量子力学知识点总结
- 格式:doc
- 大小:147.00 KB
- 文档页数:5
量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。
*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。
关于量子力学的知识点总结量子力学是现代物理学的一个重要分支,研究微观世界的行为规律。
它涉及到很多的知识点,下面将对其中的一些重要知识点进行总结。
1. 波粒二象性:量子力学中的基本粒子既可以表现出粒子的性质,又可以表现出波动的性质。
例如,电子、光子等粒子既可以像粒子一样具有位置和动量,又可以像波动一样具有频率和波长。
2. 不确定性原理:由于波粒二象性的存在,无法同时准确测量粒子的位置和动量,因为测量其中一个属性会对另一个属性造成不确定性。
这是因为波粒二象性使得微观粒子的位置和动量不能同时具有确定值。
3. 波函数:在量子力学中,波函数描述了一个量子系统的状态,其平方表示在不同位置寻找粒子的概率。
波函数形式为ψ(x),其中x代表位置。
4. 叠加原理:当两个或多个波函数重叠时,它们可以相互叠加形成新的波函数。
这种叠加可以导致干涉现象,即波的相位相加或相减,形成波纹增强或波纹消除的现象。
5. 薛定谔方程:薛定谔方程是描述量子系统随时间演化的基本方程。
它能够确定系统的波函数随时间的变化,并给出粒子的能量以及其他物理量。
6. 量子态与态矢量:量子力学描述粒子的态称为量子态,用态矢量表示。
一个粒子的量子态是一个复数的线性组合,它确定了粒子在不同物理量上的测量结果的概率。
7. 纠缠:当两个或多个粒子通过量子力学的相互作用使得它们的量子态互相关联时,就产生了纠缠现象。
纠缠态的特点是不能将其视为单个粒子的状态,而必须将其作为整个系统的态来描述。
8. 可观测量与算符:在量子力学中,物理量的观测结果用可观测量表示。
每个可观测量都有对应的算符,通过作用于波函数求得其期望值。
例如,位置可观测量对应位置算符,动量可观测量对应动量算符。
9. 自旋:自旋是粒子特有的内禀角动量,与其自身特性相关。
自旋可能采取离散值,如电子的自旋即为1/2。
10. 荷质比:荷质比是粒子带电性质与其质量的比值。
根据量子力学理论,荷质比具有量子化的性质。
量子力学知识点量子力学是20世纪初发展起来的一种物理学理论,它主要描述微观粒子如原子、电子等的行为。
量子力学的核心概念包括波函数、量子态、不确定性原理、量子纠缠等。
以下是量子力学的一些主要知识点总结:1. 波函数:量子力学中,一个粒子的状态由波函数描述,波函数是一个复数函数,其模的平方给出了粒子在某个位置被发现的概率密度。
2. 薛定谔方程:这是量子力学中描述粒子波函数随时间演化的基本方程。
薛定谔方程是量子力学的核心,它是一个偏微分方程,能够预测粒子的行为。
3. 量子态:量子系统的状态可以由波函数表示,这些状态是离散的,并且遵循一定的量子数规则。
4. 量子叠加原理:量子系统可以同时处于多个可能的状态,这些状态的叠加构成了系统的总状态。
5. 不确定性原理:由海森堡提出,指出无法同时精确测量粒子的位置和动量。
这是量子力学与经典力学的一个根本区别。
6. 量子纠缠:两个或多个粒子可以处于一种特殊的相关状态,即使它们相隔很远,一个粒子的状态改变也会立即影响到另一个粒子的状态。
7. 量子隧道效应:粒子有可能穿过一个经典力学中不可能穿越的势垒,这是量子力学中的一个非直观现象。
8. 波粒二象性:量子力学中的粒子既表现出波动性也表现出粒子性,这种性质由德布罗意提出。
9. 量子力学的诠释:包括哥本哈根诠释、多世界诠释等,不同的诠释试图解释量子力学中观察到的现象。
10. 量子计算:利用量子力学原理进行信息处理的技术,量子计算机能够执行某些特定类型的计算任务,速度远超传统计算机。
11. 量子纠缠与量子通信:量子纠缠是量子通信的基础,可以实现安全的信息传输。
12. 量子退相干:量子系统与环境相互作用,导致量子态的相干性丧失,是量子系统向经典系统过渡的过程。
13. 量子场论:将量子力学与相对论结合起来,描述粒子的产生和湮灭过程。
14. 量子信息:研究量子系统在信息处理中的应用,包括量子密码学、量子通信等。
15. 量子测量:量子力学中的测量问题涉及到波函数的坍缩,即测量过程会导致量子态的不确定性减少。
量子力学知识点量子力学是描述微观世界中物质和能量行为的理论框架,是现代物理学中最重要的分支之一。
早在20世纪初,物理学家们就开始探索微观世界的奥秘,并提出了量子力学的理论基础。
本文将为您介绍一些关于量子力学的基本知识点。
一、光的粒子性和波动性在经典物理学中,光被视为电磁波,具有波动性质。
然而,在实验中发现光也具有粒子性,即光子。
根据光的粒子性和波动性,量子力学引入了波粒二象性的概念。
二、波函数和不确定原理波函数是量子力学中用来描述粒子行为的数学函数。
它包含了粒子的位置、动量、能量等信息。
根据不确定原理,无法同时准确确定粒子的位置和动量,这是量子力学中的基本原理之一。
三、叠加原理和量子纠缠量子力学中的叠加原理指出,处于未观测状态的粒子可以同时存在于多个可能状态之中。
当进行观测时,波函数会坍缩为某一确定状态。
这种现象被称为量子纠缠,即两个或多个粒子之间的状态相互依赖,无论它们之间有多远。
四、量子力学的定态和非定态在量子力学中,定态表示粒子处于稳定状态,其波函数不随时间变化。
非定态则表示粒子的状态会随时间演化。
通过薛定谔方程,我们可以描述粒子在不同状态下的演化过程。
五、测量和观测量子力学中的测量和观测与经典物理学中有所不同。
测量过程会导致波函数坍缩,粒子的状态被确定下来。
而在观测之前,粒子处于叠加态,可能处于多个不同状态。
六、量子力学的应用量子力学的应用涉及到许多领域。
在材料科学中,量子力学可以解释材料的电子结构和导电性质。
在计算机科学中,量子计算机的发展有望在处理复杂问题上实现超高速计算。
此外,量子力学还在量子通信、量子密码等领域有重要应用。
七、量子纠缠和量子隐形传态量子纠缠是量子力学中的一个重要概念,也是量子计算和量子通信的基础。
量子隐形传态则指通过纠缠态将信息传递到另一个位置,实现“隐形传输”。
结语量子力学作为一门复杂而深奥的学科,对我们理解微观世界的本质和开展科学研究具有重要意义。
本文对量子力学的一些基本知识点进行了梳理和介绍,希望能对读者理解量子力学产生帮助,并引发对这一领域更深入的探索与思考。
量子力学期末复习完美总结一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰,(n=1,2,3,....),2.德布罗意关系为:hE h p k γωλ====; 。
3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-, 4.波函数的统计解释:()2r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。
这是量子力学的基本原理之一。
波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。
5.波函数的标准条件为:连续性,有限性,单值性 。
6.,为单位矩阵,则算符的本征值为:1± 。
7.力学量算符应满足的两个性质是 实数性和正交完备性 。
8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。
即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或。
9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写的态中测量粒子动量所得结果在p p dp →+范围内的几率。
10.i ;ˆxi L ;0。
11.如两力学量算符有共同本征函数完全系,则_0__。
12.坐标和动量的测不准关系是: ()()2224x x p ∆∆≥。
自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。
14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。
15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。
16.对氢原子,不考虑电子的自旋,能级的简并为: 2n ,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。
1、 黑体辐射:任何物体总在吸收投射在它身上的辐射。
物体吸收的辐射能量与投射到物体 上的辐射能之比称为该物体的吸收系数。
如果一个物体能吸收投射到它表面上的 全部辐射,即吸收系数为 1 时,则称这个物体为黑体。
光子可以被物质发射和吸收。
黑体向辐射场发射或吸收能量 hv 的过程就是 发射或吸收光子的过程。
2、 光电效应(条件):当光子照射到金属的表面上时,能量为 hv 的光子被电子吸收。
12临界频率 v 0 满足2 = ℎ −0 = 0⁄ℎ(1)存在临界频率 v 0,当入射光的频率 v<v 0 时,无论光的强度多大,都无光电 子逸出。
只有在 v≥v 0 时,即使光的强度较弱,但只要光照到金属表面上,几乎 在 10-9s 的极短时间内,就能观测到光电子;(2)出射的光电子的能量只与入射光的频率 v 有关,而与入射光的强度无关; (3)入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积上 逸出的光电子的数目。
3、由于光子以光速运动,根据狭义相对论的质能关系式有2 = 2 4 + 2 2C 是光速, m 0 是光子的静质量,为零,因此得到光子的能量和动量的关系是=4、康普顿效应的推导( P7):康普顿效应还证实: 在微观的单个碰撞事件中, 能量守恒定律和动量守恒定律仍然成立。
5、薛定谔方程:6、概率流守恒定律概率流密度 7、一维无限深势阱(P31)0 2= − ( ∗ − ∗ )+ ∇ ∙ =ℎ22 +ℎ0 −=2ℎ8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。
一维无限深势阱给出的波函数全部是束缚态波函数。
从(2.4.6)式还可证明,当 n 分别是奇数和偶数时,满足{( −) = ( ) (n 为奇数)( −) = −( ) (n 为偶数)即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是 x 的奇函数,我们称这时的波函数具有奇宇称。
物理学的量子力学知识点总结量子力学是现代物理学的重要分支,它探讨了微观领域中物质和能量的行为规律。
在本文中,我们将对量子力学的一些基本知识点进行总结。
1. 波粒二象性量子力学的一个核心概念是波粒二象性。
根据波粒二象性,微观粒子既可以表现出波动性质,也可以表现出粒子性质。
例如,光既可以被视为波动的电磁波,也可以被视为由光子组成的粒子流。
2. 不确定性原理不确定性原理是量子力学的另一个重要概念,由海森堡提出。
它表明,在测量某个量(如位置和动量)时,我们无法同时精确地知道这两个量的值。
这意味着,精确测量一个粒子的位置将导致动量的不确定性增大,反之亦然。
3. 波函数和量子态波函数是量子力学中描述微观粒子状态的数学函数。
它包含了关于粒子位置、动量和能量等信息。
根据波函数的模的平方,我们可以计算出粒子在某个位置上的概率分布。
量子态则是描述粒子整体状态的概念,可以用波函数来表示。
4. 叠加原理和干涉叠加原理指出,当存在多个可能的量子态时,系统可以同时处于这些态的叠加态。
这意味着,微观粒子可以同时处于多个位置或状态。
干涉现象是叠加原理的重要应用,它描述了波动性质导致的波的叠加和相消的现象。
5. 测量和观测量子力学中的测量过程是一个重要的概念。
测量会导致系统从叠加态坍缩到一个确定的态,这被称为量子态的坍缩。
观测结果是测量的物理量的一个确定值,它是通过与系统相互作用来得到的。
6. 量子纠缠量子纠缠是一种特殊的量子态,其中两个或多个粒子之间的状态是相互关联的。
当两个纠缠粒子之一发生测量时,另一个粒子的状态会立即坍缩,无论它们之间的距离有多远。
这种纠缠关系被广泛应用于量子通信和量子计算领域。
7. 施特恩-盖拉赫实验施特恩-盖拉赫实验是对量子力学基本原理的重要验证。
该实验通过将束缚电子通过磁场进行分离,观察到了电子的自旋量子态分裂成两个不同方向的束缚束缚态,从而证明了电子具有自旋的概念。
8. 薛定谔方程薛定谔方程是量子力学的基本方程之一,描述了量子态随时间演化的规律。
量子力学知识总结认真、努力、坚持、反思、总结…物理111 杨涛量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==v v h3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()i p r Et Aeψ⋅-=v vh5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψv 的统计解释2(,)r t d t r ψτv v 表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理: 如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数)时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂h vh 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J ti J mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψv v h 注:问题:波函数的标准条件单值、连续、有界。
1光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子
4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大
5戴维逊-革末实验证明了德布罗意波的存在
6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。
按照这种解释,描写粒子的波是几率波
7波函数的归一化条件 1),,,( 2
⎰∞
=ψτd t z y x
8定态:微观体系处于具有确定的能量值的状态称为定态。
定
态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。
⑵粒子几率流密度不随时间改变。
⑶任何不显含时间变量的力学量的平均值不随时间改变
9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。
10厄密算符的定义:如果算符
F ˆ满足下列等式
() ˆ ˆdx F dx F
φψφψ*
*⎰⎰=,则称F ˆ为厄密算符。
式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。
推论:量子力学中表示力学量的算符都是厄密算符。
11厄密算符的性质:厄密算符的本征值必是实数。
厄密算符的属于不同本征值的两个本征函数相互正交。
12简并:对应于一个本征值有一个以上本征函数的情况。
简并度:对应于同一个本征值的本征函数的数目。
13量子力学中力学量运动守恒定律形式是:
01=⎥⎦
⎤⎢⎣⎡+∂∂=H F i t F dt F d ˆ,ˆ
量子力学中的能量守恒定律形式是01=⎥⎦
⎤⎢⎣⎡=H H i dt
H d ˆ,ˆˆ
14
15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。
17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数
的近似求解方法。
求出,由求出微扰论:由n n n n E E ψψ)
0()0(
倍
18索末非提出的广义量子化条件是pdq n
=⎰ 19一粒子有波函数由()(),,i px x t c p t e dp ψπ∞-∞=⎰描写,则(),c p t = (),i
px x t e dx ψπ∞--∞
⎰
20粒子在势场U(r)中运动,则粒子的哈密顿算符为()
222H U r m =-∇+ 21量子力学中,态和力学量的具体表示方式称为表象。
22、、厄密算符的本征值是实数,特点是本征矢是正交、归一和完备的。
23束缚态、简并态和偶宇称态?在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称(6分)
24全同玻色子的波函数特点?并写出两个玻色子组成的全同粒子体系的波函数。
全同玻色子的波函数是对称波函数。
两个玻色子组成的全同粒子体系的波函数为:[]
)()()()(2
1
12212211q q q q S ϕϕϕϕφ+=
数
25简述测不准关系的主要内容,并写出时间t 和能量E 的测不准
关系。
设F ˆ和G ˆ的对易关系k ˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数。
以F 、G 和k 依次表示F
ˆ、G ˆ和k 在态ψ中的平均值,令 F F ˆF
ˆ-=∆,G G ˆG ˆ-=∆,
则有
4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系。
时间t 和
能量E 之间的测不准关系为:2
≥
∆⋅∆E t 坐标x 和动量x p
ˆ之间的测不准关系为:
2ˆ ≥∆⋅∆x p
x
3德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关
系,其表达式为: E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在
x —dx 范围内的几率 。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:
[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描
写的状态时,测量某力学量F 所得的数值,必定是算符F
ˆ的 本征值 。
7.定态波函数的形式为: t E i
n n e
x t x
-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S
,它在空间任何方向上的投影
只能取两个数值为: 2
±)
利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:
z
y x L i L L ˆ]ˆ,ˆ[ =
证明:
]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z y
x p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z p
y ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z p
y +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z p
y +=y z z y z x x z p p x z p x p z p p z y p z p
y ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z p
y ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p p
yz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x p
i y ˆ)(ˆ)( +-=]ˆˆ[x y p y p
x i -= z
L i ˆ =。