第1章 分子生物学发展简史
- 格式:doc
- 大小:2.99 MB
- 文档页数:42
可编辑修改精选全文完整版第一章绪论1、分子生物学简史:分子生物学是研究核酸、蛋白质等所有生物大分子形态、结构特征及其重要性、规律性而相互联系的科学,是人类从分子水平上真正揭示生物世界的奥秘,由被动的适应自然界到主动的改造和重组自然界的基础科学。
2、分子生物学发展阶段第一阶段:分子生物学发展的萌芽阶段第二阶段:分子生物学的建立和发展阶段第三阶段:分子生物学的深入发展和应用阶段3、分子生物学的主要研究内容DNA重组技术;基因表达调控研究;生物大分子的结构与功能的研究;基因组、功能基因组与生物信息学的研究第二章染色体与DNA1、名词解释:不重复序列:在单倍体基因组中只有一个或几个拷贝的DNA序列。
真核生物的大多数基因在单倍体中都是单拷贝。
中度重复序列:每个基因组中10~104个拷贝。
平均长度为300 bp,一般是不编码序列,广泛散布在非重复序列之间。
可能在基因调控中起重要作用。
常有数千个类似序列,各重复数百次,构成一个序列家族。
高度重复序列:只存在于真核生物中,占基因组的10%~60%,由6~10个碱基组成。
卫星DNA(satellite DNA):又称随体DNA。
卫星DNA是一类高度重复序列DNA。
这类DNA是高度浓缩的,是异染色质的组成部分。
微卫星DNA(microsatellite DNA):又称短串联重复序列,是真核生物基因组重复序列中的主要组成部分,主要由串联重复单元组成。
重叠基因(overlapping gene,nested gene):具有部分共同核苷酸序列的基因,及同一段DNA携带了两种或两种以上不同蛋白质的编码信息。
重叠的序列可以是调控基因也可以是结构基因部分。
多顺反子(polycistronic mRNA ) :编码多个蛋白质的mRNA称为多顺反子mRNA 。
单顺反子(monocistronic mRNA) :只编码一个蛋白质的mRNA称为单顺反子mRNA。
DNA的转座:又称移位(transposition),是由可移位因子介导的遗传物质重排现象。
简述分子生物学发展史分子生物学的发展大致可以分为三个阶段,第一个是准备和酝酿阶段,第二个是现代分子生物学的建立和发展阶段,第三个是初步认识生命本质并改造生命的深入发展阶段。
下面将就这三个阶段的主要任务和功绩做简单的介绍。
第一阶段:在上世纪的后期,巴斯德由于发现了细菌而在自然科学史上留下丰功伟绩,但是他的“活力论”观点,即认为细菌的代谢活动必须依赖完整细胞的看法,却阻碍了生物化学的进一步发展。
直至1890~1900年问suchner兄弟证明酵母提出液可使糖发酵之后,科学家们才认识到细胞的活动原来可以再拆分为更细的成分加以研究。
此后相继结晶了许多酶,如腺酶(Sumner,1926)、胰蛋白酶(Northrop,1930)及胃蛋白酶(Northrop及Kunitz,1932)等,并且证实了这些物质都是蛋白质。
这些成果开辟了近代生物化学的新纪元。
事实上,分子生物学正是在科学家们打破了细胞界限之日诞生的。
在这以后的几十年间,科学界普遍认为,蛋白质是生命的主要物质基础,也是遗传的物质基础。
与此同时,被湮没达35年之久的孟德尔遗传定律(1865),又被重新发现,摩根等在这个定律基础上建立了染色体学说,使遗传学的研究引起了科学界的重视。
这个时期,尤其是在第一次世界大战之后,正是物理学空前发达的年代,量子理论和原子物理学的研究表明,尽管自然界的物质变化万千,但是组成物质的基本粒子相同,它们的运动都遵循共同的规律。
那么,是否可以应用物理学的基本定律来探讨和解释生命现象呢?不少科学家抱着这个信念投身到生命科学的研究中,从而开始了由物理学家、生化学家、遗传学家和微生物学家等协同作战的新时期,在这个时期里,科学家们各自沿着两条并行不悖的路线进行研究。
一派是以英国的Astbury等为代表的所谓结构学派(structurists),他们主要用x射线衍射技术研究蛋白质和核酸的空间结构,认为只有搞清生物大分子的三维结构,才能阐明生命活动的本质,分子生物学一词正是Astbury在1950年根据他的这一思想首先提出来的。
分子生物学发展简史1.DNA的发现:19世纪末至20世纪初,生物学家们开始研究细胞核中的染色质,发现其中存在着一种未知的物质。
1909年,乌拉圭生物学家戈梅斯发现这种物质与遗传有关,他将其命名为染色质物质。
之后的几十年中,科学家们陆续发现了DNA(脱氧核糖核酸)和RNA(核糖核酸)的存在,并确定了它们在遗传信息传递和蛋白质合成中的重要作用。
2.DNA的结构解析:1953年,詹姆斯·沃森和弗朗西斯·克里克成功解析出DNA的双螺旋结构,并提出了DNA的复制和遗传信息传递的模型。
这一发现为现代分子生物学的发展奠定了基础。
3.重组和转化:1960年代,赫尔曼·莫拉和塞西尔·赫尔希等科学家们发现了重组DNA技术,使得科学家们能够将来自不同生物体的基因片段组合成新的DNA分子。
这一技术的发展不仅推动了基因工程的发展,也为分子生物学的研究提供了重要的工具。
4.基因调控的研究:20世纪60年代后期,弗朗西斯·克里克和詹姆斯·怀森伯格提出了“中心法则”,即DNA决定RNA,RNA决定蛋白质,从而启发了对基因调控的研究。
科学家们开始研究基因的表达调控机制,发现在基因启动子和转录因子之间存在特定的结构和相互作用关系。
5.基因组学的兴起:1990年,国际人类基因组计划正式启动,旨在测序和研究人类基因组,为人类疾病的研究提供基础。
随后,基因组学的发展迅速,细菌、动植物和其他生物的基因组也相继被测序,为生物学研究提供了更多的资源。
6.RNA干扰和基因沉默研究:1998年,安德鲁·赛克雷和克雷格·梅罗发现RNA干扰现象,即通过寡核苷酸对RNA进行特异性沉默。
这一发现引起了巨大的轰动,并为基因沉默研究提供了新的方法和概念。
7.蛋白质组学的发展:随着基因组学的成熟,科学家们开始关注生物体内的蛋白质组成和功能,开展了蛋白质组学的研究。
通过高通量的蛋白质质谱技术,科学家们可以更全面地研究蛋白质的结构和功能。
分子生物学发展史(一)引言:分子生物学是研究生物体内分子结构、功能和相互关系的学科。
自分子生物学的兴起以来,它不断取得了重大突破,在生物学领域发挥了重要的作用。
本文将介绍分子生物学发展史的第一部分,主要包括五个大点。
一、DNA的发现与研究1. 草始先生的贡献:通过豌豆杂交实验揭示了遗传规律。
2. 格里菲斯的实验:提出了“变换原则”,指出DNA是遗传物质。
3. 拉沙福尔的实验:通过放射性同位素示踪技术证明了DNA是遗传物质的基因。
二、DNA的结构与复制1. 克里克与沃森的发现:提出了DNA的双螺旋结构模型。
2. 密丝·富兰克林的X射线衍射研究:为双螺旋结构的提出提供了实验证据。
3. 复制过程的揭示:揭示了DNA的复制方式为半保留复制。
三、RNA的发现与功能1. 林纳斯·鲍林的研究:发现了RNA分子的存在和结构。
2. 运输RNA(tRNA)的发现:揭示了tRNA在蛋白质合成中的重要作用。
3. 信息转录与翻译过程:揭示了RNA在基因表达中的重要作用。
四、基因的调控与表达1. 诺雷斯及雅各布的研究:发现了阻遏基因和诱导基因的存在。
2. 应答元件的发现:揭示了基因表达调控的分子机制。
3. 转录因子的研究:揭示了转录因子在基因调控中的关键作用。
五、PCR技术的出现1. 出现PCR技术的背景:分子生物学发展的需求。
2. 凯里·穆利斯的发现:提出了PCR技术的概念。
3. PCR技术在研究中的应用:在DNA克隆、基因测序等方面的重要应用。
总结:分子生物学的发展史见证了人们对生物界的深入探索和理解。
DNA的发现与研究、DNA的结构与复制、RNA的发现与功能、基因的调控与表达、以及PCR技术的出现,都为我们揭示了生物体内分子的奥秘,并且为基因工程、生物医学研究等领域的发展奠定了基础。
分子生物学的进一步发展必将为人类生活带来更多惊喜。
分子生物学发展简史作者:佚名来源:37C医学网 2004-6-22分子生物学的发展大致可分为三个阶段。
一、准备和酝酿阶段19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。
在这一阶段产生了两点对生命本质的认识上的重大突破:确定了蛋白质是生命的主要基础物质19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。
20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。
随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。
在此期间对蛋白质结构的认识也有较大的进步。
1902年E milFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger和Thomp son完成了第一个多肽分子--胰岛素A链和B链的氨基全序列分析。
由于结晶X-线衍射分析技术的发展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋结构模型。
所以在这阶段对蛋白质一级结构和空间结构都有了认识。
确定了生物遗传的物质基础是DNA虽然1868年F.Miescher就发现了核素(nuclein),但是在此后的半个多世纪中并未引起重视。
20世纪20-30年代已确认自然界有DNA和RNA两类核酸,并阐明了核苷酸的组成。
由于当时对核苷酸和硷基的定量分析不够精确,得出D NA中A、G、C、T含量是大致相等的结果,因而曾长期认为DNA结构只是“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的侯选分子更多的是考虑蛋白质。
40年代以后实验的事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。
什么是分子生物学分子生物学发展简史(一)引言概述:分子生物学是研究生命现象的最基本单位——分子的结构、功能和相互作用的学科。
它不仅为理解生命活动的机制提供了深入的认识,还在医学、农业、环境保护等领域发挥着重要作用。
本文将从分子生物学的起源开始,概述其发展的历史,并详细介绍分子生物学的五个重要方面。
一、分子生物学的起源1. DNA的发现和结构解析2. 基因的概念和遗传物质的特性3. DNA复制、转录和翻译的基本过程4. 蛋白质合成的分子机制5. 早期的技术手段对分子生物学研究的贡献二、基因调控1. 转录调控的基本原理2. 转录因子和启动子的结构和功能3. 转录后修饰对基因调控的影响4. 遗传密码和翻译的调控机制5. 长非编码RNA在基因调控中的作用三、基因突变与人类遗传疾病1. 点突变和染色体突变的分类和特征2. 突变对基因功能的影响3. 遗传疾病的发生机制4. 分子诊断技术在遗传疾病中的应用5. 基因治疗在遗传疾病中的前景四、基因工程技术1. 重组DNA技术的原理和方法2. 基因克隆和表达的应用3. 基因编辑技术的发展和应用4. 基因转导和基因治疗的原理5. 基因工程在农业和工业上的应用五、系统生物学1. 生物大分子相互作用网络的构建和分析2. 代谢通路的数学模型与仿真3. 生物系统的建模和模拟4. 生物大数据分析在系统生物学中的应用5. 系统生物学对药物筛选和疾病治疗的意义总结:分子生物学作为一门进展迅速的学科,通过研究分子结构和功能揭示了生命的奥秘。
从基因调控到基因突变与遗传疾病,再到基因工程技术和系统生物学,分子生物学在各个领域都发挥着重要的作用。
随着技术的不断发展,分子生物学将继续推动科学的进步,为人类的健康和未来的发展带来更多的希望。
分子生物学发展简史分子生物学的发展大致可分为三个阶段。
一、准备和酝酿阶段19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。
在这一阶段产生了两点对生命本质的认识上的重大突破:确定了蛋白质是生命的主要基础物质19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。
20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。
随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。
在此期间对蛋白质结构的认识也有较大的进步。
1902年EmilFisher证明蛋白质结构是多肽;40年代末,Sanger创立二硝基氟苯(DNFB)法、Edman发展异硫氰酸苯酯法分析肽链N端氨基酸;1953年Sanger和Thompson完成了第一个多肽分子--胰岛素A链和B链的氨基全序列分析。
由于结晶X-线衍射分析技术的发展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋结构模型。
所以在这阶段对蛋白质一级结构和空间结构都有了认识。
确定了生物遗传的物质基础是DNA虽然1868年F.Miescher就发现了核素(nuclein),但是在此后的半个多世纪中并未引起重视。
20世纪20-30年代已确认自然界有DNA 和RNA两类核酸,并阐明了核苷酸的组成。
由于当时对核苷酸和硷基的定量分析不够精确,得出DNA中A、G、C、T含量是大致相等的结果,因而曾长期认为DNA结构只是“四核苷酸”单位的重复,不具有多样性,不能携带更多的信息,当时对携带遗传信息的侯选分子更多的是考虑蛋白质。
40年代以后实验的事实使人们对核酸的功能和结构两方面的认识都有了长足的进步。
1944年O.T.Avery等证明了肺炎球菌转化因子是DNA;1952年A.D.Hershey和M.Cha-se用DNA35S和32P分别标记T2噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了是遗传物质。
浅谈分子生物学发展简史【摘要】分子中生物学有广义和狭义之分,本文从狭义分子生物学出发对分子生物学的发展阶段进行划分,对各阶段分子生物研究内容进行简介。
【关键词】狭义分子生物学发展阶段人们一般将分子生物学画分为三个阶段,即人类对DNA和遗传信息传递的认识阶段,重组DNA技术的建立和发展阶段和重组DNA技术的应用和分子生物学的迅猛发展阶段。
这种划分方法使人们对于分子生物学的发展有了较为清晰的认知,但并不能完全的概括分子生物学的发展史。
下面将以以上三个阶段为基础从分子生物学的起源到如今的发展进行更为详细的划分。
一、遗传本质认知阶段达尔文的进化论使人类对于遗传和变异现象有了明确的认识,紧接着是孟德尔的豌豆实验,起初孟德尔豌豆实验并不是有意为探索遗传规律而进行的。
他的初衷是希望获得优良品种,只是在试验的过程中,逐步把重点转向了探索遗传规律。
除了豌豆以外,孟德尔还对其他植物作了大量的类似研究,其中包括玉米、紫罗兰和紫茉莉等,以期证明他发现的遗传规律对大多数植物都是适用的。
经过整整8年(1856-1864)的不懈努力,终于在1865年发表了《植物杂交试验》的论文,提出了遗传的第一定律和第二定律且提出了遗传单位是遗传因子(现代遗传学称为基因)的论点,这也是人们对于决定遗传规律本质物质第一次有了较为科学的认知。
此阶段归结为遗传本质认知阶段。
二、遗传物质认知阶段在对细胞进行分析的过程中,科学家们相继结晶了许多酶,如1926年的腺酶、1930年的胰蛋白酶以及1932年的胃蛋白酶等,并且经过科学家们的证实,这些物质都是蛋白质。
这些成果无疑是开创性的,它们开辟了近代生物化学的新纪元。
但是这也对大多数科学家产生了误导,在各种蛋白质酶类被发现以后的几十年间,科学界普遍认为,蛋白质是生命的主要物质基础,也是遗传的物质基础。
其实,早在1869年,瑞士生物化学家约翰•米歇尔在研究脓细胞的时候就获得了十分重要的发现。
当时人们认为脓细胞主要是由蛋白质构成,然而米歇尔注意到某种不属于迄今已知的任何蛋白质物质的存在。
分子生物学授课专业:生物技术、生物科学玉林师范学院生命科学与技术学院王小敏(***************)2013.9•授课对象:生物技术、生物科学•授课学时:42学时•教学办法:•1.教师主讲•2.学生参与•考核形式:考试80%+平时20%Reference•1 . 分子克隆实验指南•2. 精编分子生物学实验指南•3. PCR技术实验指南•4. 分子生物学实验基础•5. 现代分子生物学实验技术•6. 分子生物学实验技术•7. 分子生物学基础技术•生物技术各网站论坛:小木虫、生物谷、螺旋网、丁香园等第一章分子生物学发展简史1.1 分子生物学的起源分子生物学侧重于从分子水平研究遗传信息的传递、表达和调控,是在遗传学和生物化学基础上发展起来的学科。
分子生物学起源可以追溯到经典遗传学或称传递遗传学。
传递遗传学侧重于研究遗传性状从亲本向子代传递的规律。
1.1.1 传递遗传学(transmission genetics)1858~1865年间,孟德尔研究了植物遗传现象,发现了分离定律和自由组合定律。
提出了遗传因子(后改称基因)的概念。
孟德尔是经典遗传学或传递遗传学的奠基人。
1910年,摩尔根利用果蝇进行试验,发现了连锁遗传规律,证实了染色体遗传学说,首次将遗细胞学说、进化论和遗传学三定律是现代生物学的三大基石。
孟德尔Gregor Mendel (1822-1884),奥地利科学家,经典遗传学的奠基人1857-1864的7年中,进行了豌豆的杂交研究,1865年发表了他的划时代的论文《植物杂交试验》在论文中提出了“遗传因子”的概念,并得出了三条规律:●显性规律(The Law of Dominance)●分离规律(The Law of Segregation)●自由组合规律(The Law of Independent Assortment)1.1.2 分子遗传学(molecular genetics)1869年,Miescher分离出核酸。
1944年,Avery通过肺炎球菌转化试验证明DNA是遗传物质。
1952年,Hershey和Chase利用噬菌体感染细菌实验证明了Avery的结论。
1953年,Waston和Crick提出了DNA的双螺旋结构模型,推动了分子生物学的形成,使生命科学全面进入分子水平研究的时代,是分子生物学发展史上的里程碑。
1910年,Morgan的染色体—基因遗传理论,基因存在于染色体上。
进一步将“性状”与“基因”相耦联,成为现代遗传学的奠基石。
基因学说、连锁遗传规律Watson and Crick提出的DNA双螺旋模型(double helix)1938年洛克菲勒基金会主席Warren Weaver在年终报告里提到“渐渐地又产生了一门科学——分子生物学(Molecular Biology),这是揭开许多生命细胞基本单元奥秘的开端……”。
1938年Astburu, W.T.和Bell, F.D.首次发表脱氧核糖核酸的X光衍射研究。
Astburu, W.T.和Bell, F.D.认为是他们于1950年在Harvey演讲时首先提出分子生物学这个术语。
Erwin chargaff:“没有执照的生物化学实践”Crick:强调学科交叉:“我……不得不称自己是分子生物学家。
因为当别人问我是做什么工作时,我不想一次次的解释我是结晶学家、生物物理学家、生物学家、遗传学家……的混合物。
”Monod:“分子生物学家的新意是认识到生物体的基本性质可以用大分子的结构来解释。
”生化、遗传、分子生物学和生物物理学的界限变得越来越不明显。
学科关系分分子生物学子遗传学遗传学学科地位•是当前生命科学中发展最快的前沿领域正在与其它学科广泛交叉与渗透的重要前沿领域临床医学分子生物学1.2 分子生物学的发展1953 Watson & Crick DNA Double Helix Model及随后Crick提出的Central Dogma 中心法则基因的自我复制能力解释了基因的两个基本属性基因控制性状表达的能力从此核酸的分子生物学得到了迅猛的发展McClintock B. 50年代初发现称转座元件。
1983年获得诺贝尔奖。
1958年,Meselson 和Stahl证明DNA半保留复制。
半保留复制是遗传消息能准确传代的保证。
是物质稳性的分子基础。
Stahl Meselson1961年,法国科学家Jacob和Monod提出操纵子学说1965 Jacob &Monod (法国)此外,1953年,Zamecnik发现蛋白质的合成场所是核糖体Francis Jacob Jacques Monod提出并证实了Operon作为调节细菌细胞代谢的分子机制,首次提出mRNA分子的存在。
1962 Kendrew &Perutz (英国)John C. Kendrew Max F. Perutz 测定了肌红蛋白及血红蛋白的高级结构(三级) 成为研究生物大分子结构的先驱1968 Nirenberg, Holly &Khorana康奈尔大学国立卫生研究院威斯康星大学Marshall W. NirenbergR obert W.HolleyHar GobindKhorana酵母phetRNA的核破译了遗传密码苷酸序列并证明了所有tRNA三级结构第一个合成了核酸分子,并人工复制1970年,Temin 和Baltimore在RNA肿瘤病毒中发现逆转录酶。
The Nobel Prize in Physiology or Medicine 1978"for the discovery of restriction enzymes and their application toproblems of molecular genetics"Werner Arber Daniel Nathans Hamilton O. SmithBiozentrum der Universität Switzerland 1929 - J ohns HopkinsUniversity School ofMedicineJohns HopkinsUniversity School ofBaltimore, USA 1928 - 1999 1931 -FrederickSanger酶法核苷酸测序的设计者Walter Gilbert Paul Berg化学测序法的设计者DNA重组,在细菌中表达胰岛素DNA重组技术的元老Prusiner图1-1 患有库鲁病的小孩分子生物学的概念分子生物学概念广义的分子生物学狭义的分子生物学核酸蛋白质核酸广义的分子生物学:蛋白质及核酸等生物大分子结构和功能的研究都属于分子生物学的范畴,即从分子水平阐明生命现象和生物学规律。
狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。
What is Molecular Biology? Molecular biology seeks to explain the relationships between the structure and function of biological molecules and how these relationships contribute to the operation and control of biochemical processes.---Turner et al.Molecular biology is the study of genes andtheir activities at the molecular level, including transcription, translation, DNA replication, recombination and translocation.--- Robert Weaver现代分子生物学--- 朱玉贤、李毅分子生物学是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭示生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
分子生物学的主要研究内容所有生物体中的有机大分子都是以碳原子为核心,并以共价键的形式与氢、氧、氮及磷以不同方式构成的。
不仅如此,一切生物体中的各类有机大分子都是由完全相同的单体,如蛋白质分子中的20种氨基酸、DNA及RNA中的8种碱基所组合而成的,由此产生了分子生物学的3条基本原理:构成生物体有机大分子的单体在不同生物中都是相同的;生物体内一切有机大分子的建成都遵循着各自特定的规则;某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。
★构成生物大分子的单体是相同的共同的核酸语言共同的蛋白质语言★生物遗传信息的表达的中心法则相同DNARNA polypeptides protein character★生物大分子单体的排列(核苷酸,氨基酸)个性高级结构生物大分子之间的互作分子生物学研究的三大领域* 基因的分子生物学:基因的概念、结构、复制、表(狭义的分子生物学)达、重组、交换* 结构生物学:生物大分子的结构与功能DNA-蛋白质激素和受体生物大分子之间的互作酶和底物* 生物技术理论与应用基因工程、细胞工程、酶工程、发酵工程、蛋白质工程分子生物学的延伸分子生物学分子结构生物学分子细胞生物学分子遗传学分子发育生物学分子免疫学分子数量遗传学分子神经生物学分子病毒学分子生态学分子育种学分子生理学分子进化学分子肿瘤学分子考古学…………….分子生物学已经渗透到生物学的几乎所有领域分子生物学已经成为生命科学领域的带头学科现代生物学的发展数、理、化相关学科渗透交叉生物学实验技术生物学个性共性近代生物学微观生物学宏观生物学(分子生物学为核心)(生态学为核心)细胞水平分子水平生物多样性研究资源保护与利用结构生物学,发育生物学,神经生物学等新兴学科发展工农业生产可持续发展人类生态环境的保护。