五年级上册数学期末复习知识点归纳
- 格式:doc
- 大小:36.50 KB
- 文档页数:11
可能性知识盘点知识点1:描述事件的发生情况1、可能、不可能、一定是判断事件发生的三种情况。
2、不确定的现象,能用“可能”“不一定”等来描述,确定的现象,能用“一定”“不可能”来描述。
知识点2:可能性的大小1、可能性有大有小,在总数中所占的数量越多,可能性就越大;所占的数量越少,可能性就越小。
可能性的大小跟数量的多少有关。
2、可能发生的事件,可能性大小。
把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。
可能性的大小=这种情况发生的次数÷总共发生的情况数 知识点3:游戏公平性游戏中,那个结果可能性大,哪种结果嬴得可能性就大。
易错集合易错点1:根据题意判断各种事件发生得可能性得大小 典例 给盒子中的小球涂上红色或黄色使得下列事件成立。
(1)摸出得一定是红球;(2)摸出得不可能是红球;(3)摸出红球得可能性大; (4)摸出红球得可能性小;(5)摸出红球和黄球得可能性一样大。
解析 (1)根据随机事件发生的可能性,要使摸出的一定是红球,则盒子中只有红球。
(2)根据随机事件发生的可能性,要使摸出的不可能是红球,则盒子中没有红⭐注意:一件事发生的可能性最大为100%,最小为0。
球。
(3)根据随机事件发生的可能性,要使摸出红球的可能性大,则盒子中红球的数量比黄球多。
(4)根据随机事件发生的可能性,要使摸出红球的可能性小,则盒子中红球的数量比黄球少。
(5)根据随机事件发生的可能性,要使摸出红球和黄球的可能性一样大,则盒子中红球和黄球的数量相等。
解答✨针对练习1现在有两个盒子,里面装着大小相同的黑球和白球,下面两个同学的说法,谁说的对?为什么?可可说:我摸出的可能是黑球。
贝贝说:我摸出的一定是白球。
易错点2:游戏的公平性典例1李佳一心想得一等奖,她转动如右图所示的转盘16次,可一次一等奖都没有得到,她对工作人员说这个抽奖活动是骗人的。
如果你是工作人员,你会怎样向她解释这个抽奖活动没有骗人?解析观察转盘,被平均分成了8等份,一等奖占2份,二等奖占2份,三等奖占2份,其他占2份。
5年级上册数学知识点归纳一、小数乘法。
1. 小数乘整数:意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2. 小数乘小数:按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
3. 积的近似数:求积的近似数时,先按照小数乘法的计算方法算出积,再根据要保留的小数位数,看需要保留数位的下一位数字,用“四舍五入”法取近似值。
4. 整数乘法运算定律推广到小数:乘法交换律、乘法结合律和乘法分配律在小数乘法中同样适用。
二、位置。
1. 用数对表示位置时,第一个数表示列,第二个数表示行。
2. 给出数对能在方格纸上找到对应的位置,给出位置能写出对应的数对。
三、小数除法。
1. 小数除以整数:按照整数除法的方法去除,商的小数点要和被除数的小数点对齐,如果有余数,要添 0 再除。
2. 一个数除以小数:先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用 0 补足),然后按照除数是整数的小数除法进行计算。
3. 商的近似数:计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
4. 循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
5. 用计算器探索规律。
四、可能性。
1. 可能、不可能、一定:能判断事件发生的可能性。
2. 可能性的大小:与数量的多少有关,在总数中所占数量越多,发生的可能性就越大;所占数量越少,发生的可能性就越小。
五、简易方程。
1. 用字母表示数:可以表示数量关系、运算定律和计算公式等。
2. 方程的意义:含有未知数的等式叫做方程。
3. 等式的性质:等式两边加上或减去同一个数,左右两边仍然相等;等式两边乘同一个数,或除以同一个不为 0 的数,左右两边仍然相等。
4. 解方程:依据等式的性质解方程。
5. 实际问题与方程:列方程解决实际问题的步骤,设未知数、找等量关系、列方程、解方程、检验、作答。
第一单元小数乘法知识点1 小数×整数&小数×小数1.计算方法:先按照算出积,再点小数点;点小数点时,看一共有几位小数,就从积的起数出几位,点上小数点。
注意:小数乘法是对齐,小数加减法是对齐。
练习:填空(1)13.65扩大()倍是1365;6.8缩小()倍是0.068(2)一个小数的小数点向右移动2位,再向左移动3位,这个小数()(3)6.3×16.789的积有()位小数。
练习:根据1.5×16=24,直接写出下面各题的积。
1.5×0.16=()0.015×160=()240÷0.15=()2.积的末尾有0时,先再。
练习:列竖式计算(1)0.86×5 (2)3.3×16 (3)12.8×42 (4)0.19×403.积的小数位数不够时,要在积的前面,再。
练习:列竖式计算(1)0.56×0.04 (2)0.056×0.154.倍数可以是整数,也可以是小数。
5.小数乘法验算时, 再乘一遍。
练习:列竖式计算并验算。
(1)2.9×0.58 (2)7.31×0.15知识点2 积和因数之间的大小关系一个数(0除外)乘大于1的数,积比原来的数;一个数(0除外)乘小于1的数,积比原来的数。
练习:填“>”或“<”或“=”(1)2.03×1.01()2.04 (2)1×2.3()1 (3)5.2×2.5()2.5练习:判断(1)一个数的1.65倍一定大于这个数()(2)一个数乘小数,积一定小于这个数()知识点3 积的近似数先算出积的,再按照取近似数。
应用题中要先写出准确数再写出近似数,列竖式计算中直接用连接写出近似数。
注意:“保留”和“精确到”的区别练习:列竖式计算,积保留两位小数。
(1)0.86×1.6 (2)2.34×0.15 (3)1.05×0.26练习:一幢大楼有21层,每层高2.84m,这幢大楼约高多少米?(得数保留整数)知识点4 整数运算定律推广到小数1.小数四则运算顺序和整数相同加法:加法交换律:加法结合律:减法:a—b—c=a—(b—c)=乘法:乘法交换律:乘法结合律:乘法分配律:除法:2.简便计算(要总结不同类型)(1)利用两组黄金数:125×8=25×4=注意陷阱:125×4=25×8=24×5=练习:递等式计算,能简便的要简便计算。
数学五年级上册总复习要点整理一. 算数1. 整数1.1 正整数和负整数的概念1.2 整数的比大小1.3 整数的加减法则及应用1.4 整数的乘除法则及应用2. 分数2.1 分数的概念和性质2.2 分数的比较大小和约分2.3 分数的加减法则及应用2.4 分数的乘除法则及应用3. 小数3.1 小数的概念和性质3.2 小数的读法和写法3.3 小数的比较大小和四则运算4. 算式的变形和计算4.1 算式的基本等式4.2 算式的变形4.3 算式的括号应用4.4 算式的口算加减乘除5. 数的应用5.1 包括数值解释、图形解释等二. 几何1. 植入几何学1.1 植入几何中的点和线1.2 植入几何中的角和三角形1.3 植入几何的统计图形初步2. 视图几何学2.1 视角的概念和画法2.2 视图及其分类3. 几何变换3.1 平移和旋转的概念和画法3.2 对称的概念和画法三. 量1. 长度1.1 长度的测量1.2 长度的运算2. 面积2.1 面积的概念和测量2.2 面积的运算3. 重量3.1 重量的测量3.2 重量的运算4. 容积和长度之间的换算4.1 容积和长度的概念4.2 容积和长度之间的换算四. 数据1. 数据資料1.1 資料的收集1.2 資料的分析2. 平均数2.1 一般用算术平均数2.2 一般应用3. 计数方法3.1 排列表和频数分布表3.2 众数和中位数五. 算法1. 数字串/字符运算1.1 数字串和字符的概念1.2 字符的比较和分类1.3 数字串的基本操作2. 计算机图形学2.1 图形学的概念和分类2.2 图形计算和显示2.3 特殊效果的实现以上是数学五年级上册总复习的要点整理,希望能够对同学们的学习有所帮助。
小学数学五年级上册期末总复习要点第一单元小数乘法1、小数乘法的计算方法:先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起,数出几位,点上小数点。
当积的位数不够时,用 0 补位,再点上小数点。
2、两个小数相乘的积的一般规律:两个不为 0 的数相乘,当一个因数比 1 小,它们的积比另一个因数小;当一个因数比 1 大,它们的积比另一个因数大;当一个因数等于 1,它们的积等于另一个因数。
3、小数乘法的估算:通常是把不是整个、整十、整百的数看成与它接近的整个、整十、整百的数后再估算。
关键:是化繁为简,能方便计算。
4、求积的近似值:通常是根据题目要求或实际需要,确定应该保留几位小数,用“四舍五入”法保留一定的小数位数,求出积的近似值。
5、解决问题:分析题中的数量关系,根据数量关系列出算式,再算出结果。
如本单元典型数量关系(1)读天然气表、电表或水表,算本月的费用通常是:①本月读数-上月读数实际用量②单价×实际用量本月费用(2)出租车计费,通常有:①起步价规定路程以外按一定单价计价的出租车费一共要付的费用②演变:(一共要付的费用-起步价)÷ 起步价规定路程外的单价起步价包括的路程总路程注:上网费、停车费与出租车费道理相通。
(3)工程问题中,通常有:工作效率×工作时间工作总量演变一:工作效率×工作时间×工作队数工作总量演变二:工作总量÷工作时间÷工作队数工作效率演变三:工作总量÷工作效率÷工作队数工作时间注:每一个基本的数量关系都可以有很多不同的演变方式。
第二单元图形的平移、旋转与对称1、图形平移后形状、大小都不变,只是位置发生了变化。
描述图形的平移路线时要说清楚图形平移的方向和平移的距离。
画平移后的图形的方法:平移前,先确定一个点,看这个点会平移到哪儿,保证平移的格数正确;二是注意看原来的图中的每条线段各占几格,保证图形和原来一样。
第一章小数乘法1,当一个数乘比1小的数,积比这个数小。
当一个数乘比1大的数,积比这个数大。
例: 2.4× 0.5 < 2.4 0.97× 8.2 < 8.22.4× 1.02 > 2.4 0.97× 0.84 < 0.972,两数相乘,一个因数不变,另一个因数扩大到原来的多少倍,积也扩大到原来的多少倍。
一个因数不变,另一个因数缩小到原来的几分几,积也缩小到原来的几分之几。
3,两数相乘,一个因数扩大到原来的m倍,另一个因数扩大到原来的n倍,积扩大到原来的m乘以n倍。
4,小数乘法计算法则:一算:小数乘小数,先按整数乘法算出积;二看:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;三点:当乘得的积的小数位数不够时,要在前面用0补足,再点上小数点,如果积的小数末尾有0,就根据小数的基本性质把0去掉!5、小数点的位移规律:把一个小数扩大10倍、100倍、1000倍、……只要把小数点向右移动一位、两位、三位……位数不够时,要用“0”补足。
把一个小数缩小为原来的1/10、1/100、1/1000、……只要把小数点向左移动一位、两位、三位……位数不够时,要用“0”补足。
6、根据因数判断积的小数位数:两个因数一共有几位小数,积就是几位小数。
7、整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
乘法的交换律:a×b=b×a乘法的结合律:( a×b)×c= a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c8、积的近似数:保留a位小数,就看第a+1位,再用四舍五入的方法取值。
①保留整数:表示精确到个位,看十分位上的数;②保留一位小数:表示精确到十分位,看百分位上的数;③保留两位小数:表示精确到百分位,看千分位上的数;生活中人民币最小单位常常是“分”,因此以元为单位一般保留两位小数。
第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
小学五年级数学上册35个重要知识点归纳五年级数学上35个重要知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法;(3)去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
小数乘法1、意义:(1)小数乘整数:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(2)一个数乘小数:求这个数的十分之几、百分之几、千分之几……2、计算法则先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的末位起数出几位,点上小数点;乘得的积的小数位数不够的,要在前面用0补足,再点小数点。
3、验算方法:(注意用原题数字进行验算)(1)可以交换两个因数的位置进行验算;(2)可以用积除以一个因数等于另一个因数的方法进行验算。
4、积变化的规律:(1)一个因数不变,另一个因数扩大(缩小)n倍,积也跟着扩大(缩小)n倍;一个因数扩大n倍,另一个因数缩小n倍,积不变。
(2)一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
5、积的近似数:与估算不同,只是根据需要,按“四舍五入”法保留得数一定的小数位数。
6、小数的四则运算(1)常规计算与整数一样,先乘除后加减,有括号要先算括号里面的,同级运算从左往右。
(2)整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
1、2.4+2.4+2.4+2.4=2.4×()2、根据56×1.3=72.8,直接写出下面各题的结果。
56×13=() 0.56×1.3=() 5.6×13=()3、把5.8扩大()倍是58,69缩小()倍是0.69。
4、在计算0.56×3时,可以把0.56看成( )来计算,要使积不变,应把计算的结果缩小()倍。
5、0.56×202= 0.56×()=()利用了()律进行简算。
6、0.108×2.3的积有()位小数,如果0.108扩大100倍,要使积不变,必须把2.3变成()。
7、4.9095取近似值,保留一位小数是(),两位小数是(),三位小数是()。
8、在下面的圆圈里填上“>”、“<”或“=”符号。
五年级上册数学期末考试知识点总结五年级上册数学期末考试是中小学生学习数学的重要考核,对于每个学生来说,掌握考试所要求的知识点是很关键的。
下面给出的是五年级上册数学期末考试的知识点总结,供学生参考。
一、四则运算。
五年级上册数学期末考试中,四则运算占有相当大的比重,考生们需要熟练掌握加减乘除的基本计算方法,并能根据不同的要求,正确地完成四则运算题。
二、分数和小数。
考生们要掌握分数和小数的运算,包括分数和小数的加减乘除、概率、比例和表达式的算法。
三、计数和算术。
考生们要学会求和、统计、单位换算等计数运算,包括计数、百分比和分数的计算,以及基本的算术概念,如因式分解、指数和对数的概念。
四、形状和空间。
考生们要学会熟练使用图形和空间的基本概念,包括直线、线段、平面和立体等类型的图形,及其形成的平面图形和立体图形的计算方法。
五、数轴。
因为数轴的数字梯度和面积可以更好地揭示数学关系,考生们要学会利用数轴来解决数学问题,掌握数轴坐标系的基本原理,学会计算数轴上不同点的距离和面积。
六、数列和函数。
考生们要学会分析等差数列和等比数列的性质,学会求解函数的极值、拟合曲线学会等函数的计算和使用。
七、最大公约数和最小公倍数。
考生们要学会利用素数和基本概念计算最大公约数和最小公倍数,学会使用最大公约数和最小公倍数求解多项式、分数和方程组。
八、数量关系。
考生们要学会根据模型分析数量关系,学会用表格和图形表示数量关系,学会求解规律性问题,学会利用算法解决问题。
以上就是五年级上册数学期末考试的知识点总结,希望各位考生在考试前能够认真复习,取得好成绩。
正确的学习态度和坚持不懈的勤奋是考生们在数学学习中的重要保证,只有不断完善自己的学习能力,才能在未来的学习和生活中取得成功。
五年级上册数学期末复习知识点归纳小数乘法1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数;就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数;就从积的右边起数出几位点上小数点。
注意:计算结果中;小数部分末尾的0要去掉;把小数化简;小数部分位数不够时;要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数;积比原来的数大; 一个数(0除外)乘小于1的数;积比原来的数小。
4、求近似数的方法一般有三种:(P10)⑴四舍五入法; ⑵进一法; ⑶去尾法5、计算钱数;保留两位小数;表示计算到分。
保留一位小数;表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)小数除法1、小数除法的意义:已知两个因数的积与其中的一个因数;求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3;求另一个因数的运算。
2、小数除以整数的计算方法(P16):小数除以整数;按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。
整数部分不够除;商0;点上小数点。
如果有余数;要添0再除。
3、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数;使除数变成整数;再按"除数是整数的小数除法"的法则进行计算。
注意:如果被除数的位数不够;在被除数的末尾用0补足。
4、(P23)在实际应用中;小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外);商不变。
②除数不变;被除数扩大;商随着扩大。
被除数不变;除数缩小;商扩大。
③被除数不变;除数缩小;商扩大。
6、(P28)循环小数:一个数的小数部分;从某一位起;一个数字或者几个数字依次不断重复出现;这样的小数叫做循环小数。
循环节:一个循环小数的小数部分;依次不断重复出现的数字。
如6.3232…………的循环节是32.7、小数部分的位数是有限的小数;叫做有限小数。
小数部分的位数是无限的小数;叫做无限小数。
观察物体1、正确辨认从上面、前面、左面观察到物体的形状。
2、观察物体有诀窍;先数看到几个面;再看它的排列法;画图形时要注意;只分上下画数量。
3、从不同位置观察同一个物体;所看到的图形有可能一样;也有可能不一样。
4、从同一个位置观察不同的物体;所看到的图形有可能一样;也有可能不一样。
5、从不同的位置观察;才能更全面地认识一个物体。
简易方程1、(P45)在含有字母的式子里;字母中间的乘号可以记作"·";也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a;a读作a的平方。
2a表示a+a3、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值;叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外);等式依然成立。
5、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商6、所有的方程都是等式;但等式不一定都是方程。
7、方程的检验过程:方程左边=……8、方程的解是一个数;针对练习1.判断下面的说法是否正确。
(1)方程都是等式;但等式不一定是方程。
( )(2)含有未知数的等式叫做方程。
( )(3)方程的解和解方程是一样的。
( )(4)10=4x-8不是方程。
( )(5)x=0是方程5x=5的解。
( )(6)9.3-1.3=10-2是等式。
( )2.解方程。
x+53=102x-17=54x-0.9=1.2x+310=6908.5+x=10.2x-0.74=1.5多边形的面积1、公式:长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2面积=长×宽字母公式:S=ab正方形:周长=边长×4字母公式:C=4a平行四边形的面积=底×高字母公式:S=ah 三角形的面积=底×高÷2--【底=面积×2÷高; 高=面积×2÷底】字母公式:S=ah÷2梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2【上底=面积×2÷高-下底;下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】2、平行四边形面积公式推导:剪拼、平移3、三角形面积公式推导:旋转平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形;长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积;平行四边形的面积等于三角形面积的2倍;因为长方形面积=长×宽;所以平行四边形面积=底×高。
因为平行四边形面积=因为平行四边形面积=底×高;所以三角形面积=底×高÷24、梯形面积公式推导:旋转5、三角形、梯形的第二种推导方法老师已讲;自己看书两个完全一样的梯形可以拼成一个平行四边形;知道就行。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍;因为平行四边形面积=底×高;所以梯形面积=(上底+下底)×高÷2 6、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
7、长方形框架拉成平行四边形;周长不变;面积变小。
8、组合图形:转化成已学的简单图形;通过加、减进行计算。
统计与可能性一、统计图的分类及点(1)条形统计图:条形统计图是用一个单位长度表示一定的数量;根据数量的多少画成长短不同的直条;然后把这些直条按照一定的顺序排列起来。
作用:从条形统计图中很容易看出各种数量的多少。
(2)拆线统计图:折线统计图是用一个单位长度表示一定的数量;根据数量的多少描出各点;然后把各点用线段顺次连接起来。
作用:折线统计图不但可以表示出数量的多少;而且能够清楚地表示出数量增减变化的情况。
(3)扇形统计图:扇形统计图是用整个圆表示总数;用圆内各个扇形的大小表示各部分数量占总数的百分数。
作用:通过扇形统计图可以很清楚地表示各部分数量同总数之间的关系。
折线统计图不但能反映数据(量)的多少;更能反映某一项目在某一时间内的数据(量)增减变化情况.二、平均数、众数、中位数比较相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
不同点它们之间的区别;主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列;处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数;需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列;如果数据个数是奇数;则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数;则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数;不必计算就可求出。
3、个数不同在一组数据中;平均数和中位数都具有惟一性;但众数有时不具有惟一性。
在一组数据中;可能不止一个众数;也可能没有众数。
4、呈现不同平均数:是一个“虚拟”的数;是通过计算得到的;它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时;它就是该组数据排序后最中间的那个数据;是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下;中位数是最中间两个数据的平均数;它不一定与这组数据中的某个数据相等;此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据;它是真实存在的。
5、代表不同平均数:反映了一组数据的平均大小;常用来一代表数据的总体“平均水平”。
中位数:像一条分界线;将数据分成前半部分和后半部分;因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据;用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同;但都可表示数据的集中趋势;都可作为数据一般水平的代表6、特点不同平均数:与每一个数据都有关;其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响;这里的极端值是指偏大或偏小数;当出现偏大数时;平均数将会被抬高;当出现偏小数时;平均数会降低。
中位数:与数据的排列位置有关;某些数据的变动对它没有影响;它是一组数据中间位置上的代表值;不受数据极端值的影响。
众数:与数据出现的次数有关;着眼于对各数据出现的频率的考察;其大小只与这组数据中的部分数据有关;不受极端值的影响;其缺点是具有不惟一性;一组数据中可能会有一个众数;也可能会有多个或没有。
7、作用不同平均数:是统计中最常用的数据代表值;比较可靠和稳定;因为它与每一个数据都有关;反映出来的信息最充分。