实现二分搜索、合并排序、快速排序
- 格式:doc
- 大小:19.50 KB
- 文档页数:5
二分查找法的算法过程
二分查找法(Binary Search)是一种在有序数组中查找特定元素的算法。
它的算法思想是将数组分为两部分,然后判断目标元素与中间元素的大小关系,进而确定目标元素在哪一部分中,然后再在相应的部分中继续进行查找,直到找到目标元素或确定目标元素不存在。
具体的算法过程如下:
1. 首先,确定数组的起始位置(start)和结束位置(end)。
- start 初始化为数组的第一个元素的索引。
- end 初始化为数组的最后一个元素的索引。
2. 然后,计算出数组的中间位置(mid)。
- mid = (start + end) / 2。
3. 接下来,比较目标元素与中间元素的大小关系。
- 如果目标元素等于中间元素,那么返回中间元素的索引,表示找到了目标元素。
- 如果目标元素小于中间元素,说明目标元素在数组的前半部分,所以将结束位置 end 更新为 mid - 1。
- 如果目标元素大于中间元素,说明目标元素在数组的后半部分,所以将起始位置 start 更新为 mid + 1。
4. 然后,再次计算新的中间位置,并重复步骤 3,直到找到目标元素或确定目标元素不存在。
- 如果 start 大于 end,表示数组中不存在目标元素。
通过以上的算法过程,可以高效地在有序数组中查找目标元素。
二分查找法的时间复杂度为 O(log n),其中 n 表示数组的长度。
它比线性查找等其他查找算法要更加高效,尤其适用于大规模数据的查找操作。
2分查找算法二分查找算法,也称为折半查找算法,是计算机科学中一种常用的查找算法。
它的核心思想是将待查找的数据集合分成两半,然后通过与目标值的比较,确定目标值可能存在的范围,再逐步缩小范围,直到找到目标值或确定目标值不存在。
二分查找算法适用于有序的数据集合,可以快速定位目标值的位置,时间复杂度为O(logn)。
下面以二分查找算法为中心,详细阐述其原理和应用。
一、算法原理二分查找算法的原理非常简单,主要包含以下几个步骤:1.确定查找范围:将待查找的数据集合按照升序或降序排列,并确定查找范围的起始位置和结束位置。
2.计算中间位置:通过起始位置和结束位置计算出中间位置。
3.比较目标值:将目标值与中间位置的值进行比较。
-如果目标值等于中间位置的值,则查找成功,返回中间位置。
-如果目标值小于中间位置的值,则目标值可能在前半部分,将查找范围缩小到前半部分。
-如果目标值大于中间位置的值,则目标值可能在后半部分,将查找范围缩小到后半部分。
4.缩小查找范围:根据比较结果,缩小查找范围为前半部分或后半部分,并重复步骤2和步骤3,直到找到目标值或确定目标值不存在。
二、算法示例为了更好地理解二分查找算法,我们以一个具体的例子来说明:假设有一个按升序排列的数组[1,3,5,7,9,11,13,15,17, 19],我们要查找目标值为9的位置。
1.确定查找范围:起始位置为0,结束位置为9。
2.计算中间位置:(0+9)/2=4,中间位置为4。
3.比较目标值:目标值9大于中间位置的值7,所以目标值可能在后半部分。
4.缩小查找范围:将查找范围缩小到[9,11,13,15,17,19],起始位置更新为中间位置+1=5,结束位置不变。
5.重复步骤2和步骤3:计算新的中间位置(5+9)/2=7,中间位置为7。
目标值9小于中间位置的值15,所以目标值可能在前半部分。
6.缩小查找范围:将查找范围缩小到[9,11,13],起始位置更新为5,结束位置更新为中间位置-1=6。
五⼤算法设计思想(转载)⼀分治法1.1 概念: 将⼀个难以直接解决的⼤问题,分割成⼀些规模较⼩的相同问题,以便各个击破,分⽽治之。
1.2 思想策略: 对于⼀个规模为n的问题,若该问题可以容易地解决(⽐如说规模n较⼩)则直接解决,否则将其分解为k个规模较⼩的⼦问题,这些⼦问题互相独⽴且与原问题形式相同,递归地解这些⼦问题,然后将各⼦问题的解合并得到原问题的解。
1.3 特征:1) 该问题的规模缩⼩到⼀定的程度就可以容易地解决2) 该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质。
3) 利⽤该问题分解出的⼦问题的解可以合并为该问题的解;4) 该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦⼦问题。
1.4 对特征的解析:第⼀条特征是绝⼤多数问题都可以满⾜的,因为问题的计算复杂性⼀般是随着问题规模的增加⽽增加;第⼆条特征是应⽤分治法的前提它也是⼤多数问题可以满⾜的,此特征反映了递归思想的应⽤;第三条特征是关键,能否利⽤分治法完全取决于问题是否具有第三条特征,如果具备了第⼀条和第⼆条特征,⽽不具备第三条特征,则可以考虑⽤贪⼼法或动态规划法。
第四条特征涉及到分治法的效率,如果各⼦问题是不独⽴的则分治法要做许多不必要的⼯作,重复地解公共的⼦问题,此时虽然可⽤分治法,但⼀般⽤动态规划法较好。
1.5 基本步骤:1 分解:将原问题分解为若⼲个规模较⼩,相互独⽴,与原问题形式相同的⼦问题;2 解决:若⼦问题规模较⼩⽽容易被解决则直接解,否则递归地解各个⼦问题3 合并:将各个⼦问题的解合并为原问题的解。
1.6 适⽤分治法求解的经典问题:1)⼆分搜索2)⼤整数乘法3)Strassen矩阵乘法4)棋盘覆盖5)合并排序6)快速排序7)线性时间选择8)最接近点对问题9)循环赛⽇程表10)汉诺塔⼆动态规划2.1 概念 每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
分治法-合并排序和快速排序分治法是按照以下⽅案⼯作的:将问题的实例划分为同⼀个问题的⼏个较⼩的实例,最好拥有同样的规模对这些较⼩的实例求解(⼀般使⽤递归⽅法,但在问题规模⾜够⼩的时候,有时会利⽤另⼀种算法以提⾼效率)如果必要的话,合并较⼩问题的解,以得到原始问题的解分治法的流程:4.1 合并排序合并排序是成功应⽤分治技术的⼀个完美例⼦(书上说的)。
对于⼀个需要排序的数组,合并排序把它⼀分为⼆,并对每个⼦数组递归排序,然后把这两个排好序的⼦数组合并为⼀个有序数组。
代码实现:/*** 合并排序* @author xiaofeig* @since 2015.9.16* @param array 要排序的数组* @return返回排好序的数组* */public static int[] mergeSort(int[] array){if(array.length>1){int[] subArray1=subArray(array,0,array.length/2);int[] subArray2=subArray(array,array.length/2,array.length);subArray1=mergeSort(subArray1);subArray2=mergeSort(subArray2);return merge(subArray1,subArray2);}return array;}/*** 返回指定数组的⼦数组* @author xiaofeig* @since 2015.9.16* @param array 指定的数组* @param beginIndex ⼦数组的开始下标* @param endIndex ⼦数组的结束位置(不包括该元素)* @return返回⼦数组* */public static int[] subArray(int[] array,int beginIndex,int endIndex){int[] result=new int[endIndex-beginIndex];for(int i=beginIndex;i<endIndex;i++){result[i-beginIndex]=array[i];}return result;}/*** 根据数值⼤⼩合并两个数组* @author xiaofeig* @since 2015.9.16* @param subArray1 待合并的数组* @param subArray2 待合并的数组* @return返回合并好的数组* */public static int[] merge(int[] subArray1,int[] subArray2){int[] result=new int[subArray1.length+subArray2.length];int i=0,j=0;while(i<subArray1.length&&j<subArray2.length){if(subArray1[i]>subArray2[j]){result[i+j]=subArray2[j];j++;}else{result[i+j]=subArray1[i];i++;}}if(i==subArray1.length){while(j<subArray2.length){result[i+j]=subArray2[j];}}else{while(i<subArray1.length){result[i+j]=subArray1[i];i++;}}return result;}算法分析:当n>1时,C(n)=2C(n-2)+C merge(n),C(1)=0C merge(n)表⽰合并阶段进⾏键值⽐较的次数。
常用算法解析及其应用场景算法是计算机科学中最基础的概念之一。
在日常生活中,我们无时无刻不在接触着各种算法,从谷歌搜索到智能手机里各种APP的推荐算法,都离不开算法的支持和应用。
在这篇文章中,我将为大家介绍常用的算法和它们的应用场景。
一、排序算法排序算法是程序中最常用的一种算法,其目的是将数据按一定方式进行排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、归并排序和快速排序。
1、冒泡排序冒泡排序是一种简单的排序算法,它的思路是从头到尾扫描一遍需要排序的数据,每一次将相邻两个元素进行比较并交换位置。
这个过程类似于水泡在水中上浮,一遍扫描结束后,最大的元素就会像水泡一样浮到最上面。
冒泡排序的时间复杂度为O(n²),如果需要排序的数据量很大,那么执行起来会比较慢。
不过它的优点在于代码简单易懂,并且实现起来很容易。
2、选择排序选择排序的思路是每次从数据中选择一个最小(或最大)的元素,并将其放置在序列的起始位置。
按照这样的方式,每次只需要找到一个元素,就可以将数据序列排列好。
选择排序的时间复杂度也为O(n²),但它比冒泡排序要稍微快一点。
3、插入排序插入排序的思路是将数据分为已排序区间和未排序区间两部分。
不断地将未排序区间的元素逐一与已排序区间的元素相比较,找到合适的位置插入。
重复执行这个过程,最终就能将整个数据序列排列好。
插入排序的时间复杂度也为O(n²),但它的执行速度相对于冒泡排序和选择排序要慢一些。
不过它的优点在于它在处理小数据量时非常高效,并且在排序过程中需要的额外内存很少。
4、归并排序归并排序的思路是将数据分成两个子序列,分别进行排序,最后将排序好的子序列进行合并。
在合并的过程中,需要使用到一个额外的数组来存储数据。
归并排序的时间复杂度为O(nlogn),执行效率相对较高。
尤其是在处理大数据量时,它表现得十分出色。
5、快速排序快速排序的思路不同于以上几种排序算法,它是一种分治法的排序算法。
分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
竭诚为您提供优质文档/双击可除递归与分治实验报告篇一:实验一递归与分治算法编程-实验报告纸南京信息工程大学实验(实习)报告实验(实习)名称递归与分治算法编程实验(实习)日期得分指导教师院专业年级班次姓名学号1.实验目的:1)掌握递归与分治策略的基本思想2)掌握递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用3)掌握二分查找、合并排序、快速排序等问题的分治算法实现4)熟悉myeclipse或eclipse等Java开发工具的使用。
2.实验内容:1)采用myeclipse或eclipse编程实现基于分治策略的二分查找算法。
2)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。
3)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。
3.实验步骤二分查找publicclasssorting{publicstaticintbinarysearch(int[]a,intx,intn){intle ft=0;intright=n-1;while(left intmiddle=(left+right)/2;if(x==a[middle])returnmiddle;if(x>a[middle])left=middle+1;elseright=middle-1;}return-1;}publicstaticvoidmain(stringargs[]){intx,n;inta[]={1,3,4,5,6,13,25};x=6;n=7;ints;s=binarysearch(a,x,n);system.out.println(s);合并排序publicclassmergesort{publicstaticvoidmergesort(int[]a){}publicstaticvoid mergepass(int[]x,int[]y,ints){}publicstaticvoidmerg e(int[]c,int[]d,intl,intm,intr){inti=1,j=m+1,k=1;in ti=0;while(i }}if(c[i]-(c[j])m)for(intq=j;q快速排序publicclassQsort{privatestaticvoidqsort(inta[],intp,intr){}privatest aticintpartition(inta[],intp,intr){inti=p;intj=r+1; intx=a[p];inttemp;while(true){while((a[++i]-x)0);if (i>=j)break;temp=a[i];if(p }}}a[j]=temp;mymath.s wap(a,i,j);//a[p]=a[j];a[j]=x;returnj;publicstaticv oidmain(string[]args){}inta[]={4,2,7,9,1};qsort(a,0,4);for(inti=0;;i++){}s ystem.out.println(a[i]);4.实验分析和总结掌握了递归与分治策略的基本思想掌握了递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用掌握了二分查找、合并排序、快速排序等问题的分治算法实现熟悉了myeclipse或eclipse等Java开发工具的使用。
快速排序和二分查找是两种常用的算法,分别适用于不同的场景。
快速排序是一种使用分治法进行排序的算法,其基本思想是将一个数组分为两个子数组,一个子数组的所有元素都小于当前元素,另一个子数组的所有元素都大于当前元素。
然后递归地对两个子数组进行排序,最终整个数组会按照从小到大的顺序排列。
快速排序的时间复杂度为O(nlogn),在平均情况下表现良好。
但是,在最坏情况下,快速排序的性能可能会变差,这通常发生在数据已经完全排序或者逆序排列的情况下。
二分查找是一种在有序数组中查找特定元素的搜索算法。
搜索过程从数组的中间元素开始,如果中间元素正好是目标值,则搜索过程结束;如果目标值大于或小于中间元素,则在数组大于或小于中间元素的那一半区域里查找,而且每次比较都使搜索范围缩小一半。
二分查找的时间复杂度为O(logn),通常比顺序查找和线性查找要快。
比较这两种算法,可以发现它们有不同的特点:1. 快速排序适合于对数据进行全局排序的情况,因为它能够处理大数据量并且效率较高。
然而,在数据已经部分排序或者逆序排列的情况下,快速排序的性能可能会变差。
2. 二分查找则更适合于有序数组的查找操作,尤其是在数据量较小的情况下,因为它能够保证在最坏情况下的时间复杂度为O(logn),并且不需要知道待搜索序列的具体长度。
在实际应用中,可以根据具体需求选择合适的算法。
例如,如果需要对大量数据进行全局排序,并且可以接受在最坏情况下的性能变差,那么快速排序可能是更好的选择。
如果需要在一个有序数组中查找特定元素,并且可以接受在最好情况下的时间复杂度为O(n),那么二分查找可能是更好的选择。
同时,这两种算法也可以结合使用,以应对更复杂的需求。
如何利用二进制搜索算法进行快速排序与查找二进制搜索算法是一种高效的排序和查找算法,它可以在大规模数据中快速定位目标元素。
本文将介绍如何利用二进制搜索算法进行快速排序和查找,以及算法的原理和应用。
一、二进制搜索算法的原理二进制搜索算法,也称为二分查找算法,是一种基于有序数组的搜索算法。
它的原理很简单,通过不断缩小搜索范围,将目标元素与数组的中间元素进行比较,从而确定目标元素的位置。
具体的实现步骤如下:1. 将数组按照升序或降序排列。
2. 定义搜索范围的起始位置和结束位置。
3. 计算中间位置的索引。
4. 将目标元素与中间位置的元素进行比较。
5. 如果目标元素等于中间位置的元素,则返回该位置。
6. 如果目标元素小于中间位置的元素,则将结束位置更新为中间位置减一,继续搜索左半部分。
7. 如果目标元素大于中间位置的元素,则将起始位置更新为中间位置加一,继续搜索右半部分。
8. 重复步骤3到7,直到找到目标元素或搜索范围为空。
二、利用二进制搜索算法进行快速排序快速排序是一种常用的排序算法,它基于分治策略,通过将数组分割成较小的子数组,然后对子数组进行排序,最终将它们合并成一个有序数组。
利用二进制搜索算法进行快速排序的步骤如下:1. 选择数组中的一个元素作为基准值。
2. 将数组中小于基准值的元素放在基准值的左边,大于基准值的元素放在基准值的右边。
3. 对基准值左边的子数组和右边的子数组分别进行递归调用快速排序算法。
4. 合并左边的子数组、基准值和右边的子数组,得到一个有序数组。
快速排序算法的时间复杂度为O(nlogn),是一种高效的排序算法。
三、利用二进制搜索算法进行查找二进制搜索算法不仅可以用于排序,还可以用于查找。
通过将数组排序,我们可以利用二进制搜索算法快速定位目标元素的位置。
查找的步骤如下:1. 对数组进行排序。
2. 使用二进制搜索算法查找目标元素的位置。
3. 如果找到目标元素,则返回其索引;如果未找到,则返回-1。
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
2023王道数据结构课后算法题一、简介《2023王道数据结构课后算法题》是一本针对计算机专业考研的参考书籍,其中的课后算法题是复习和备考过程中的重要组成部分。
本文档将围绕这本书中的算法题进行讲解和解答,帮助读者更好地理解和掌握数据结构相关知识。
二、算法题列表及解析1. 合并两个有序数组题目描述:合并两个有序数组,要求返回一个新的数组,新数组中的元素是原数组中所有元素的值。
请使用数据结构中的相关知识设计算法解决该问题。
解析:可以使用双指针法或递归法实现合并两个有序数组的操作。
双指针法的思路是将一个数组分为两部分,每次比较两个指针指向的元素大小,将较小的元素加入新数组中,直到其中一个数组遍历完为止,再将另一个数组中剩余的元素全部加入新数组中。
递归法的思路是将一个数组拆分成若干个子数组,再将子数组合并成一个有序数组。
2. 快速排序算法题目描述:设计一个快速排序算法,对给定的数组进行排序。
请使用数据结构中的相关知识设计算法解决该问题。
解析:快速排序算法是一种常用的排序算法,其核心思想是选择一个基准元素,将比基准元素小的放在其左边,比基准元素大的放在其右边,然后再对左右两个子数组进行递归排序。
在实现快速排序算法时,需要注意选择合适的基准元素和分区操作的方法。
3. 二分查找算法题目描述:给定一个有序数组,实现二分查找算法,找到给定元素在数组中的位置。
请使用数据结构中的相关知识设计算法解决该问题。
解析:二分查找算法是一种常用的搜索算法,其思路是将目标元素与数组中间位置的元素进行比较,如果相等则返回中间位置的下标,如果目标元素大于中间位置的元素,则在右半边继续查找,反之则在左半边继续查找。
在实现二分查找算法时,需要注意有序数组的要求和搜索范围的确定。
三、解题方法与技巧1. 合并两个有序数组时,可以使用双指针法或递归法实现,双指针法更加简洁高效;2. 快速排序算法中,选择合适的基准元素和分区操作的方法是关键;3. 二分查找算法中,需要注意有序数组的要求和搜索范围的确定;4. 在实现算法时,需要注意代码的逻辑性和可读性,以便于后续的维护和调试。
计算机的基本算法计算机的基本算法是指在计算机科学中用于解决问题或执行任务的一系列定义良好的指令或规则。
它是计算机科学的基础,对于计算机的功能和性能起着重要的支撑作用。
本文将会介绍几种常见的基本算法,包括搜索算法、排序算法和图算法。
一、搜索算法搜索算法是用于寻找特定目标的过程,通过有限的步骤逐个检查元素,直到找到所需的目标或确定目标不存在。
以下是两种常见的搜索算法:1.1 顺序搜索顺序搜索,也称为线性搜索,是一种直观且简单的搜索算法。
它从列表的起始位置开始,逐个对比每个元素,直到找到目标元素或全部元素都被检查完毕。
顺序搜索的时间复杂度为O(n),其中n为列表的长度。
1.2 二分搜索二分搜索是一种用于有序列表的高效搜索算法。
它将目标元素与列表的中间元素进行比较,如果相等,则返回该元素的索引;如果目标元素大于中间元素,则在列表的后半部分进行二分搜索;反之,在列表的前半部分进行二分搜索。
通过将搜索范围缩小一半,二分搜索的时间复杂度为O(log n),其中n为列表的长度。
二、排序算法排序算法是一种将列表或数组中的元素按照特定顺序重新排列的算法。
以下是两种常见的排序算法:2.1 冒泡排序冒泡排序是一种简单但效率较低的排序算法。
它从列表的起始位置开始,依次比较相邻的两个元素,如果它们的顺序不正确,则交换它们的位置。
通过多次遍历列表并重复比较交换操作,最终将最大(或最小)的元素移动到列表的末尾。
冒泡排序的时间复杂度为O(n^2)。
2.2 快速排序快速排序是一种高效的排序算法,利用分治的思想将列表一分为二,并递归地对子列表进行排序。
它选择一个基准元素,将其他元素分为小于基准元素和大于基准元素的两部分,然后对这两部分分别进行快速排序,最终将它们合并成一个有序的列表。
快速排序的平均时间复杂度为O(nlog n),最坏情况下为O(n^2)。
三、图算法图算法是解决图相关问题的一类算法,其中图是由节点和边组成的数据结构。
以下是两种常见的图算法:3.1 深度优先搜索深度优先搜索是一种用于遍历或搜索图的算法。
合并、快速排序一.实验目的:1.理解算法设计的基本步骤及各部的主要内容、基本要求;2.加深对分治设计方法基本思想的理解,并利用其解决现实生活中的问题;3.通过本次试验初步掌握将算法转化为计算机上机程序的方法。
二.实验内容:1.设计和实现递归的合并排序算法、快速排序算法;2.设计和实现消除递归的合并排序算法、快速排序算法;3.设计有代表性的典型输入数据,分析算法的效率;4.对于给定的输入数据,给出算运行结果和运行结果,并给出实验结果分。
三.实验操作:1.合并排序思想:归并排序是建立在归并操作上的一种有效的排序算法。
该算法是采用分治法的思想,是一种稳定的排序方法。
将以有序的子序列合并,得到完全有序的序列;及先使每个字序列有序,再使子序列段间有序。
归并过程:比较数组中两个元素的大小,如比较a[i]和a[j]的大小,若a[i]<=a[j],将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表剩下的元素复制到r中从下标k 到下标t的单元。
如:6,202,100,301,38,8,1第一次归并:{6,202},{100,301},{8,38},{1}第二次归并:{6,100,202,301},{1,8,38}第三次归并:{1,6,8,38,100,202,301}合并排序算法:void merge(int Array[],int low,int high){int i=low,j,k;int mid=(low+high)/2;j=mid+1;k=low;int* list=new int[high+1];while(i<=mid&&j<=high){if(Array[i]<=Array[j]) list[k++]=Array[i++];else list[k++]=Array[j++];}while(i<=mid) list[k++]=Array[i++];while(j<=high) list[k++]=Array[j++];for(int n=low;n<=high;n++)Array[n]=list[n];}void mergeSort(int Array[],int low,int high){ if(low<high){int mid=(low+high)/2;mergeSort(Array,low,mid);mergeSort(Array,mid+1,high);merge(Array,low,high);}}2.快速排序思想:将要排序的数据存入数组中,首先任意去一个元素(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,值得注意的是,快速排序不是一种稳定的排序算法,即多个相同的值的相对位置也许会在算法结束时产生变动。
六大经典算法经典算法是计算机科学中非常重要的一部分,它们被广泛应用于各种领域,包括数据结构、排序、搜索、图论和机器学习等。
下面我将介绍六大经典算法,分别是:冒泡排序、快速排序、插入排序、选择排序、归并排序和二分查找。
一、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的元素,并按照大小顺序交换它们。
通过多次遍历,将最大的元素逐渐“冒泡”到列表的末尾,直到整个列表有序为止。
二、快速排序快速排序是一种高效的排序算法,它采用分治的思想,将一个待排序的列表不断划分为两个子列表,然后分别对子列表进行排序,最后将排序好的子列表合并起来。
快速排序的关键在于选择一个基准元素,并根据基准元素将列表划分为左右两个子列表,然后递归地对子列表进行排序。
三、插入排序插入排序是一种简单直观的排序算法,它的工作原理是将一个元素插入到已排序的列表中的适当位置,从而得到一个新的有序列表。
插入排序的核心思想是将待排序的列表分为已排序和未排序两部分,然后依次将未排序部分的元素插入到已排序部分中。
四、选择排序选择排序是一种简单的排序算法,它每次从待排序的列表中选择最小(或最大)的元素,然后将其放到已排序的列表的末尾。
通过多次选择最小(或最大)元素,选择排序可以得到一个有序的列表。
五、归并排序归并排序是一种高效的排序算法,它采用分治的思想,将一个待排序的列表递归地划分为两个子列表,然后分别对子列表进行排序,最后将排序好的子列表合并起来。
归并排序的关键在于将两个有序的子列表合并成一个有序的列表。
六、二分查找二分查找是一种高效的查找算法,它适用于有序列表。
二分查找的核心思想是不断地将待查找的区间分为两部分,然后根据目标值与中间值的大小关系,确定接下来要查找的区间,直到找到目标值或查找区间为空。
总结:以上六大经典算法分别是冒泡排序、快速排序、插入排序、选择排序、归并排序和二分查找。
这些算法在计算机科学中具有重要的地位,它们不仅可以用来解决排序和查找问题,还可以应用于其他领域,如图论、机器学习等。
软件工程师常见算法题解析在软件工程师的日常工作中,经常需要解决各种算法问题。
算法作为计算机科学的基石,扮演着重要的角色。
本文将围绕软件工程师常见的算法题目展开讨论,并提供相应问题的解析。
一、排序算法排序算法是软件工程师经常会遇到的算法问题之一。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
下面以快速排序为例进行解析。
快速排序(Quicksort)是一种常用的排序算法,它的基本思想是通过一趟排序将待排序的记录分割成独立的两部分,其中一部分的所有记录均比另一部分的所有记录小,然后再分别对这两部分记录进行排序,以达到整个序列有序的目的。
快速排序的实现过程可以分为以下几个步骤:1. 选择一个基准元素,通常是待排序数组的第一个元素。
2. 将数组按照基准元素进行分割,比基准元素小的放在左边,比基准元素大的放在右边。
3. 递归地对左右两个子数组进行快速排序。
4. 合并左右两个已排序的子数组,即得到最终的有序数组。
快速排序的时间复杂度为O(nlogn),是一种较高效的排序算法。
但需要注意的是,在最坏情况下,快速排序的时间复杂度可能达到O(n^2),因此在实际应用中需要对其进行优化。
二、查找算法查找算法是软件工程师在处理大数据集时经常需要使用的算法。
常见的查找算法包括顺序查找、二分查找、哈希查找等。
下面以二分查找为例进行解析。
二分查找(Binary Search)是一种高效的查找算法,它的前提是待查找的数组有序。
基本思想是通过将待查找区间不断缩小一半,直到找到目标元素或者确定目标元素不存在。
二分查找的实现过程可以分为以下几个步骤:1. 确定待查找区间的左右边界。
2. 计算中间元素的索引。
3. 比较中间元素和目标元素的大小。
4. 如果相等,则找到目标元素;如果大于目标元素,则在左半区间继续查找;如果小于目标元素,则在右半区间继续查找。
5. 重复执行步骤3和步骤4,直到找到目标元素或者待查找区间为空。
1、实验题目实现二分搜索、合并排序、快速排序
2、实验要求用分治法和递归技术实现上述问题,掌握设计有效算法的分治
策略
3、实验内容(问题描述、算法设计、算法效率)
实现二分搜索
A.问题描述:给定已排好序的n个元素a[0:n-1],现要在这n个元素中找出
一给定元素x。
B.算法设计:在问题中,n个元素已经排好序,二分搜索算法的基本思想是
将n个元素分成个数大致相同的两半,取a[n/2]与x作比较,如果x=a[n/2],则找到x,算法终止;如果x<a[n/2],则只要在数组a的左半部继续按上方法搜索,直到搜索到x;如果x>a[n/2],则只要在数组a的右半部继续按上方法搜索,直到搜索x。
C.算法效率:每执行一次算法的while循环,待搜索数组的大小减少一半。
因此,在最坏情况下,while循环被执行了O[logn]次。
循环体内运算需要O[1]时间,因此整个算法在最坏情况下的计算时间复杂性为O[longn]。
D.代码:
template<class Type>
int BinarySeatch(Type a[],const Type& x,int n)
{ int left=0; int right = n-1;
while(left<=right){
int middle = (left+right)/2;
if(x = = a[middle])return middle;
if(x>a[middle])left=middle+1;
else right = middle –1;}
return –1;}
实现合并排序
A.问题描述:对n个元素进行排序。
B.算法设计:将待排序元素分成大小大致想通的两个子集合,分别对两个子集合进行排序,最终将排好序的子集合合并成所要求的排好序的集合。
C.算法效率:自然合并排序算法需要O(n)时间,算法MergeSort需要O(nlogn)时间。
D.代码:
void mergesort(int a[],int n)
{int *b=new int[n];
int s=1;
while(s<n){
mergepass(a,b,s,n);
s+=s;
mergepass(b,a,s,n);
s+=s;}}
void mergepass(int x[],int y[],int s,int n)
{int i=0;
while(i<=n-2*s)
{merge(x,y,i,i+s-1,i+2*s-1);
i=i+2*s;}
if(i+s<n)
merge(x,y,i,i+s-1,n-1);
else for(int j=i;j<=n-1;j++) y[j]=x[j];}
void merge(int c[],int d[],int l,int m,int r)
{int i=l,j=m+1,k=l;
while((i<=m)&&(j<=r))
if(c<=c[j])d[k++]=c[i++];
else d[k++]=c[j++];
if(i>m) for(int q=j;q<=r;q++)d[k++]=c[q];
else for(int q=i;q<=m;q++)d[k++]=c[q];}
实现快速排序
A.问题描述:对n个数进行排序
B.算法设计:对于输入的子数组a[p:r],按以下三个步骤进行排序。
(1)分解:以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q]和a[q+1:r],使a[p:q-1]中任何一个元素小于等于a[q],而a[q+1:r]中任何一个元素大于等于a[q]。
下标q在划分过程中确定。
(2)递归求解:通过递归调用快速排序算法分别对a[p:q-1]和a[q+1:r]进行排序。
(3)合并
C.算法效率:O(nlogn)
D.代码:void quicksort(int a[],int p,int r)
{ if(p<r){
int q=partition(a,p,r);
quicksort(a,p,q-1);
quicksort(a,q+1,r);
} }
int partition(int a[],int p,int r){
int i=p,j=r+1;
int t;
int x=a[p];
while(true){
while(a[++i]<x && i<r);
while(a[--j]>x);
if(i>=j)break;
t=a;
a=a[j];
a[j]=t;}
a[p]=a[j];
a[j]=x;
return j;}
4.实验心得
在实现二分搜索是需要先编写一个算法用来输入排好序的n个元素,以用来做搜索源。
而合并搜索应用的是依次重复把元素分为大致相同的两组,直到最后的分株可以很容易的比较,之后逐步合并。
程序输入是注意保持变量前后一致,勿输入错误。
实验中发现了几个平时不容易注意的小问题,加深了对这几个算法的
理解与掌握。