断裂情况有关。
1、化学键裂解的方式:均裂、异裂和半均裂三种。
(先失去一个电子形成离子化键)鱼钩: ,表示单电子转移;箭头: ,表示两个电子转移。
含奇数个电子的离子:OE , 含偶数个电子的离子: EE , + 电荷位置不清楚的用 “ ┐”表示。
2、化学键易断裂的几种情况:1) α裂解: 带有正电荷的官能团与相连的α碳原子之间的断裂。
2)β裂解:带有正电荷的官能团的α位和β位的两个碳原子之间的断裂。
3)i 裂解:官能团上的电荷转移的裂解。
或:由电荷中心引发的裂解。
又称诱导裂解。
(三)同位素离子:由于天然同位素的存在,因此在质谱图上出现M+1、M+2等峰,含有同位素的离子称为同位素离子,由这些同位素所形成的峰称之为同位素峰。
峰强比可用二项式 (a+b)n 求出:a与b为轻质同位素及重质同位素的丰度比;n 为原子数目。
(四)、亚稳离子:质量数为m1的离子离开离子源到达质量分析器之前,其中部分发生裂解失去,由于部分动能被中性碎片带走,所以这种离子的能量比在离中性碎片(Δm)而变成低质量的m2子源中产生的m的能量要小,这种离子称为亚稳离子,用m*表示。
2的能量要小,因此亚稳离子比在离子源中产生由于亚稳离子的能量比在离子源中直接产生的m2偏转更大,从而形成亚稳离子峰。
第九章质谱法一.教学内容1.质谱分析法的基本概念、发展概况及特点2.由质谱仪器结合质谱法的基本质谱仪的工作流程各主要部件的基本结构、基本原理及性能掌握联用技术3.质谱峰的类型、离子碎裂途径及有机化合物的质谱4.质谱法的图谱解析及基本应用二.重点与难点1.各种离子源的基本原理、特点及适应性2.各种重量分析器的基本结构、分析原理、特点及适用性3.各类离子的碎裂机理及规律4.质谱法的基本应用(分子量、分子式、结构式的确定)三.教学要求1.较好地掌握质谱分析法的基本基本2.掌握掌握仪的基本结构、工作流程及性能指标3.在较深入掌握单、双聚焦质量分析器的基础上,比较其它质量分析器的基本原理及特点4.一般了建质谱联用技术5.掌握简单图谱的解析,进行较简单化合物分子量、分子式及结构式的分析四.学时安排3学时质谱法是通过将样品转化为运动的气态离子并按质荷比(m/z)大小进行分离记录的分析方法。
所获得结果即为质谱图(亦称质谱)。
根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。
质谱仪早期主要用于原子量的测定和定量测定某些复杂碳氢混合物中的各组分等。
1960年以后,才开始用于复杂化合物的鉴定和结构分析。
实验证明,质谱法是研究有机化合物结构的有力工具。
第一节质谱仪一、质谱仪的工作原理质谱仪是利用电磁学原理,使带电的样品离子按质荷比进行分离的装置。
离子电离后经加速进入磁场中,其动能与加速电压及电荷z有关,即z e U = 1/2 mν2其中z为电荷数,e为元电荷(e=1.60×10-19C),U为加速电压,m为离子的质量,ν为离子被加速后的运动速度。
具有速度ν的带电粒子进入质谱分析器的电磁场中,根据所选择的分离方式,最终实现各种离子按m/z进行分离。
根据质量分析器的工作原理,可以将质谱仪分为动态仪器和静态仪器两大类。
在静态仪器中用稳定的电磁场,按空间位置将m/z不同的离子分开,如单聚焦和双聚焦质谱仪。
原子质谱法从分析的对象来看,质谱法(mass spectrometry)可分为原子质谱法(atomic mass spectrometry)和分子质谱法(molecular mass spectrometry),本章我们仅讨论质谱法在无机元素分析中的应用,有关在有机分析中的应用,将留待第13章讨论。
原子质谱法,亦称无机质谱法(inorganic mass spectrometry),是将单质离子按质荷比比同而进行分离和检测的方法。
它广泛地应用于物质试样中元素的识别而后浓度的测定。
几乎所有元素都可以用无机质谱测定。
§12-1基本原理原子质谱分析包括下面几个步骤:①原子化;②将原子化的原子的大部分转化为离子流,一般为单电荷正离子;③离子按质量-电荷比(即质荷比,m/z)分离;④计数各种离子的数目或测定由试样形成的离子轰击传感器时产生的离子电流。
与其它分析方法不同,质谱法中所关注的常常是某元素特定同位素的实际原子量或含有某组特定同位素的实际质量。
在质谱法中用高分辨率质谱仪测量质量通常可达到小数点后第三或第四位。
自然界中,元素的相对原子质量(A r)由下式计算。
在这里,A1,A2,…,A n为元素的n个同位素以原子质量常量m u①为单位的原子质量,p1,p2,…,p n为自然界中这些同位素的丰度,即某一同位素在该元素各同位素总原子数中的百分含量。
相对分子质量即为化学分子式中各原子的相对原子质量之和。
通常情况下,质谱分析中所讨论的离子为正离子。
质荷比为离子的原子质量m与其所带电荷数z之比。
因此12CH+的m/z = 16.0.35/1 = 16.035,12C24H+的4m/z = 17.035/2 = 8.518。
质谱法中多数离子为单电荷。
§12-2质谱仪质谱仪能使物质粒子(原子,分子)电离成离子并通过适当的方法实现按质荷比分离,检测其强度后进行物质分析。
质谱仪一般由三个大的系统组成:电学系统、真空系统和分析系统。
分析系统是质谱仪的核心,它包括三个重要部分:离子源,质量分析器和质量检测器,并由此决定质谱仪的类型。
质谱仪种类很多,分类不一。
一般按分析系统的工作状态把质谱仪分为静态和动态两大类。
静态质谱仪的质量分析器采用稳定的或变化慢的电、磁场,按照空间位臵将不同质荷比的离子分开;动态质谱仪的质量分析器则采用变化的电、磁场,按时间和空间区分不同质荷比的离子。
例如,由单聚焦和双聚焦质量分析器组成的质谱仪,属于静态质谱仪;而飞行时间和四极滤质器组成的质谱仪,属于动态质谱仪。
一、质谱仪主要性能指标质量测定范围表示质谱仪能够分析试样的相对原子质量(或相对分子质量)范围。
质谱仪的分辨本领,是指起分开相邻质量数离子的能力,其定义见后面章节§13一1。
质谱仪的分辨本领由下面几个因素决定:离子通道的半径;加速器和收集器的狭缝宽度;离子源。
分辨本领在10 000以下的称为低分辨,在10 000以上的称为中或高分辨。
灵敏度有绝对灵敏度、相对灵敏度和分析灵敏度等几种表示方法。
挤兑灵敏度是指仪器可检测的最小试样量。
相对灵敏度是指仪器可以同时检测的大组分与小组分的含量之比。
分析灵敏度则指输入仪器的试样量与仪器输出的信号之比。
二、分析系统(一)离子源随分析对象和目的的不同,需要采用不同的离子源,其结构和性能对分析结果有很大影响。
以下是原子质谱分析中最常见的几种离子源。
1.高频火花电离源高频火花电离源主要用于离子化无挥发性的无机试样,如金属、半导体、矿物等。
被分析试样直接(或与石墨混压)作为电离源的一个或两个电极。
在真空状态下,对试样电极和参考电极间施加约30kV脉冲高频电压,电极间发生的火花放电使得电极上的试样蒸发并电离。
高频火花电离源的电离效率高,对不同的试样(包括气体、液体和固体),其电离效率大致相同。
因此,不必进行定量校正就能得到定性分析和半定量分析数据。
这种电离源主要缺点是能量分散较大,必须采用双聚焦分析器,但此种仪器价格昂贵。
2.电感耦合等离子体电离源自20世纪80年代初期以来,电感耦合等离子体(ICP)也应用于质谱分析中作为电离源,电感耦合等离子体质谱(ICPMS)已经成为元素分析中最重要的一项技术。
有关ICP产生机理我们在原子发射光谱法已作介绍。
在ICPMS中,从ICP炬产生的金属正离子通过一个蠕动泵接口导入质量分析器。
与传统的电感耦合等离子体原子发射光谱(ICPAES)相比,从ICPMS得到的谱图非常简单,仅由各个元素的同位素峰组成。
此分析技术对绝大多数元素而言都很灵敏,选择性好,精度和准确度也相当好。
所分析的试样一般为溶液。
3.辉光放电离子源辉光放电是等离子体的一种形式。
最简单的辉光放电装臵可以由安放在低压(10~1000Pa)气氛中的阴、阳极构成。
在电极间施加一个电场,使气体击穿,电子和正离子朝着带相反电荷的电极加速,轰击电极上的物质使之电离。
待测试样可直接或与石墨粉混合成型后作为阳极。
辉光放电离子源中,有三种主要的放电模式:①电容耦合射频放电;②直流放电;③脉冲直流放电。
在平均功率相同的情况下,脉冲直流放电可获得较大的离子流,能进行时间分辨的数据采集和质谱甄别,削弱背景离子的贡献。
辉光放电离子源的应用日益增多,尤其是对块状金属进行快速可靠分析,可以完成原来用火花源质谱才能进行的元素快速定性普查,具有简单、价廉、精密度较高的特点。
4.其它离子源(1)激光离子源利用简单的光学系统,将能量为焦耳级的激光束聚焦在固体表面某一微小区域内(微米级),就能使该微区的表面温度达到5 000~10 000K,并擦黑上以下效应:热电子发射、热离子发散、中性原子或分子蒸发、光电离。
其中所产生的热离子即可进行质谱分析。
(2)离子轰击离子源是利用气体放电或其它方法产生具有一定能量的一次离子束,轰击真空中的固体表面时,可以使被轰击区域的温度高达10 000K,而整个靶体的温度仍保持常温,同时发生一系列物理现象,如散射、中性粒子溅射、正负二次离子溅射、X射线荧光、二次电子等。
依溅射现象可以建立两种质谱分析方法:1)直接引出溅射二次离子进行分析的二次离子质谱法(SIMS);2)利用辅助电子束碰撞溅射出的中性原子,使之成为离子之后进行分析,称为电离中发展的固体表面和深度分析方法,在表面分析法一章里将作一些介绍。
(二)质量分析器质量分析器是质谱仪的重要组成部分,其作用是将离子溅出来的离子按照质荷比的大小分开。
质量分析器种类较多,大约有20余种。
最常用的有四极质量分析器、时间飞行分析器、单聚焦分析器、双聚焦分析器等。
1.四极质量分析器四极质量分析器是原子质谱法中最常用的分析器,如图6一1所示。
四极质量分析器结构紧凑,价格低廉,性能稳定。
它还具有高速扫描的优点,因而能够在少于300ms的时间内得到一张很完整的质谱图。
四极质量分析器的核心是四个作为电极的平行圆柱状电极杆。
相对的两个电极杆相连,一对连接变化的直流电源正极,另一对接负极。
此外,这两对电极杆,分别加上相差180°的射频交流电压。
为了得到质谱图,用5~10V的电压加速离子引至电极杆的空隙。
同时,加在电极感到交流和直流电压同步增加,保持它们之比不变。
在任一给定时刻,除那些具有一定质荷比的离子外,所有离子将打到电极杆上,被转化为中性分子。
因而,只有那些质荷比在一定范围内的离子能达到检测器。
严格来说,四极质谱计应当称为滤质器,它类似于使用变波长滤光片的光度计而不同于使用光栅的分光光度计。
四极质量分析器通常可轻易地分辨相差一个相对原子质量单位的离子,其分辨率比双聚焦式低,但仍适合绝大多数的原子质谱分析要求。
考虑施加在交流信号上的直流电压的影响,对于相同动能的离子,其动量正比于质量的平方根,因此改变重离子的运行比轻离子要困难些。
如果离子的质量重而且交流电压的频率高,离子将不会对交流电有显著的响应,而主要受直流电压的影响。
在此情况下,离子将留在电极杆之间的空间内。
而对于质量轻的离子且频率低的情况,离子将打在电极杆上,并在交流电势的时候,带有负直流电压的一对电极杆将湮灭所有被吸引到电极杆上的正离子。
不过,对轻离子这种运动可以被交流电的振荡抵消,在yz平面上,形成低通带滤质器。
由上述讨论可知,四极质谱计的两对电极杆形成高、低通带,只有在一定质荷比范围的离子才能到达检测器。
此范围的变化可由交流和直流的电压来调节,进而实现质谱的扫描。
2.飞行时间质量分析器飞行时间(time of flight,TOF)仪器中,正离子周期性地短脉冲电子、二次离子或激光生光子的轰击试样产生。
这些脉冲的频率一般在10~20kHz,持续时间0.25μs。
产生的离子经过1~10kV的脉冲电场加速,与电离脉冲同步但滞后。
加速的粒子导入到长一米的漂移管(见图6一3)。
因所有进入管中的离子理论上具有相同的动能,它们在管中的速率与它们的质量呈反比,轻离子将早于重离子到达检测器。
飞行时间一般为1~30μs。
由于飞行时间在微秒级范围,对数字数据的采集要求采用极其快速的电子器件。
离子能量的起始位臵的不同会使峰形变宽,限制分辨率提高。
从分辨率和重现性看,TOF分析器不如磁或四极分析器,但它具有简易稳定、很容易联接离子源、几乎无限的质量范围和快速的数据采集等优点。
3.双聚焦质量分析器双聚焦分析器或分离器可以同时实现方向聚焦和能量(速度)聚焦(其示意图见图13一8)。
双聚焦分析器可以与能量分散大的离子源如高频火花离子源结合使用。
进行固体微量分析时,相对灵敏度可达到10-10。
此方法可准确测定原子的质量,广泛用于有机质谱仪中,其分辨率是各种离子分析器中最高的,但价格昂贵,维护困难。
(三)离子检测器经过质量分析器分离后的离子,达到检测系统进行检测,即可得到质谱图。
离子的检测器和记录器主要有3种。
1.电子倍增管电子倍增管种类很多,在原理上与第2章介绍的光电倍增管类似,但所涉及的是二次电子发射效应。
加速的离子轰击电子倍增管的转换极,发射出二次电子,然后被后续的一系列次级电子发射极(倍增管)放大。
涂有铜/铍的转换极和倍增管可以在离子或电子的轰击下发射出倍增数量的电子。
转换极上不加电压,以免对离子束造成影响,而在各倍增极上有100~300V的电压差。
一般地,电子倍增管可配臵多至20个的倍增极,总电压差为3~6kV,将电流放大107倍。
电子倍增管稳定可靠,电流增益高且响应时间在纳秒级。
这类检测器可以直接装在磁质量分析器后面,因为其引出的离子具有足够的能量在转换极上溅射出电子。
将离子束用几千伏的电压加速后,电子倍增管也可用于低能量离子束的质量分析器(即四极质量分析器)一起使用。
2.法拉第筒法拉第筒中,被接收的离子束经入口狭缝打在收集板上。
收集板与进入的离子束成斜面,使得轰击或离开电极的粒子远离筒的入口。