小学一年级上册数学《数与代数》知识点整理
- 格式:doc
- 大小:1.40 KB
- 文档页数:1
数与代数知识点整理一、数的认识。
1. 整数。
- 自然数:像0、1、2、3……这样的数叫自然数,最小的自然数是0,没有最大的自然数。
自然数包括0和正整数。
- 整数的数位顺序表:从右到左依次是个位、十位、百位、千位、万位……计数单位分别是一(个)、十、百、千、万……每相邻两个计数单位间的进率都是10。
例如,10个一是十,10个十是一百。
- 整数的读法和写法。
- 读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续几个0都只读一个零。
如3005读作三千零五。
- 写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
- 整数的大小比较:先看位数,位数多的数大;如果位数相同,从最高位比起,相同数位上的数大的那个数就大。
例如,5678>3456,89>78。
2. 小数。
- 小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。
例如,0.3表示十分之三。
- 小数的数位顺序表:小数点右边第一位是十分位,计数单位是0.1;第二位是百分位,计数单位是0.01;第三位是千分位,计数单位是0.001……- 小数的读法和写法。
- 读法:整数部分按照整数的读法来读,小数点读作“点”,小数部分顺次读出每一位上的数字。
如3.25读作三点二五。
- 写法:整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
- 小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
如3.2 = 3.20。
- 小数的大小比较:先比较整数部分,整数部分大的数大;如果整数部分相同,再比较十分位,十分位上数大的数大;如果十分位相同,再比较百分位……以此类推。
例如,3.56>3.28。
3. 分数。
- 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
例如,把一个蛋糕看作单位“1”,平均分成4份,其中的1份就是(1)/(4)。
一年级上册数与代数的知识点汇总一读数.写数.1.读20以内的数(1)正数:从小到大的顺序0.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20。
倒数:从大到小的顺序20.19.18.17.16.15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.2个2个的数:0.2.4.6.8.10.12.14.16.18.20(正数倒数中间数)5个5个的数0.5.10.15(正数(2)看图写数:小棒图实物图( ) ( ) ( )2.两位数(1)生活中经常遇到十个物体为一个整体的情况;实际上10个“一”就是 1个“十”例:15里面有()个十和5个(一):15里面有()个一20里面有()个十; 20里面有()个一(2)数位:计数器上;从右边起第一位是什么位?()位。
第2位是什么位?()位。
个位上1颗珠子表示什么?表示()个()。
十位上的一颗珠子表示什么?表示()个()。
(3)读数.写数例:读作:十四;写作14 。
个位上是4;表示4个一十位上是1;表示1个10二、比较大小和第几1.给数字娃娃排队:5.6.10.3.0.20.17按从大到小的顺序排队()按从小到大的顺序排队( )2.数序;相邻数1、14的前面一个数是();14的后面一个数是();比14大比20小的数是();14后面的2个数是();14后面的第2个数是();与14相邻的两个数是()和()3.任意取20以内的两个数;能够用谁大或谁比谁小说一句话;如:16比15大;写出来就是16〉159比13小;写出来就是9〈13()4“比”字的用法看“比”字的后面是谁;比几大就要在几的基础上加1;比几小就要在几的基础上减1 例:比5小2的数是();比4多3的数是()5 几和第几(复习此类知识时;分清左右;同时确定方向;知道几个和第几个的区别)①一共有()个图形②从左数;第4个图形是()③从右数;第4个图形是()④把左边三个圈起来⑤把右边第3个圈起来6.相邻数① 3的前面是();3的后面是();3再添上1就是();4再去掉1就是();与3相邻的数是()和()② 20的前面是();20的后面是();与20相邻的数是()和()三比一比比多少:运用――对应原则例:ΔΔΔΔΔ()〇〇〇〇()在多的后面打√;在少的后面打ⅩΔ比〇多()。
小学数学数与代数知识点汇总一、数与运算1.数的认识:自然数、整数、有理数、实数2.顺序数的比较:大小比较、比大小的符号3.加法与减法:加法和减法的意义、加法和减法的性质、整数的加减法4.乘法与除法:乘法和除法的意义、乘法和除法的性质、整数的乘除法5.数的倍数和因数:整数的倍数、整数的因数、公倍数、最大公约数、最小公倍数6.小数:小数的读法、小数的比较、小数的四则运算7.分数:分数的意义、分数的大小比较、分数的加减法、分数的乘除法8.百分数:百分数的意义、百分数的相互转化、百分数的加减乘除二、代数式和方程1.代数式的认识:代数式的定义、代数式的运算、多项式2.代数式的计算:代数式的约分、代数式的化简、代数式的展开与因式分解3.代数式的应用:根据实际问题编写代数式、代数式的求值4.方程的认识:方程的定义、方程的解、解方程的意义、解方程的方法5.解一元一次方程:一元一次方程的解法、方程的意义、方程的实际应用6.解一元一次不等式:一元一次不等式的解法、不等式的意义、不等式的实际应用7.解一元一次方程组:一元一次方程组的解法、方程组的意义、方程组的实际应用三、数的性质和运算1.数的分类:分数、小数、整数及其运算2.数的性质:数的大小比较、数的相反数、数的绝对值、数的相反数与绝对值的关系3.定量关系:数与长度的关系、数与面积的关系、数与体积的关系4.倍数与公约数:整数的倍数和倍数的性质、整数的公约数和公约数的性质5.比例:比例的意义、比例的性质、比例的应用6.百分数:百分数的意义、百分数的相互转化、加减乘除百分数的方法7.降幂与乘方:降幂与升幂的意义、乘方及其运算法则、次乘方的意义和运算四、数据的应用1.数据的收集:问卷调查、实地调查、统计资料2.数据的整理:频数表、频数图、折线图3.数据的分析:数据的中心趋势、数据的离散程度、数据的比较4.数据的应用:数据的解读、数据的预测、数据的比较和判断五、几何基础1.点、线、面:基本图形的认识、基本图形的命名2.直线与线段:直线、线段、射线的认识和性质3.角的认识:角的定义、角的分类、角的性质4.三角形:三角形的分类、三角形的性质、等腰三角形、等边三角形5.四边形:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质6.圆:圆的性质、圆的周长和面积7.空间几何图形:长方体、正方体、棱柱、棱锥、棱台、球体等的性质六、图形的应用1.图形的绘制:使用尺规作图仪器绘制图形2.图形的变换:平移、旋转、对称、放缩等图形的变换3.图形的投影:直线的平行投影、线段的视、上、右投影、线段的和、差投影以上是小学数学中的数与代数知识点汇总,希望对你的学习有所帮助。
数与代数主要知识点数与代数是数学的基础,是数学研究的重要分支。
它们在数学中扮演着重要的角色,涉及到许多重要的概念和方法。
本文将介绍数与代数的主要知识点,包括数的性质、代数方程、函数与图像等内容。
一、数的性质数是数学中最基本的概念,包括自然数、整数、有理数和实数等。
数的性质是研究数学问题的基础,它们具有以下重要性质:1. 数的比较性质:数可以比较大小,可以使用大于、小于和等于等符号进行比较。
2. 数的运算性质:数可以进行加法、减法、乘法和除法等运算,遵循相应的运算规则。
3. 数的性质:数具有交换律、结合律和分配律等性质,这些性质在数学中起到重要的作用。
二、代数方程代数方程是数与代数中的重要概念,它是一种含有未知数的等式。
代数方程的解是使得方程成立的未知数的值。
在代数方程中,我们可以使用代数的方法来求解未知数的值。
代数方程的求解过程中,可以运用因式分解、配方法、根号法等多种方法,求得方程的解。
三、函数与图像函数是数与代数中的重要概念,它描述了两个变量之间的关系。
函数可以用数学表达式表示,其中包含自变量和因变量。
函数的图像是函数在坐标系中的表示,它可以直观地展示函数的特点和性质。
函数的图像可以帮助我们理解函数的变化规律,找到函数的最大值、最小值和零点等重要信息。
四、等差数列与等比数列等差数列与等比数列是数与代数中常见的数列。
等差数列是指数列中相邻两项之间的差值相等的数列,它具有明显的规律性。
等差数列在数学中有广泛的应用,可以用于求和、推导等。
等比数列是指数列中相邻两项之间的比值相等的数列,它也具有明显的规律性。
等比数列在数学中也有重要的应用,可以用于求和、推导等。
五、复数复数是数与代数中的重要概念,它是由实数和虚数构成的数。
复数可以用复数形式表示,其中实部和虚部分别用实数表示。
复数在数学中有广泛的应用,可以用于求解代数方程、计算电路等。
复数具有加法、减法、乘法和除法等运算规则,也有自己的共轭和模等概念。
第一部分:数与代数一、知识点:1.比多少:用一一对应的思想,谁有剩余,就说这种事物比另一种事物多,或者一种事物比这种事物少。
2.“几个”和“第几”:“几个”表示事物数量的多少,“第几”表示事物的顺序。
3. 数的读法:先读十位再读个位。
(写成语文数字)数的写法:先写十位再写个位,有几个十就在十位上写几,有几个一就在个位上几,个位上一个计数单位也没有,就写0占位置。
(写成数学数字)4.数的组成:十几是由几个十和几个一组成,20是由2个十组成。
5.加法和减法的意义加法:把两个部分合起来,求一共是多少,用加法解决。
减法:从总数里去掉一部分,求剩下的部分是多少,用减法解决。
6.加法和减法各部分的名称:加法:加数+加数=和减法:被减数-减数=差7.计算方法:(1)10以内的数的加减法:利用数的分解与组成。
(2)十加几:10加几等于十几。
不进位和不退位的十几加(减)几:直接用个位上的数相加减。
(3)20以内的进位加法:凑十法(拆小数凑大数、拆大数凑小数)(见9想1;见8想2;见7想3;见6想4;见5想5.)8.看图列式计算(1)一图四式(2)“大括号、小问号”类型二、巩固练习:(一)几和第几练习题cn从左往右数,在第三个下面打“ J(2〕从右往左数,圈出后面四个㈠〕从右往左数,第五个是什么c(4〕从左往右数,把第八个涂上色口〕一共有(〕个图形(2〕从右往左数,把后面5个圈起来㈠〕从左往后数第5个是()「4〕在右边第三个图形下面打在左边第4个图形下画△cn 把下图中右边的6个☆圈起来;从右数起,把第5个☆图上颜色已5,从左往右数♦排在第4个,它的前面有几个口 ?画一画口I ------------- 1 . o o 0 0(二)6-10的认识和加减法练习题一、我会算。
3+6= 4+4= 9-6= 5+2= 8-6= 10-5= 9+1= 4+5= 7+3= 7-7= 6+2+2= 2+3+4= 10-7-2= 9-5-2= 8-3-4= 8-4+6= 5+5-6= 1+8-4= 10-4+3= 9-7+6= ( )+2=6 7+ ( ) =10 ( )-2=5 ( )-9=1 5+( )=8 ( )+3=9 ( )+10=109-( )=9()-6=4二、填写。
小学数学数与代数知识点整理一、数的大小和比较1.数的比较:数的大小关系,如大于、小于、等于。
2.数的顺序:自然数、整数、有理数的大小顺序。
二、数的性质和运算1.数的分类:自然数、整数、有理数、无理数。
2.数的性质:奇数、偶数、质数、合数。
3.数的运算:加法、减法、乘法、除法的基本概念和运算规则。
4.数的整除性:倍数、约数、公因数、最大公约数等概念。
三、数的分数表示和运算1.分数的概念:分子、分母、真分数、假分数。
2.分数与整数的运算:加法、减法、乘法、除法。
3.分数相比较:大小比较和等值判断。
四、数的小数表示和运算1.小数的定义:小数点的概念。
2.小数的读法和写法:整数、小数部分的读法和写法。
3.小数与分数的相互转化。
4.小数运算:加法、减法、乘法、除法。
五、数的倍数和约数1.倍数的概念:一个数能整除另一个数。
2.约数的概念:一个数能被另一个数整除。
3.最大公约数:两个数公共的约数中最大的那个数。
4.最小公倍数:两个数公共的倍数中最小的那个数。
六、数的代数式和数的应用1.代数式的概念:数、字母和运算符号的组合。
2.代数式的计算:代数式的加减乘除运算。
3.代数式的应用:通过代数式解决实际问题。
七、数的方程式1.方程式的概念:等号连接的代数式。
2.一元一次方程式:解方程的方法和步骤。
3.方程式的应用:通过方程式解决实际问题。
八、数的图形的认识与应用1.数的图形的概念:点、线、面。
2.平凡形的认识:正方形、长方形、三角形、圆形、梯形等。
3.图形的属性:边、角、面积、周长等。
4.图形的运算:图形的加法和减法。
总结:小学数学数与代数知识点主要包括数的大小和比较、数的性质和运算、数的分数表示和运算、数的小数表示和运算、数的倍数和约数、数的代数式和数的应用、数的方程式以及数的图形的认识与应用等内容。
在学习过程中,要注重理论与实践相结合,通过解决实际问题来巩固所学知识。
同时,要培养学生的计算和推理能力,让他们能够自主思考和解决问题。
人教版教材数学知识点总结一、一年级上册。
1. 数与代数。
- 认识1 - 5各数,会用数表示物体的个数,掌握数的顺序,会比较大小。
- 认识“>”“<”“=”,能正确使用符号比较数的大小。
- 认识0,知道0的含义,如表示一个也没有,还可以表示起点等。
- 6 - 10各数的认识,包括数的读写、数的顺序、数的大小比较等。
- 10以内数的加减法,理解加减法的含义,能正确计算。
- 认识11 - 20各数,知道数的组成,如11是由1个十和1个一组成的。
- 20以内的进位加法,会用凑十法计算。
2. 图形与几何。
- 认识长方体、正方体、圆柱和球,能区分和辨认这些立体图形。
3. 综合与实践。
- 数学乐园等活动,通过游戏等方式巩固数学知识。
二、一年级下册。
1. 数与代数。
- 20以内的退位减法,如13 - 5的计算方法(破十法等)。
- 100以内数的认识,包括数的读写、数的组成、数的顺序、数的大小比较等。
- 100以内数的加减法,整十数加、减整十数,两位数加一位数、整十数,两位数减一位数、整十数等的计算方法。
- 认识人民币,知道人民币的单位元、角、分,以及它们之间的换算关系(1元= 10角,1角 = 10分),会进行简单的人民币计算。
2. 图形与几何。
- 认识长方形、正方形、三角形和圆等平面图形,能区分和辨认。
- 图形的拼组,如用几个相同的三角形可以拼成一个平行四边形等。
3. 综合与实践。
- 摆一摆,想一想等活动,加深对数学知识的理解。
三、二年级上册。
1. 数与代数。
- 100以内的加法和减法(二),包括两位数加两位数(不进位、进位)、两位数减两位数(不退位、退位)的竖式计算。
- 表内乘法(一),认识乘法的意义,如2 + 2+2 = 2×3,会背诵1 - 6的乘法口诀并能熟练运用口诀计算乘法。
- 认识长度单位厘米和米,知道1米 = 100厘米,会用厘米和米作单位测量物体的长度。
2. 图形与几何。
- 角的初步认识,知道角有一个顶点和两条边,会辨认直角、锐角和钝角。
小学数学《数与代数》知识点汇总(一)数的认识1整数【正数、0、负数】一、一个物体也没有,用0表示。
0和1、2、3……都是自然数。
自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。
“+4”读作正四。
“-4”读作负四。
+4也可以写成4。
四、像 +4、19、+8844这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
2小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
九、整数和小数的数位顺序表:3分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
整理和复习1、数与代数(一)数的认识定义:像8,16,+1,0.6,+这样的数叫做正数41正数 写法和读法:正数前面加“+”号。
如+8读作:“正八” “+”号一般可以省略不写数 定义:像-1,-10.2,-7.9,-这样的数叫做负数41负数 写法和读法:负数前面加“-”号。
如-15读作:“负十五” 数字越大负数反而越小比0小的数是负数,比0大的数是正数“0”既不是正数,也不是负数。
正整数自然数 整数 0 数 (小数是特殊的分数)百分数:(1)分母是100的分数叫做百分数。
(2)表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫百分比或百分率。
百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。
知识点一:整数1、读数:从最高位起,一级一级的读。
读万级或亿级的数时要按照个级的读法来读,并在后面加上级名。
每一级末尾的0都不读,其他数位上不论连续有几个0,只读一个0。
写数:先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一整数部分亿级万级个级小数点小数部分数位千 百 十 亿亿 亿 亿位 位 位 位千 百 十 万万 万 万位 位 位 位千 百 十 个位 位 位 位十 百 千......分 分 分计数单位千 百 十 亿亿 亿 亿千 百 十 万万 万 万千 百 十 一 (个).十 百 千......分 分 分......之 之 之......一 一 一......位一个单位也没有,就在哪个数位上写0。
2、数的改写与求近似数:为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。
如:2365500=236.55万(改写用“万”作单位的数)。
如:2365500≈237万(省略万位后面的尾数,写成近似数),如:7.62983≈7.6(保留一位小数)。
知识点二:小数1、小数的意义: 把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…可以用小数来表示。
小学数学数与代数知识大全数学是一门学科,其中包含了许多与数和代数相关的知识。
对于小学生来说,数与代数是他们日常学习中必须掌握的基础知识。
本文将介绍小学数学中与数与代数相关的重要概念和技巧。
一、基础数学知识1. 数的概念:数用来表示事物的多少,分为整数、分数和小数等不同类型。
整数包括正整数、负整数和零,分数由分子和分母组成,小数是指有限或无限循环小数。
2. 数的比较与排序:学习如何比较大小,使用比较符号(大于、小于、等于)进行数的比较;学习如何按照大小排序一组数。
3. 数的运算:学习加法、减法、乘法和除法的运算规则和性质,掌握基本的运算技巧与口算能力。
4. 四则运算:掌握加法、减法、乘法和除法的联合运算,灵活运用这些运算进行复杂的计算。
5. 数的倍数与因数:理解倍数和因数的概念,学习如何求一个数的倍数和因数,掌握最大公因数与最小公倍数的计算方法。
二、代数知识1. 代数符号:学习代数术语和代数符号的含义及使用方法,如:求和、求差、乘号、除号、等号等。
2. 字母代数:引入字母代表数,学习字母代数的含义和运算规则,能够进行简单的代数运算。
3. 简单方程:学习方程的概念和解方程的基本方法,掌握求解一元一次方程的技巧,如:凑项法、配方法等。
4. 分式运算:理解分式的概念和运算规则,能够进行分式的加、减、乘、除运算,学习简单分式方程的解法。
5. 代数式的展开与因式分解:学习代数式的展开与因式分解的方法,掌握公式展开与因式分解的技巧,如:二次方三项式的展开、二次差平方公式等。
三、数与代数技巧1. 应用题解决思路:学习运用数学知识解决实际问题的思维方式与方法,培养灵活运用数与代数知识的能力。
2. 逻辑推理与问题解决:发展逻辑思维,训练运用数与代数知识解决问题的能力,培养观察、分析、推理、判断和解决问题的能力。
3. 综合运用:通过综合运用所学的数与代数知识,解决综合性的数学问题,提高综合运算能力。
总结:小学数学的数与代数知识是学习数学的基础,掌握这些知识对于学生未来的学习和发展至关重要。
小学数学数与代数知识点整理小学数学是培养学生基本数学思维和逻辑推理能力的重要阶段,它涵盖了数与代数、几何、统计与概率等多个知识领域。
下面整理了小学数学中数与代数的主要知识点。
一、数的认识与应用1.自然数的认识:自然数的概念、自然数的顺序、自然数的性质(奇偶性、整除性)2.整数的认识:正整数、负整数、零的认识与比较、整数的加减运算、整数的乘除运算3.分数的认识:分数的概念、分数的大小比较与排序、分数的加减运算、分数的乘除运算4.小数的认识:小数的概念、小数的大小比较与排序、小数的加减运算、小数的乘除运算5.有理数的认识:有理数的概念、有理数的加减乘除运算二、数字的整体认识1.数的拆分与组合:数的合成与分解、数的逆运算2.数轴与数线图:数轴的认识与使用,数轴上数的位置与大小关系的判断三、四则运算1.加法:数的加法原理、加法的属性(交换律、结合律、零元素、相反数)2.减法:数的减法原理、减法的换位、反运算3.乘法:数的乘法原理、乘法的属性(交换律、结合律、零因子、单位元素)4.除法:数的除法原理、除法与乘法的关系、除法的应用与技巧四、整数的应用1.整数的加减运算:分析问题、运算规则、实际应用2.整数的乘除运算:分析问题、运算规则、实际应用五、分数的应用1.分数与长短比例:分数的应用、分数之间的比较、比例的概念与性质2.分数的混合运算:分数的加减乘除运算、应用问题的分析与解决六、小数的应用1.小数与图形的关系:小数的应用、小数的位置与比较2.小数的四则运算:小数的加减乘除运算、实际问题的分析与解决七、代数初步1.代数式的认识:代数式的概念、字母与数的关系、字母表示数的意义2.代数式的计算:代数式的加减乘除运算、应用问题的建立与解决3.解方程:一次方程的概念与解法、解方程的实际应用八、数与代数的综合应用1.数学建模:实际问题的数学描述与建模、模型的分析与求解2.数与代数在几何中的应用:几何中的数值关系、问题解决3.数与代数在统计与概率中的应用:统计与概率问题的分析与解决、应用中的数值计算以上为小学数学中数与代数的主要知识点,在学习这些知识点的同时,应注重培养学生的逻辑思维和问题解决能力。
小学数学数与代数知识点归纳汇总数与代数是小学数学的一大重要内容,它包括了数的认识、数的运算、数的应用以及代数的基础知识。
下面将对小学数与代数的知识点进行归纳汇总。
一、数的认识1.自然数:自然数是最基本的数,包括0和正整数。
2.整数:在自然数的基础上添加了负整数。
3.分数:分数是整数除法的结果,由分子和分母组成。
4.小数:小数是有限小数和无限循环小数的统称。
5.百分数:将数值表示为百分数形式。
6.负数:负数是表示比零更小的数。
二、数的运算1.加减运算:加法是将两个数的值进行相加,减法是用一个数减去另一个数。
2.乘除运算:乘法是将两个数相乘,除法是一个数除以另一个数。
3.乘方运算:乘方是一个数自乘若干次。
4.多位数的加减乘除运算:多位数的运算需要先进行位数对齐再进行运算。
5.逆运算:加法的逆运算是减法,减法的逆运算是加法,乘法的逆运算是除法,除法的逆运算是乘法。
三、数的应用1.排列与组合:排列是指从给定的元素中按照一定规则选取若干个元素进行排序,组合是从给定的元素中按照一定规则选取若干个元素不进行排序。
2.数据统计:包括数据的收集、整理、画图以及数据的分析与总结。
3.平均数:平均数是一组数据的总和除以数据的个数。
4.画图:小学数学中常常涉及到的画图内容包括直线、曲线、圆、矩形、三角形、长方体等。
四、代数的基础知识1.代数式:代数式是用字母表示数的式子。
2.字母代数式:用字母代表数的代数式。
3.代数式的运算:包括代数式的加减乘除运算。
4.代数方程与解方程:代数方程是含有未知数的等式,解方程是求方程的解。
5.代数不等式:代数不等式是含有不等号的代数式。
6.平方与平方根:平方是一个数自乘两次,平方根是一个数的的算术平方根。
7.正比例与反比例:正比例是两个量成正比,反比例是两个量成反比。
8.函数与方程:函数是两个变量之间的一种特殊关系,方程是含有未知数的等式。
以上就是小学数与代数的知识点的简要归纳汇总。
通过学习这些知识点,可以帮助学生建立数学思维、培养逻辑思维能力,为深入学习高中阶段的数学打下坚实的基础。
小学数学数与代数知识点1.自然数与整数:自然数是从1开始的数,用N表示。
自然数集合是一个无限集合。
整数由正整数、0和负整数组成,用Z表示。
2.定义和性质:自然数有加法和乘法运算,满足结合律、交换律、分配律等性质。
零是加法的单位元,即对于任意自然数n,n+0=0+n=n。
乘法有单位元1,即对于任意自然数n,n×1=1×n=n。
加法和乘法满足交换律和结合律。
3.数的比较和排序:通过数的大小可以进行比较和排序,比较时大于用“>”表示,小于用“<”表示,等于用“=”表示。
可以通过图形和数轴对数进行排序,数轴上靠右的数较大,靠左的数较小。
4.相反数和绝对值:对于任意整数a,存在唯一的整数-b,使得a+b=0,称-b为a的相反数,记作-a。
绝对值是一个非负数,表示一个数与0的距离。
对于任意实数a,记作,a,有以下性质:①若a≥0,则,a,=a。
②若a<0,则,a,=-a。
③,a,≥0,且,a,=0的充分必要条件是a=0。
5.加减法运算:加法是将两个数相加,得到一个和。
减法是从一个数中减去另一个数,得到一个差。
加法和减法具有逆运算的性质。
对于任意实数a,b,c,有以下性质:①加法交换律:a+b=b+a。
②减法定义:a-b=a+(-b)。
③减法的逆运算:a+(-a)=0,a-0=a。
④加法和减法的结合律:(a+b)+c=a+(b+c),(a-b)-c=a-(b+c)。
6.乘法和除法运算:乘法是将两个数相乘,得到一个积。
除法是将一个数分成若干等分,得到一个商。
乘法和除法具有逆运算的性质。
对于任意实数a,b,c(其中b≠0,c≠0),有以下性质:①乘法交换律:a×b=b×a。
②除法定义(不考虑除0):a÷b=a×(1÷b)。
③除法的逆运算:a×(1÷a)=1,a÷1=a。
④乘法和除法的结合律:(a×b)×c=a×(b×c),(a÷b)÷c=a÷(b÷c)。
2024年人教版一年级上册数学一、数与代数。
(一)1 - 5的认识和加减法。
1. 知识点1:1 - 5的基数含义。
- 通过观察主题图,如课本上的小朋友、小动物等数量,认识1、2、3、4、5各数表示物体的个数。
例如,1个太阳、2只小鸟等。
- 会用点数的方法数出物体的数量,数的时候要按一定的顺序(从左到右或者从上到下等),做到不重复、不遗漏。
2. 知识点2:1 - 5的数序。
- 明确1 - 5各数的顺序,1后面是2,2后面是3,3后面是4,4后面是5。
可以通过直尺上的数字顺序来加深理解,也可以让孩子按照顺序数手指来记忆。
- 会比较1 - 5各数的大小,例如1<2,3>2等。
可以用实物比较,如1个苹果比2个苹果少。
3. 知识点3:1 - 5的加减法。
- 加法:理解加法的含义是把两部分合起来。
例如,1只小鸟和2只小鸟合起来是3只小鸟,写成算式1+2 = 3。
通过摆小棒、数手指等方式帮助孩子理解加法的运算过程。
- 减法:知道减法是从总数里去掉一部分,求另一部分。
如3个气球飞走1个,还剩2个,算式是3 - 1=2。
同样可以用实物操作来辅助学习。
(二)0的认识和加减法。
1. 知识点1:0的含义。
- 表示一个物体也没有,如盘子里没有苹果,可以用0来表示。
- 还可以表示起点,像直尺上的0刻度,是测量长度的起点。
2. 知识点2:0的加减法。
- 0加几等于几,如0+3 = 3;几加0也等于几,如2+0 = 2。
- 相同的数相减得0,如3 - 3 = 0。
(三)6 - 10的认识和加减法。
1. 知识点1:6 - 10的基数含义和数序。
- 观察课本上的各种物体数量,认识6 - 10各数。
例如,6朵花、7个气球等。
- 掌握6 - 10各数的顺序,能比较它们的大小。
如6<7,9>8等。
2. 知识点2:6 - 10的加减法。
- 利用数的组成来计算加减法。
例如,6可以分成1和5,那么1+5 = 6,6 - 1 = 5。
- 解决简单的图文应用题,学会分析题目中的已知条件和问题,确定用加法还是减法计算。
小学一年级上册数学《数与代数》知识点整理1、第一单元《生活中的数》。
基于儿童数数的经验,结合具体的情景认识10以内的数的意义,会认、会读、会写0——10的数,会用它们表示物体的个数或事物的顺序,初步体会基数与序数的含义,初步感受“数”与生活的密切联系,初步体验学习数学的乐趣,初步形成良好的学习习惯。
2、第二单元《比较》。
通过比较具体数量多少的数学活动,获得对“>、<、=”等符号的意义的理解,并会用这些符号表示10以内的数的大小;经历比高矮、比轻重、比长短等实践操作或数学思考活动,体验“比”的方法的多样性与合理性;并在描述或倾听各自思考过程的交流中,体会学会有条理的表示自己思想和学会倾听的重要性。
3、第三单元《加减法〈一〉》。
经历从实际问题抽象10以内的加减算式,并加以解释和应用的过程,体会加减法的含义,初步感受加减法与生活的密切联系;能正确口算10以内的加减法,掌握10以内数的分解与合成的技能;通过整理加、减法算式,并探索其间规律性的活动,培养与发展数感。
4、第七单元《加减法〈二〉》。
经历表示11——20的数的具体操作及其概括过程,初步体会用十进制记数的位值原理,会数、读、写20日内数,掌握它们的顺序,会比较它们的大小,结合解决问题的活动,进行简单的、有条理的思考;经历与同伴交流各自算法的过程,体会算法的多样性,学会20以内的进位和退位,逐步的熟练口算20以内的加减法,并能解决简单的问题,感受加减法与日常生活的密切联系,感受数学思考过程的合理性。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
《数与代数》知识点整理数与代数是数学的基础课程,涵盖了数的性质和运算、代数方程、函数与图像等内容。
以下是《数与代数》的一些重要知识点整理。
1.自然数、整数、有理数和实数:自然数是最基本的数,包括正整数和0。
整数是自然数的扩展,包括正整数、负整数和0。
有理数是可以表示为两个整数之比的数,包括整数和分数。
实数是可以表示在数轴上的所有数。
2.数的运算:加法、减法、乘法和除法是数的基本运算。
加法是将两个数相加得到和;减法是从一个数中减去另一个数得到差;乘法是将两个数相乘得到积;除法是将一个数除以另一个数得到商。
3.数的性质:数的性质包括奇偶性、质数与合数、约数与倍数、整除关系等。
奇数是不能被2整除的数,偶数是能被2整除的数。
质数是只有1和本身两个因数的数,合数是除了1和本身还有其他因数的数。
约数是整除一个数的整数,倍数是一个数的整数倍。
4.代数方程:代数方程是包含未知数的等式,具有解的方程被称为方程组。
代数方程的解是能够使方程成立的值。
一元一次方程是未知数的一次方程,形式为ax+b=0,其中a和b是常数。
一元二次方程是未知数的二次方程,形式为ax^2+bx+c=0,其中a、b和c是常数。
5.函数与图像:函数是数学中的一个重要概念,将一个自变量的值与一个因变量的值建立起对应关系。
函数的图像是函数的几何图形表示,通常表示在平面直角坐标系上。
函数的图像可以通过确定函数的值和自变量的值绘制出来,也可以通过函数的性质和变化规律进行分析。
6.指数与对数:指数是幂的一种表达方式,指数运算包括乘方、开方和幂运算。
对数是幂运算的逆运算,用来求解指数运算中的未知数。
7.连分数:连分数是一种特殊形式的分数,其中分子是一个整数,分母是一个整数加一个分数。
连分数可以无限展开,且有一些特殊的性质和应用。
8.三角比:三角比是指角度和三角函数之间的关系,常用的三角函数有正弦、余弦和正切。
三角比可以用来解决与角度相关的问题,例如计算角度的大小等。
数与代数知识点大全1.自然数与整数:-自然数的概念和性质;-整数的概念和性质;-自然数和整数的相互转换。
2.有理数:-有理数的概念和性质;-有理数的四则运算;-有理数的实际应用。
3.实数:-实数的概念和性质;-实数的运算规律;-实数的实际应用。
4.数列与数列的通项公式:-数列的概念和性质;-等差数列与等差数列的通项公式;-等比数列与等比数列的通项公式;-数列的应用。
5.多项式:-多项式的概念和性质;-多项式的加减乘除;-多项式的因式分解;-多项式的应用。
6.一元一次方程与不等式:-一元一次方程与一元一次不等式的概念和性质;-一元一次方程和不等式的求解方法;-一元一次方程和不等式的实际应用。
7.二次函数与一元二次方程:-二次函数的概念和性质;-二次函数的图像与性质;-一元二次方程的概念和性质;-一元二次方程的求解方法;-二次函数与一元二次方程的应用。
8.指数与对数:-指数的概念和性质;-指数与幂的运算规律;-对数的概念和性质;-对数与指数的互换运算;-指数和对数的应用。
9.平方根与立方根:-平方根的概念和性质;-立方根的概念和性质;-平方根和立方根的运算规律;-平方根和立方根的应用。
10.集合:-集合的概念和性质;-集合的常用运算;-集合的应用。
11.几何与代数的关系:-几何图形与代数关系的建立;-几何图形与代数关系的求解。
12.概率与统计:-概率的概念和性质;-概率的计算方法;-统计的概念和方法;-统计图表的应用。
小学数学数与代数知识点整理小学数学数与代数知识点整理第一章数和数的运算一、概念一)整数1.整数的意义:整数包括自然数和负整数。
2.自然数:自然数是用来表示物体个数的数,从1开始逐个增加。
3.计数单位:计数单位包括一(个)、十、百、千、万、十万、百万、千万、亿等。
这种计数法被称为十进制计数法,相邻两个计数单位的进率都是10.4.数位:计数单位按一定顺序排列,它们所占的位置叫做数位。
5.数的整除:当整数a除以整数b(b≠0)时,如果商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数)。
倍数和因数是相互依存的。
例如,35能被7整除,所以35是7的倍数,7是35的因数。
1)一个数的因数个数有限,其中最小的因数是1,最大的因数是它本身。
例如,10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10.2)一个数的倍数个数无限,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。
3)常用规律:①个位上是2、4、6、8的数都能被2整除,例如202、480、304等。
②个位上是0或5的数都能被5整除,例如5、30、405等。
③一个数的各位数之和能被3整除,这个数就能被3整除,例如12、108、204等。
④一个数各位数之和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
⑤一个数的末两位数能被4或25整除,这个数就能被4或25整除,例如16、404、1256都能被4整除,50、325、500、1675都能被25整除。
⑥能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
自然数按能否被2整除的特征可分为奇数和偶数。
⑦质数和合数的概念:一个数如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
100以内的质数有:2、3、5、7、11、13、17、…79、83、89、97.一个数如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。
一年级数学期末复习数与代数的相关知识点
一年级数学期末复习数与代数的相关知识点
一年级数学期末复习数与代数的相关知识点
1、一、二单元(数的认识和比较)
(1)强调数物体个数的方法:按照一定的顺序和方向数数、做记号、根据物体摆放的规律按群数数等。
(2)加强区分几个和第几个,在表示第几个时要注意说明方向、顺序。
如:从左往右数,第2个是()
(3)按顺序填数,按规律填数
(4)加深对0的`理解:在不同情境中,0的含义是不同的。
一般情况下0表示没有,还表示“起点”和温度计上的“基准”0度。
要依据具体情况,判断0的含义。
(5)重视比较方法的梳理:一一对应比较。
1、第一单元《生活中的数》。
基于儿童数数的经验,结合具体的情景认识10以内的数的意义,会认、会读、会写010的数,会用它们表示物体的个数或事物的顺序,初步体会基数与序数的含义,初步感受数与生活的密切联系,初步体验学习数学的乐趣,初步形成良好的学习习惯。
2、第二单元《比较》。
通过比较具体数量多少的数学活动,获得对、、=等符号的意义的理解,并会用这些符号表示10以内的数的大小;经历比高矮、比轻重、比长短等实践操作或数学思考活动,体验比的方法的多样性与合理性;并在描述或倾听各自思考过程的交流中,体会学会有条理的表示自己思想和学会倾听的重要性。
3、第三单元《加减法〈一〉》。
经历从实际问题抽象10以内的加减算式,并加以解释和应用的过程,体会加减法的含义,初步感受加减法与生活的密切联系;能正确口算10以内的加减法,掌握10以内数的分解与合成的技能;通过整理加、减法算式,并探索其间规律性的活动,培养与发展数感。
4、第七单元《加减法〈二〉》。
经历表示1120的数的具体操作及其概括过程,初步体会用十进制记数的位值原理,会数、读、写20日内数,掌握它们的顺序,会比较它们的大小,结合解决问题的活动,进行简单的、有条理的思考;经历与同伴交流各自算法的过程,体会算法的多样性,学会20以内的进位和退位,逐步的熟练口算20以内的加减法,并能解决简单的问题,感受加减法与日常生活的密切联系,感受数学思考过程的合理性。
5、第八单元《认识钟表》。
结合日常作息时间,学会认读钟面上表示整时、半时的时刻,了解记时的书写方法,并会用快几时了或刚过几时等词语描述时间,经历简单而熟悉的操作活动,体验时间的长短,培养珍惜时间的态度和合理安排时间的良好习惯。