高中数学教案:函数与方程的关系及应用
- 格式:docx
- 大小:37.44 KB
- 文档页数:3
高中数学老教材教案
第一课:函数与方程
1.1 学习目标:了解函数的概念,掌握基本的函数图像与性质,能够解决简单的函数方程。
1.2 教学内容:
(1)函数的定义与符号表示
(2)函数的图像与性质
(3)函数方程的解法
1.3 教学重点与难点:
重点:函数的定义、函数图像与性质、函数方程的解法
难点:函数的概念理解、函数方程的解法
1.4 教学过程:
(1)引入:通过举例引入函数的概念,让学生了解什么是函数。
(2)讲解:介绍函数的定义和符号表示,然后讲解函数的图像与性质。
(3)练习:让学生进行简单的函数图像绘制和性质分析。
(4)总结:对函数的概念和性质进行总结,并让学生进行相关练习。
1.5 作业布置:
(1)课后完成相关练习题目
(2)预习下节课的内容
1.6 教学反思:
通过本节课的教学,学生理解了函数的概念和性质,掌握了相关的解题方法。
但在教学过
程中,应该注意让学生更加深入地理解函数的概念,加强与实际问题的联系,提高学生的
学习兴趣和主动性。
以上是一份高中数学教案范本,希望对您有所帮助。
单元教学设计:4.5 函数的应用(二)一、内容和内容解析1.内容函数的零点与方程的解;用二分法求方程的近似解;函数模型在实际问题中的应用.2.内容解析“函数的应用(二)”是在第三章“函数的应用(一)”的基础上,从两个方面介绍函数的应用.一是数学学科内部的应用,利用所学过的函数研究一般方程的解;二是实际应用,建立实际问题的函数模型,并通过函数模型反映实际问题的变化规律,从而分析和解决实际问题.通过“函数的应用(二)”,使学生进一步理解指数函数和对数函数,学会选择合适的函数类型刻画现实问题的变化规律.基于以上分析,确定本单元教学的重点:函数零点与方程解的关系,函数零点存在定理的应用,用二分法求方程近似解的思路与步骤,用函数建立数学模型解决实际问题的基本过程.二、目标和目标解析1.目标(1)结合二次函数的图象,了解函数零点存在定理.(2)结合具体连续函数及其图象的特点,探索用二分法求方程近似解的思路与步骤.(3)进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.2.目标解析达成上述目标的标志是:(1)结合二次函数的图象,进一步了解函数的零点与方程解的关系,并能用函数取值规律来刻画图象穿过x轴的图象特点.(2)结合具体连续函数及其图象的特点,探索用二分法求方程近似解的思路,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性并了解二分法中的算法思想.(3)结合现实情境中的具体问题,能利用已知函数模型解决实际问题.通过比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”、“直线上升”、“指数爆炸”等术语的现实含义,会选择合适的函数模型解决实际问题.三、教学问题诊断分析在零点存在定理的教学中,学生从具体的函数图象概括出一般化的特征,并用取值规律这一代数形式来表达,这种从形到数的转化是学生思维的障碍.在二分法教学中,从具体的函数出发利用二分法求方程的近似解较为容易,但把二分法的步骤抽象成一般化的算法并用符号来表示是一个难点.在函数模型的应用教学中,利用已知函数模型解决实际问题容易操作,但选择合适的函数模型解决实际问题,需要对不同函数模型的增长规律有一定的了解,并且需要符合实际问题中的条件限制.结合以上分析确定本节课的教学难点:函数零点存在定理的导出,用二分法求方程近似解的算法,选择恰当的函数模型分析和解决实际问题.四、教学过程设计4.5.1 函数的零点与方程的解(一) 引言思考:我们已经学习了用二次函数的观点认识一元二次方程,知道一元二次方程的实数根就是相应二次函数的零点,像ln 260x x +-=这样不能用公式求解的方程,是否也能采用类似的方法,用相应的函数研究它的解的情况呢?(二) 函数的零点与方程的解的关系对于一般函数=y f x (),我们把使=0f x ()的实数x 叫做函数=y f x ()的零点. 这样,函数=y f x ()的零点就是方程=0f x ()的实数解,也就是函数=y f x ()的图象与x 轴的公共点的横坐标.所以方程=0f x ()有实数解 ⇔函数=y f x ()有零点⇔函数=y f x ()的图象与x 轴有公共点.由此可知,求方程=0f x ()的实数解,就是确定函数=y f x ()的零点.对于不能用公式求解的方程=0f x (),我们可以把它与相应的函数=y f x ()联系起来,利用函数的图象和性质找出零点,从而得到方程的解.(三) 零点存在定理的导出探究:对于二次函数2=23f x x x --(),观察它的-2 -1 O 1 2 3 4 xy 2 1 -1 -2-2 -1O 1 2 3 4 x y2 1-3 -4 -1 -2图象,发现它在区间24[,]上有零点.这时,函数图象与x 轴有什么关系?在区间20-[,]上是否也有这种关系?你认为应如何利用函数f x ()的取值规律来刻画这种关系?可以发现,在零点附近,函数图象是连续不断的,并且“穿过”x 轴.函数在端点=2x 和=4x 的取值异号,即240f f ()()<,函数2=23f x x x --()在区间24(,)内有零点=3x ,它是方程223=0x x --的一个根.同样地,200f f -()()<,函数2=23f x x x --()在20-(,)内有零点=1x -,它是方程223=0x x --的另一个根.一般地,我们有:函数零点存在定理:如果函数=y f x ()在区间a b [,]上的图象是一条连续不断的曲线,且有0f a f b ()()<,那么,函数=y f x ()在区间a b (,)内至少有一个零点,即存在c a b ∈(,),使得=0f c (),这个c 也就是方程=0f x ()的解.问题1:条件“连续不断”可以去掉吗?师生活动:学生画出反例,教师强调,图象间断了,虽然函数值异号,仍然没有零点.所以我们要求函数图象连续不断.追问:反之成立吗?即如果函数=y f x ()在区间a b (,)内存在零点,是否有0f a f b ()()<?师生活动:学生举例说明,教师强调,“连续不断”和“0f a f b ()()<”是“函数存在零点的”充分条件,而非必要条件. 设计意图:让学生理解零点存在定理的功能是给出一个判定零点存在的充分条件.(四) 零点存在定理的应用例1 求方程ln 260x x +-=的实数解的个数.分析:可以先列出函数=ln 26y x x +-的对应值表,为观察、判断零点所在区间提供帮助.解:设函数=ln 26f x x x +-(),列出函数=y f x ()的对应值表.根据已有对数知识容易发现2=ln 220f -()<,3=ln 30f ()>,则230f f ()()<. 由函数零点存在定理可知,函数=ln 26f x x x +-()在区间23(,)内至少有一个零点. 再利用画图软件画出函数=ln 26f x x x +-()的图象,我们看到f x ()是定义域上的单调递增函数,f x ()在区间23(,)内只有一个零点.问题2:为什么由230f f ()()<还不能说明函数f x ()? 师生活动:学生举例说明已知0f a fb ()()<,函数在区间a b (,)内可能存在多个零点.追问1:在原有条件的基础上添加什么条件能够保证f x ()只有一个零点?师生活动:如果函数具有单调性,就能保证只有一个零点. 由此我们得出函数零点存在定理的推论:若=y f x ()在区间a b [,]上是单调函数,其图象是一条连续不断的曲线,且有O 5 10 x y14 12 10 8 6 4 2-2 -4 -60f a f b ()()<,则函数=y f x ()在区间a b (,)内有且仅有一个零点,即存在唯一的c a b ∈(,),使得=0f c ().事实上,=ln y x 与=26y x -在0x ∈+∞(,)上都是增函数,所以=ln 26f x x x +-(),0x ∈+∞(,)是增函数.所以它只有一个零点,即相应方程ln 260x x +-=只有一个实数解.追问2:你能用定义法证明函数=y f x ()是增函数吗? 师生活动:120x x ∀∈+∞,(,),且12x x <,有121122=ln 26ln 26f x f x x x x x -+-+-()()()-()1122=ln2x x x x +-().因为120x x <<,所以1201x x <<,所以12ln0x x <,又因为120x x -<,于是1122ln20x x x x +-()<,即12f x f x ()<(). 所以,函数=ln 26f x x x +-()在区间0+∞(,)上单调递增.设计意图:让学生认识到零点存在定理可以证明函数有零点,但不能断定函数无零点或零点个数,如果要判断零点的个数,还要与结论“函数在单调区间上最多有一个零点”相结合.4.5.2 用二分法求方程的近似解(一) 二分法的引入我们已经知道,函数=ln 26f x x x +-()在区间23(,)内存在一个零点.进一步的问题是,如何在满足一定精确度的前提下求出这个零点呢?(二) 二分法的形成这个问题中设定的精确度为01.,可以理解为近似值与精确值之间的误差不超过01.. 一个直观的想法是:如果能将零点所在的区间尽量缩小,直到区间长度小于等于01.,那么区间内的任意一点都可以作为函数零点的近似值.为了方便,可以通过取区间中点的方法,逐步缩小零点所在的范围.取区间23(,)的中点25.,用计算工具算得250084f ≈-(.)..因为2530f f (.)()<,所以零点在区间253(.,)内,区间长度为0.5.再取区间253(.,)的中点275.,用计算工具算得2750512f ≈(.)..因为252750f f (.)(.)<,所以零点在区间25275(.,.)内,区间长度为0.25.由于23(,) 253(.,) 25275(.,.),所以零点所在的范围变小了. 如果重复上述步骤,那么零点所在的范围会越来越小.零点所在区间 区间长度 中点的值 中点的函数值23(,) 125. 0084-. 253(.,) 05. 275. 0512. 25275(.,.) 025. 2625. 0215. 252625(.,.) 0125.25625 .0066.2525625 (.,.)00625 .……这样,我们就可以通过有限次重复相同的步骤,将零点所在范围缩小到满足一定精确度的区间.因为区间2525625 (.,.)的长度为00625.,所以区间2525625 (.,.)内任意一点都可以作为零点的近似值,为了方便,我们把区间的一个端点=25x .作为函数=ln 26f x x x +-()零点的近似值,也即方程ln 260x x +-=的近似解.2.5 2.75 2.625 O 2 3 x y0.5 - 0.4 - 0.3 - 0.2 - 0.1 --0.1- -0.2- -0.3- -0.4- -0.5-这样求方程近似解的方法称为二分法,我们来看二分法的定义:对于在区间a b [,]上图象连续不断且0f a f b ()()<的函数=y f x (),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(三) 二分法的步骤我们依据解决上述问题的过程来概括一下:给定精确度ε,用二分法求函数=y f x ()零点0x 的近似值的一般步骤: 1.确定零点0x 的初始区间a b [,],验证0f a f b ()()<. 2.求区间a b (,)的中点c .3.计算f c (),并进一步确定零点所在的区间:(1)若=0f c ()(此时0=x c ),则c 就是函数的零点; (2)若0f a f c ()()<(此时0x a c ∈(,)),则令=b c ; (3)若0f c f b ()()<(此时0x c b ∈(,)),则令=a c . 4.判断是否达到精确度ε:若|a b ε-|<,则得到零点近似值a (或b );否则重复步骤2~4.(四) 二分法的应用例2 借助信息技术,用二分法求方程237xx +=的近似解(精确度为0.1)解:原方程即237=0xx -+,令=237xf x x -+(),用信息技术画出函数=y f x ()的图象,结合计算容易发现120f f ()()<,说明该函数在区间12(,)内存在零点0x .-5 O 5 10 xy16141210 8 64 2-2 -4 -6取区间12(,)的中点1=15x .,用信息技术算得15033f ≈(.)..因为1150f f ()(.)<,所以0115x ∈(,.).再取区间115(,.)的中点2=125x .,用信息技术算得125087f ≈-(.)..因为125150f f (.)(.)<,所以012515x ∈(.,.).同理可得,0137515x ∈(.,.),0137514375 x ∈(.,.). 由于137514375|=0062501 -|...<., 所以,原方程的近似解可取为1375..问题3:如果精确度改为0.01?0.001?0.000 1?怎样做才不会给我们带来过大的运算负担呢?师生活动:我们从二分法中提炼出了算法思想,借助于Excel 表格当中的函数功能呈现出来,具体来看:我们利用Excel 表格中的七列依次呈现区间端点a ,b ,区间中点c ,函数值f a (),f c (),f b ()和区间长度b a -,首先,我们输入初始区间12(,),然后,我们对单元格D3到H3依次应用公式完成输入,公式在编辑栏可见.对于单元格B4,我们利用Excel 的内置函数If 语句,它实现的功能是,如果0f a f c ()()<,则区间的左端点就是a ,否则是c ,同样,对于单元格C4,如果0f a f c ()()<,则区间的右端点就是c ,否则是b .接下来,我们选中单元格D3到H3,将鼠标移到单元格的右下角,鼠标指针变成十字形状,按住鼠标向下拖动一行,即可实现对单元格D4到H4的自动填充,更进一步的,我们选中单元格B4到H4,重复相同的操作,可以实现对以下若干行的自动填充.我们可以根据题目精确度的要求,选择拖动到哪一行结束.这个问题的解决让我们体会到,对于人工运算很耗时耗力的问题,如果借助于计算机,可以瞬间完成,既省时省力,又准确无误,可见,工具的选择和使用至关重要.设计意图:让学生体会信息技术在处理计算量较大而且有重复步骤的问题时的重要价值.4.5.3 函数模型的应用引言:以上,我们学习了函数在数学内部的应用,接下来我们学习函数模型的实际应用. (一) 已知函数模型例3 阅读下面资料并回答问题.良渚遗址位于浙江省杭州市余杭区良渚和瓶窑镇,1936年首次发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裹泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,于是推测古城存在时期为公元前3300年~前2500年.你知道考古学家在测定遗址年代时用了什么数学知识吗?在前面的学习中,我们得到了一个预备知识,注释:当生物死亡后,它机体内原有的碳14含量y 会随死亡年数x 在初始量k 的基础上按确定的比率p 衰减(p 称为衰减率),并满足函数关系=1xy k p k -∈R ()(,010 k p x ≠且0;<<;≥),大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.分析:首先,我们需要求出函数关系中的参数p ,明确函数解析式.然后,把0.552k 作为函数值代入解析式,求出死亡年数.解:根据已知条件,573011=2k p k -(),从而51=p -,所以生物体内碳14含量y 与死亡年数x 之间的函数解析式是5=xy k (.由样本中碳14的残留量约为初始量的55.2%可知,5=552xk (.%k ,即 5=0552x(..解得5=log552x ..由计算工具得 4 912x ≈.因为2010年之前的4 912年是公元前2903年,所以推断此水坝大概是公元前2903年建成的.设计意图:培养学生阅读理解的能力,培养学生从数学的角度分析和解决问题的能力. (二) 选择恰当的函数模型在实际问题中,有的能应用已知的函数模型解决,有的需要根据问题的条件建立函数模型加以解决.例4 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?问题1:你能根据对三种投资回报的描述,建立三种投资方案所对应的函数模型吗?师生活动: 设第x 天所得回报是y 元,则方案一可以用函数*=40y x ∈N ()进行描述;方案二可以用函数*=10y x x ∈N ()进行描述;方案三可以用函数1*=042x y x -⨯∈N .()进行描述.设计意图:培养学生把实际问题数学化的意识和能力.问题2:要对三个方案作出选择,就要对它们的增长情况进行分析.怎样借助已有函数模型,分析解决当前的问题?师生活动:首先我们可以画出三个函数的图象.通过图象我们直观地看到,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但是增长情况并不精确,不能体现投资收益与投资期限之间的关系.接下来,我们计算三种方案每天的回报数以及回报数的增长情况.x方案一方案二方案三y增加量/元y 增加量/元y增加量/元1 40 10 10 04.2 40 0 20 10 08. 04.3 40 0 30 10 16. 08.4 40 0 40 10 32. 16.5 40 0 50 10 64. 32.6 40 0 60 10 128.64.7 40 0 70 10 256. 128. 8 40 0 80 10 512. 256. 9 40 0 90 10 1024. 512. 10 40 0 100 10 2048.1024.… … … … … ……3040300102147483648 . 1073741824 .通过表格,我们可以发现,每天的回报数,在第1~3天,方案一最多;在第4天,方案一和方案二一样多;在第5~8天,方案二最多;第9天开始,方案三最多.但是,这似乎也不能体现投资收益与投资期限之间的关系.接下来,我们再看累计的回报数,=10y x =40y1=042x y -⨯.问题3:根据以上对函数模型增长情况的分析,我们该如何选择投资方案呢?师生活动:教师引导学生根据累计的回报数作为划分投资期限的标准.投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.设计意图:使学生认识到要作出正确选择,除了考虑每天的收益外,还要考虑一段时间内累计的回报.通过以上三种呈现方式可知,尽管方案一、方案二在第1天所得回报远大于方案三,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的.由此,我们更直观的理解了“直线上升”、“指数爆炸”的实际含义.接下来,我们一起来归纳一下用函数建立数学模型解决实际问题的基本过程:首先,我们要把实际问题化归为函数模型,经过运算和推理求出函数模型的解,然后,用数学问题的解来解释说明实际问题,使实际问题得以解决。
必修第一册第二章一元二次函数、方程和不等式2.2.3 二次函数与一元二次方程、不等式(第1课时)教材分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第二章第3节《二次函数与一元二次方程、不等式》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出体现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
学情分析学生在初中已经学习了一元一次不等式、一元二次方程和二次函数的相关知识,对不等式的性质有了初步了解,但因我校学生基础普遍较差,逻辑推理和抽象思维能力仍需提高,还需依赖具体形象的内容理解抽象的逻辑关系。
教学目的1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2. 经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重点一元二次不等式的解法教学难点理解一元二次方程、一元二次不等式及二次函数三者之间的关系教学过程一、情境导入问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20(0<x<12)整理得x2-12x+20<0(0<x<12)。
①求得不等式①的解集,就得到了问题的答案。
思考:类比一元一次不等式,这个不等式有什么特点?能否给这类不等式起个名字,并写出它的一般形式?由此导出课题。
一元二次不等式的定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0 或ax2+bx+c<0 ,其中a,b,c均为常数,a≠0.思考:为什么要规定a≠0?二、探索新知探究1:回顾一次函数与一元一次方程、不等式的关系请学生画出一次函数y=2x-6的图象,并回答下列问题:1.函数y=2x-6与x轴的交点为;2.方程2x-6=0的根为;3.不等式2x-6>0的解为;4.不等式2x-6<0的解为;师生完成上述问题后小结:三个“一次”的关系。
教学计划:《二次函数与一元二次方程、不等式》一、教学目标1、知识与技能:学生能够理解并掌握二次函数、一元二次方程及一元二次不等式的概念、性质及其相互关系;能够熟练求解一元二次方程和一元二次不等式,并能根据二次函数的图像判断不等式的解集。
2、过程与方法:通过案例分析、图形辅助、探究学习等方法,培养学生的观察、分析和解决问题的能力;通过小组合作、讨论交流,提升学生的协作学习能力和语言表达能力。
3、情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学规律的精神和严谨的科学态度;通过解决实际问题,让学生感受到数学在现实生活中的应用价值。
二、教学重点和难点重点:一元二次方程的求解方法(公式法、因式分解法、配方法);一元二次不等式的解法及与二次函数图像的关系;二次函数的性质(开口方向、顶点、对称轴)。
难点:一元二次不等式解法中根据判别式判断解的存在性;将一元二次不等式转化为二次函数图像下的区域问题;灵活运用二次函数的性质解决实际问题。
三、教学过程1. 导入新课(5分钟)生活实例引入:以医院中病人的病情随时间变化的例子(如体温变化、药物浓度变化),引导学生思考这些变化可能呈现出的二次函数形态,从而引出二次函数的概念。
提出问题:当病情达到某个临界点时(如体温过高或过低),医生需要采取相应措施。
这实际上涉及到一元二次方程和不等式的求解问题。
明确目标:介绍本节课将要学习的内容,即二次函数与一元二次方程、不等式的相互关系及其求解方法。
2. 讲解新知(20分钟)二次函数概念:回顾一次函数的概念,通过类比引出二次函数的一般形式及其图像特征(开口方向、顶点、对称轴)。
一元二次方程求解:详细介绍一元二次方程的三种求解方法(公式法、因式分解法、配方法),并通过实例演示每种方法的应用。
一元二次不等式:结合二次函数图像,讲解一元二次不等式的解法及其与函数图像的关系。
强调根据判别式判断不等式的解集情况,并引导学生掌握将不等式转化为图像下区域问题的方法。
高一数学函数的教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!高一数学函数的教案优秀5篇作为一位不辞辛劳的人·民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。
函数与方程式的关系一、引言函数与方程式是高中数学中的重要概念,对于学生理解它们之间的关系和应用具有重要意义。
本教案主要介绍函数与方程式的关系,并通过实际例子展示其实际应用。
通过本课的学习,学生将能够深入理解函数与方程式之间的联系,并能够应用它们进行问题的求解。
二、函数与方程式的定义及关系1. 函数的定义:函数是一种关系,它将一个集合中的每个元素都与另一个集合中的唯一元素相对应。
函数可以用来描述不同变量之间的依赖关系。
2. 方程式的定义:方程式是一个等式,其中包含了一个或多个未知数。
方程式表示了一种平衡关系或者相等关系。
3. 函数与方程式的关系:函数可以通过方程式来表示。
一个方程式被称为函数的解,当且仅当它满足该函数的定义。
三、函数与方程式的实际应用1. 函数与图像:函数可以通过图像来表示,图像的每一个点都表示了一个函数的解。
通过观察函数的图像,我们可以获得更多关于函数性质的信息。
2. 函数与实际问题:函数可以用来描述实际问题中的关系。
例如,利用函数可以描述物体的运动轨迹、销售额的增长等等。
3. 方程式的应用:通过解方程式,我们可以求得函数的解,进而解决实际问题。
例如,求解一元二次方程可以确定抛物线上的点的横坐标。
四、函数与方程式的解法1. 方程式的解法:通过一系列数学变换和运算,可以解得方程式的解。
例如,对于一元一次方程式,可以通过移项等操作求解;对于一元二次方程式,可以通过配方法、求根公式等方法求解。
2. 函数的解法:函数的解是函数的自变量取某个值时,函数的值。
对于一元函数,我们可以通过代入自变量的值来求得函数的值。
五、实例展示通过一些实际问题的例子,我们来演示函数与方程式的关系和应用。
1. 例子1:某公司生产的产品每天的销售量可以用函数y = 2x + 5来表示,其中x表示天数,y表示销售量。
请问第10天的销售量是多少?解:将x = 10代入函数中,得到y = 2*10 + 5 = 25。
所以第10天的销售量为25。
高中数学教案:函数与方程的关系函数与方程的关系一、引言在高中数学课程中,函数与方程是重要的概念之一。
函数是由自变量和因变量构成的数学规律,而方程则描述了两个表达式之间的相等关系。
函数与方程有着密切的关系,它们可以相互转化和表示。
本教案将探讨函数与方程的关系,并介绍如何通过图象、实例和计算来理解和应用这一概念。
二、函数与方程的基本概念1. 函数的定义函数是指一个集合内每个元素都对应于另一个集合内唯一确定元素的规律。
通常表示为f(x),其中x为自变量,f(x)为对应的因变量。
2. 方程的定义方程是含有未知数并且等于一个已知值的数学表达式。
例如,2x+3=7就是一个简单的一次方程。
3. 函数与方程之间的区别- 函数是描述两个集合之间对应关系的规律,而方程则描述两个表达式之间相等关系。
- 函数可以用图象或公式表示,而方程只能通过等号连接两个表达式。
- 函数必须满足垂直线测试(每个x值只有一个对应y值),而方程则没有这个限制。
三、函数与方程的转化1. 方程转化为函数给定一个方程,我们可以通过将未知数表示为常量的函数,从而将方程转化为函数。
例如,对于方程2x+3=7,我们可以将其转化为函数f(x)=2x+3。
2. 函数转化为方程给定一个函数,我们可以通过将因变量表示为未知数的表达式,从而将函数转化为方程。
例如,对于函数f(x)=2x+3,我们可以将其转化为方程2x+3=y。
四、通过图象理解函数与方程的关系1. 图象表示的意义函数和方程都可以通过图象进行可视化表示。
图象能够帮助我们直观地理解和分析函数与方程之间的关系。
2. 图象上的点与解集图象上的每个点都代表了自变量和因变量之间的对应关系。
对于方程来说,图象上所有满足该等式的点构成了解集;而对于函数来说,则是每个自变量在图象上只有一个相应因变量。
五、实例分析:线性函数与一次方程1. 线性函数简介线性函数是最简单且常见的一类函数。
其表达式为f(x)=ax+b(a和b为常数),在图象上呈现为一条直线。
高中数学专题函数方程教案
一、教学目标
1. 了解函数方程的定义和基本概念;
2. 掌握函数方程的解法和计算方法;
3. 提高学生对函数方程的理解和运用能力。
二、教学重点和难点
重点:函数方程的定义和基本概念;
难点:解决函数方程的方法及计算过程。
三、教学准备
1. 教材:高中数学教材;
2. 工具:黑板、彩色粉笔、教学PPT等。
四、教学过程
1. 引入:通过几个实际问题引导学生认识函数方程的概念,引出本节课的主题;
2. 学习:结合具体例题,介绍函数方程的定义和基本性质,讲解解决函数方程的常见方法;
3. 练习:组织学生进行练习,巩固所学知识,培养学生的解题能力;
4. 拓展:引导学生应用函数方程解决更复杂的问题;
5. 总结:对本节课的内容进行总结,强调重点和难点,梳理知识结构,加深学生印象。
五、课后作业
1. 完成课后习题,巩固所学知识;
2. 总结本节课的重点内容,准备下节课的学习。
六、教学反思
教师根据学生学习情况和反馈,及时调整教学方法和内容,确保教学效果。
第三章函数《3.2函数与方程、不等式之间的关系》教学设计第2课时会用函数的性质判断对应方程是否有实根,理解函数零点存在定理,会利用“二分法”找到实根的近似值.教学重点:函数零点存在定理教学难点:用“二分法”求函数零点的近似值PPT课件.一、整体概览问题1:阅读课本第114~118,回答下列问题:(1)本节将要研究哪类问题?(2)本节研究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,在本节课的学习过程中回答问题预设的答案:(1)本节将要研究函数的零点存在定理及二分法求方程近似解.(2)起点是函数的零点,函数的零点与对应方程的根之间的关系,以及利用函数的图像求解对应不等式的解集.目标是理解函数零点存在定理,会用函数的性质判断对应方程是否有实根,会利用“二分法”找到实根的近似值等.重点是渗透数形结合的数学思想,二分法,提升学生直观想象、数学抽象、数据分析和逻辑推理等素养.设计意图:通过阅读课本,让学生明晰本节课的学习目标,初步搭建学习内容的框架.二、探索新知1.复习引入我们知道:一次函数、二次函数的零点是否存在,并不难判别,这是因为一元一次方程、一元二次方程实数解的情况,都可以根据它们的系数判别出来,而且有实数根的时候,都能够写出求根公式.问题1:关于x的一元一次方程k x+b=0(k≠0)的求根公式为________;一元二次方程的求根公式为________.师生活动:学生回答.预设的答案:bxk=-;242b b acxa-±-=(有实根时)问题2:对于次数大于或等于3的多项式函数(例如f(x)=ax3+bx2+cx+d,其中a≠0),以及其他表达式更复杂的函数来说,判断零点是否存在以及求零点,都不是容易的事(事实上,数学家们已经证明:次数大于4的多项式方程,不存在求根公式).那么,什么情况下一个函数一定存在零点呢?设计意图:通过问题引入新课,激发学生的求知欲.知识点1 零点的存在性问题3:如下图所示,已知A,B都是函数y=f(x)图像上的点,而且函数图像是连接A,B两点的连续不断的线,画出3种y=f(x)的可能的图像.判断f(x)是否一定存在零点,总结出一般规律.师生活动:让学生自己动手画,互相检查(如如下图是函数的图像吗?),教师与学生一起总结.可以看出,满足要求的函数f(x)在区间(a,b)中一定存在零点.零点存在定理:如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)f (b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间(a,b)中至少有一个零点,即∃x o∈(a,b),f(x o)=0.强调:一般地,解析式是多项式的函数的图像都是连续不断的.需要注意的是,反比例函数1yx=的图像不是连续不断的.设计意图:培养学生的抽象概括能力.知识点2 零点近似值的求法问题4:例1中的函数在区间(-2,0)中存在零点x o,但是不难看出,求出x o的精确值并不容易,那么,能不能想办法得到这个零点的近似值呢?比如,能否求出一个x1,使得|x1-x0|<18?【尝试与发现】如果在区间(一2,0)中任取一个数作为x o的近似值,那么误差小于多少?如果取区间(一2,0)的中点作为x o的近似值,那么误差小于多少?怎样才能不断缩小误差?师生活动:学生回答.预设的答案:如果在区间(一2,0)中任取一个数作为x o的近似值,误差小于2;如果取区间(一2,0)的中点作为x.的近似值,误差小于1.一般地,求x.的近似值,可以通过计算区间中点函数值,从而不断缩小零点所在的区间来实现,具体计算过程可用如下表格表示.其中第2行的区间是(-2,-1),这是因为f(-2)f(-1)<0,其他区间都是用类似方式得到的.最后一行的函数值没有计算,是因为不管15 (2,]8x∈--,还是157 [,)84x∈--,我们都可以将158-看成x o的近似值,而且误差小于18.当然,按照类似的方式继续算下去,可以得到精确度更高的近似值. 上述这种求函数零点近似值的方法称为二分法.教师总结:二分法的求解步骤:在函数零点存在定理的条件满足时(即f (x )在区间[a ,b ]上的图像是连续不断的,且f (a )f (b )<0),给定近似的精度ε,用二分法求零点x o 的近似值x 1,使得|x 1-x o |<ε的一般步骤如下:第一步 检查| b - a |<2ε是否成立,如果成立,取12a bx +=,计算结束;如果不成立,转到第二步.第二步 计算区间(a ,b )的中点2a b +对应的函数值,若()02a b f +=,取12a bx +=,计算结束;若()02a bf +≠,转到第三步. 第三步 若()()02a b f a f +<,将2a b +的值赋给b (用表示2a bb +→,下同),回到第一步;否则必有()()02a b f f b +<,将2a b+的值赋给a ,回到第一步. 这些步骤可用如图所示的框图表示三、初步应用例1 求证:函数f (x )=x 3-2x +2至少有一个零点. 师生活动:教师与学生一起分析,教师书写规范解答. 预设的答案:证明:因为f (0)=2>0,f (-2)=-8+4+2=-2<0,所以f (-2)f (0)<0,因此∃x o ∈(-2,0),f (x o )=0,即结论成立.设计意图:巩固函数的零点存在定理.例2 已知函数f (x )=x 2+ax +1有两个零点,在区间(-1,1)上是单调的,且在该区间中有且只有一个零点,求实数a 的取值范围.师生活动:教师与学生一起分析,教师书写规范解答.预设的答案:解:因为函数f (x )的图像是开口朝上的抛物线,因此满足条件的函数图像示意图如下图(1)(2)所示.不管哪种情况,都可以归结为f (-1)f (1)<0且||12a-≥,因此 (2-a )(a +2)<0且|a |≥2,解得a <-2或a >2.设计意图:进一步巩固函数的零点存在定理及二次函数的图像和性质.例3.用二分法求方程的近似解,求得f (x )=x 3+2x -9的部分函数值数据如表所示: x 121.51.625 1.75 1.875 1.812 5 f (x )-63 -2.625-1.459-0.141.341 80.579 3A .1.6B .1.7C .1.8D .1.9师生活动:学生思考后回答.预设的答案:解:由表格可得,函数f (x )=x 3+2x -9的零点在(1.75,1.875)之间, 结合选项可知,方程x 3+2x -9=0的近似解可取为1.8,故选C. 设计意图:巩固二分法求函数的零点. 例4已知函数321()13f x x x =-+. (1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.师生活动:学生思考后回答,教师完善规范解题过程. 预设的答案:解: (1)证明:∵f (0)=1>0,1(2)3f =-,∴1 (0)(2)03f f=-<,由函数零点存在定理可得方程f(x)=0在区间(0,2)内有实数解.(2)取1021 2x+==,得1(1)3f=,由此可得1(1)(2)9f f=-,下一个有解区间为(1,2).再取2123 22x+==,得31()028f=-<,∴31(1)()0224f f=-<,下一个有解区间为3(1,)2.再取3135 (1) 224x=+=,得517()0 4192f=>,∴35()()024f f<,下一个有解区间为53(,)42.故f(x)=0的实数解x0在区间53 (,)42内.设计意图:巩固零点存在定理及二分法求函数的零点的解题步骤. 练习:教科书P119练习A 4~10四、归纳小结,布置作业1.板书设计:3.2函数与方程、不等式之间的关系1.函数的零点存在定理2.二分法及其求零点近似解例1 例2 例3 例42.总结概括:回顾本节课,你有什么收获?(1)函数的零点存在定理的内容是什么?有哪些注意点?(2)什么叫二分法?(3)二分法求函数零点近似解的求解步骤?师生活动:学生总结,老师适当补充.作业:教科书P120练习B 4~9,练习C1、3、4、5 【课外拓展】信息技术求函数零点。
高中必修一数学教案《函数与方程、不等式之间的关系》教材分析函数是中学数学的核心概念,函数的零点是函数的一个链接点,它从不同的角度,将数与形,函数与方程有机地联系在一起。
本节课是在学生学习了函数的性质,数形结合的知识,了解方程的根与函数零点之间的关系的基础上,结合函数图象和性质,判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,以及函数与方程的综合应用,如知道零点求参数范围等问题。
学情分析学生在初中已经分别学习了一元二次函数的相关知识及其图象,同时也熟练地掌握了求解一元二次方程的方法,但是学生对它们以及不等式之间的关系还没有深刻的理解,在学生的头脑中,函数、方程、不等式都是模糊的。
通过这节课的学习,能让学生真正地体会数学内容之间的关联性和互化性,知道可以用函数解决相关的数学问题,重点提升学生数学抽象、直观想象和数学运算素养。
教学目标1、明确本节课的研究对象,从特殊函数入手,引导学生学会探究数学问题的方法,帮助学生理清函数与方程、不等式之间的关系。
2、掌握函数零点的概念和性质,熟练掌握应用函数解一元二次不等式和求零点的一元高次不等式的方法。
3、渗透数形结合、分类讨论、从特殊到一般、函数与方程等数学思想方法。
教学重点1、理解零点的概念与性质。
2、应用函数解不等式的步骤与方法。
教学难点函数与方程、不等式之间的关系。
教学方法讲授法、演示法、讨论法、练习法教学过程一、导入已知函数f(x)= x - 1,我们知道,这个函数的定义域为x∈R,而且可以求出,方程f(x)= 0的解集为 {1},不等式f(x)>0的解集为{1,+∞},不等式f(x)<0的解集为{-∞,1)。
在图3-2-1中作出函数f(x)= x-1的图象,总结上述方程,不等式的解集与函数定义域、函数图象之间的关系。
二、新知由尝试与发现中的例子可以看出,根据函数值的符号能够把函数的定义域分为几个不相交的集合。
具体来说,假设函数f(x)的定义域为D,若A = {x∈D | f(x)<0}B = {x∈D | f(x)= 0}C = {x∈D | f(x)<0}显然,A,B,C两两的交集都为空集,且D = A∪B∪C。
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
函数与方程考点同步解读1.函数与方程是中学数学的重要内容。
在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。
2.本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.3.本节之后将函数零点与方程的根的关系在利用二分法解方程中应用,通过建立函数模型及模型的求解来体现函数与方程的关系,渗透“方程与函数”的思想。
核心素养聚焦1.通过函数与方程的关系,理解函数零点的概念,提高数学抽象的核心素养。
2.根据图像领会函数零点与相应方程要的关系,掌握零点存在的判定条件,培养学生直观想象的素养3.在函数与方程的联系中体验数学中的转化思想的意义和价值,提升数学建模的核心素养。
教学目标知识与技能1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.过程与方法1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力.情感、态度与价值观1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;3.使学生感受学习、探索发现的乐趣与成功感.教学重点与难点教学重点:零点的概念及零点存在性的判定.教学难点:探究判断函数的零点个数和所在区间的方法.教学的方法与手段教学过程【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标教师活动:用屏幕显示教师活动:这节课我们来学习第三章函数的应用.通过第二章的学习,我们已经认识了指数函数、对数函数、幂函数、分段函数等函数的图象和性质,而这一章我们就要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题.为此,我们还要做一些基本的知识储备.方程的根,我们在初中已经学习过了,而我们在初中研究的“方程的根”只是侧重“数”的一面来研究,那么,我们这节课就主要从“形”的角度去研究“方程的根与函数零点的关系”.教师活动:板书标题(方程的根与函数的零点).【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题.用屏幕显示判断下列方程是否有实根,有几个实根?(1)x2-2x-3=0;(2)ln x+2x-6=0.学生活动:回答,思考解法.教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题.对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答.教师活动:用屏幕显示函数y=x2-2x-3的图象.学生活动:观察图象,思考作答.教师活动:我们来认真地对比一下.用屏幕显示表格,让学生填写x2-2x-3=0的实数根和函数图象与x轴的交点.学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论.教师活动:我们就把使方程成立的实数x称为函数的零点.【环节三:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点.板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x叫做函数y=f(x)的零点).教师活动:我们可不可以这样认为,零点就是使函数值为0的点?学生活动:对比定义,思考作答.教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答.教师活动:这是我们本节课的第二个知识点.板书(二、方程的根与函数零点的等价关系).教师活动:检验一下看大家是否真正理解了这种关系.如果已知函数y=f(x)有零点,你怎样理解它?学生活动:思考作答.教师活动:对于函数y=f(x)有零点,从“数”的角度理解,就是方程f(x)=0有实根,从“形”的角度理解,就是图象与x轴有交点.从我们刚才的探究过程中,我们知道,方程f(x)=0有实根和图象与x轴有交点也是等价的关系.所以函数零点实际上是方程f(x)=0有实根和图象与x轴有交点的一个统一体.在屏幕上显示:教师活动:下面就检验一下大家的实际应用能力.【环节四:应用思想,小试牛刀】数学思想应用,基础知识强化教师活动:用屏幕显示求下列函数的零点.(1)y =3x ;(2)y =log 2x ;(3)y =1x;(4)y =(4)(1),4,(4)(6), 4.x x x x x x -+<⎧⎨---≥⎩ 学生活动:由四位同学分别回答他们确定零点的方法.画图象时要求用语言描述4个图象的画法.教师活动:根据学生的描述,在黑板上作出图象(在接下来探究零点存在性定理时,图象会成为同学们思考问题的很好的参考).教师活动:我们已经学习了函数零点的定义,还学习了方程的根与函数零点的等价关系,在这些知识的探究发现中,我们也有了一些收获,那我们回过头来看看能不能解决ln x +2x -6=0的根的存在性问题?学生活动:可受到化归思想的启发应用数形结合进行求解.教师活动:用屏幕显示学生所论述的解题过程.这种解法充分运用了我们前面的解题思想,将未知问题转化成已知问题,将一个图象不会画的函数转化成了两个图象都会画的函数,利用两个函数图象的交点解决实根存在性问题.看来我们的探究过程是非常有价值的.教师活动:如果不转化,这个问题就真的解决不了吗?现在最棘手的问题是y=ln x +2x-6的图象不会画,那我们能不能不画图象就判断出零点的存在呢?【环节五:探究新知,思形想数】探究图象本质,数形转化解疑教师活动:我们看到,当函数图象穿过x轴时,图象就与x轴产生了交点,图象穿过x轴这是一种几何现象,那么如何用代数形式来描述呢?用屏幕显示y=x2-2x-3的函数图象,多次播放抛物线穿过x轴的画面.学生活动:通过观察图象,得出函数零点的左右两侧函数值异号的结论.教师活动:好!我们明确一下这个结论,函数y=f(x)具备什么条件时,能在区间(a,b)上存在零点?学生活动:得出f(a)·f(b)<0的结论.教师活动:若f(a)·f(b)<0,函数y=f(x)在区间(a,b)上就存在零点吗?学生活动:可从黑板上的图象中受到启发,得出只有在[a,b]上连续不断的函数,在满足f(a)·f(b)<0的条件时,才会存在零点的结论.【环节六:归纳定理,深刻理解】初识定理表象,深入理解实质教师活动:其实同学们无形之中已经说出了我们数学中的一个重要定理,那就是零点存在性定理.这是我们本节课的第三个知识点.板书(三、零点存在性定理).教师活动:用屏幕显示(函数零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.)教师活动:这个定理比较长,找个同学给大家读一下,让大家更好地体会定理的内容.学生活动:读出定理.教师活动:大家注意到了吗,定理中,开始时是在闭区间[a,b]上连续,结果推出时却是在开区间(a,b)上存在零点.你怎样理解这种差异?学生活动:思考作答.教师活动:虽然我们已经得到了零点存在性定理,但同学们真的那么坦然吗?结合黑板上的图象,再结合定理的叙述形式,你对定理的内容可有疑问?学生活动:通过观察黑板上的板书图象,大致说出以下问题:1.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则f(x)在区间(a,b)内会是只有一个零点吗?2.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)>0,则f(x)在区间(a,b)内就一定没有零点吗?3.在什么条件下,函数y=f(x)在区间(a,b)上可存在唯一零点?教师活动:那我们就来解决一下这些问题.学生活动:通过黑板上的图象举出反例,得出结论.1.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则只能确定f(x)在区间(a,b)内有零点,有几个不一定.2.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)>0,则f(x)在区间(a,b)内也可能有零点.3.在零点存在性定理的条件下,如果函数再具有单调性,函数y=f(x)在区间(a,b)上可存在唯一零点.【环节七:应用所学,答疑解惑】把握理论实质,解决初始问题教师活动:现在我们不用画出图象也能判断函数零点是否存在,存在几个了.那解决ln x+2x-6=0的根的存在性问题应该是游刃有余了.用屏幕显示学生活动:通过对零点存在性的探究和理解,表述该问题的解法.【环节八:归纳总结,梳理提升】总结基础知识,提升解题意识教师活动:本节课的知识点已经在黑板上呈现出来了,但最重要的,也是贯穿本节课始终,起到灵魂作用的却是三大数学思想,即化归与转化的数学思想,数形结合的数学思想,函数与方程的数学思想.数学思想才是数学的灵魂所在,也是数学的魅力所在,对我们解决问题起着绝对的指导作用.愿我们每个同学在今后的学习中体味、感悟、应用、升华!【环节九:理论内化,巩固升华】整理思想方法,灵活应用解题设置四个练习题,检验学生对本节课内容的掌握情况,增强学生对所学新知的应用意识.1.函数f(x)=x(x2-16)的零点为( )A.(0,0),(4,0) B.0,4C.(-4,0),(0,0),(4,0) D.-4,0,42.已知函数f(x)是定义域为R的奇函数,且f(x)在(0,+∞)上有一个零点,则f(x)的零点个数为( )A .3B .2C .1D .不确定3.已知函数f (x )的图象是连续不断的,有如下对应值表:那么函数在区间[1,6]上的零点至少有( )A .5个B .4个C .3个D .2个4.函数f (x )=-x3-3x +5的零点所在的大致区间为( )A .(-2,0)B .(1,2)C .(0,1)D .(0,0.5)【环节十:布置作业,举一反三】延伸课堂思维,增强应用意识 已知f (x )=|x 2-2x -3|-a ,求a 取何值时能分别满足下列条件.(1)有2个零点;(2)有3个零点;(3)有4个零点.板书设计。
3.2 函数与方程、不等式之间的关系-人教B版高中数学必修第一册(2019版)教案一、教学目标1.能够了解函数与方程、不等式之间的关系;2.能够掌握一次函数、二次函数的相关知识;3.能够熟练运用函数求解方程、不等式。
二、教学内容1.函数与方程–函数在坐标系中的表示方法–函数方程的两种形式:显式解和隐式解–利用函数求解方程2.函数与不等式–一次函数的性质–二次函数的图像与性质–利用函数求解不等式三、教学重点和难点1.教学重点:函数方程的两种形式,利用函数求解方程和不等式;2.教学难点:二次函数的图像及其性质。
四、教学策略1.教师讲授与学生自主学习相结合;2.通过图像和实例进行教学;3.激发学生的兴趣,提高课堂参与度。
五、教学过程第一步:引入新知识教师通过讲解实例引发学生对函数与方程、不等式之间的关系的兴趣,为接下来的学习铺垫。
第二步:授课1.函数与方程–函数在坐标系中的表示方法函数在坐标系中的表示方法有图形、表格和公式三种。
其中,图形最容易理解,表格便于计算,公式最具普适性。
–函数方程的两种形式:显式解和隐式解函数方程的显式解指的是“y=函数表达式”,隐式解是除y之外的变量和常量所组成的方程式。
–利用函数求解方程利用函数求解方程,可以将需要求解的方程式代入函数表达式中,求出变量值,即为方程的解。
2.函数与不等式–一次函数的性质一次函数对应的图像是一条直线,其性质包括:斜率决定了直线的倾斜方向和大小,截距决定了直线与y轴的交点。
–二次函数的图像与性质二次函数对应的图像是抛物线,其性质包括:开口方向由二次项系数的正负决定,开口朝上的抛物线最小值为D,对称轴方程为x=-b/2a。
–利用函数求解不等式利用函数局部区间的正负性和函数性质,将不等式转化为相等式或函数的零点问题,从而求解不等式。
第三步:练习通过例题进行练习,加深学生对知识点的理解和掌握程度。
第四步:分组讨论将学生分成小组,进行讨论和分享,培养学生彼此之间的合作精神和交流能力。
高中物理函数应用教案全册
第一课:引言
目标:了解物理函数应用的重要性和意义。
第二课:函数的概念
目标:学习函数的基本概念,了解函数的定义和性质。
第三课:函数的图像
目标:学习如何根据函数的相关信息绘制函数的图像,掌握函数图像的基本特点。
第四课:函数的变化
目标:学习函数的变化规律,了解函数的增减性、奇偶性等性质。
第五课:函数的应用
目标:探讨函数在物理问题中的应用,学习如何利用函数解决实际问题。
第六课:函数的求导
目标:介绍函数的求导概念,学习如何求函数的导数。
第七课:函数的积分
目标:介绍函数的积分概念,学习如何求函数的不定积分。
第八课:函数的微分方程
目标:学习如何利用微分方程描述物理现象,探讨微分方程在物理问题中的应用。
第九课:复习与总结
目标:复习本册课程内容,总结所学知识,并进行综合应用练习。
第十课:考试与评估
目标:进行期末考试,评估学生对物理函数应用的掌握程度。
通过以上教案设计,学生可以系统地学习和掌握物理函数应用的相关知识,提高解决实际问题的能力和水平,为将来的学习和工作打下坚实的基础。
课题:函数的概念(一)教材:普通高中课程标准实验教材教科数学必修(1)人教版【三维目标】1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性,激发学生学习的积极性.【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型.【教学难点】函数概念及符号y=f(x)的理解.【教学方法】诱思教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观感知→观察分析→归纳类比→抽象概括,使学生在获得知识的同时,能够掌握方法、提升能力.【教学手段】多媒体课件辅助教学【教学过程设计】一、创设情景引入课题北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系.在初中已学习过函数的概念,函数的概念从运动变化的观点描述了变量之间的依赖关系. 本节将进一步学习函数及其构成要素.二、观察分析探索新知1.实例分析(1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:h =130t -5t 2. (﹡)提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(﹡),在数集B 中都有唯一确定的高度h 和它对应.(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.提出问题:观察分析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系. 根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高. 表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.表1 “八五”计划以来我国城镇居民恩格尔系数变化情况时间(年) 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2025 5101530图126 25tSO 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001提出问题:恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.根据上表,可知时间t的变化范围是数集}=Nttt≤A,恩格≤,19912001∈{*尔系数y的变化范围是数集}8.=yyB. 并且,对于数集A中的任意≤53{≤9.37一个时间t,根据表1,在数集B中都有唯一确定的恩格尔系数y和它对应.2.问题探讨以上三个实例有什么不同点和共同点?活动:让学生分小组讨论交流,请小组代表汇报讨论结果.归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.其共同点是:①都有两个非空数集A,B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应.记作.Af→:B3.归纳概括引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?活动:让学生分组讨论交流,讨论归纳出:(1)函数的概念:一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称xx=y∈f(A),ABf→:为从集合A到集合B的一个函数,记作.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合}xxf∈叫做函数的值域.(){A显然,值域是集合B的子集.(2)函数的本质:两个非空数集间的一种确定的对应关系.(3)函数的构成要素:定义域、对应关系、值域.强调:①值域由定义域和对应关系唯一确定;②f(x)是函数符号,f表示对应关系,f(x)表示x对应的函数值,绝对不能理解为f与x的乘积.在不同的函数中f的具体含义不同,由以上三个实例可看出对应关系可以是解析式、图象、表格等.函数除了可用符号f(x)表示外,还可用g(x),F(x)等表示.三、新知演练及时反馈1. 提出问题:一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么?并用函数的概念来描述这些函数.设计意图:通过集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素.2. 思考辨析:(1)1y(x∈R)是函数吗?=(2))0x=xy是函数吗?(≥±(3)x3=1-是函数吗?y-+x方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词?由学生总结得到:(1)理解函数的定义应注意:①符号“f:A→B”表示从A到B的一个函数;②函数是非空数集A到非空数集B上的一种对应;③集合A中数的任意性,集合B中数的唯一性.(2)判断函数的标准可以简化成:两个非空数集A,B,一个对应关系.提出问题:在三个实例中,按照一定的对应关系,能看作从B到A的函数吗?你能举出函数的实例吗?设计意图:使学生更深刻理解函数的概念,培养学生的数学应用意识.3.练习反馈下列图像中不能作为函数y=f(x)图像的是( B )四、提炼总结 分享收获 1. 本节课探讨了用集合和对应的语言描述函数的概念,并引进了函数符号y =f (x ).2. 突出了函数概念的本质:两个非空数集间的一种确定的对应关系.3.明确了构成函数的三要素:定义域、对应关系、值域.五、布置作业1. 举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、对应关系和值域.2.课本P 24 习题1.2 1、3、4六、板书设计教案说明函数是高中数学的重要内容之一.它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础. 因此,函数概念是中学数学最重要的基本概念之一,本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法,初步运用函数思想理解和处理生活、社会中的简单问题.《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.学生在初中已学习过函数的概念,概念从运动的观点刻画了两变量之间的相互依赖关系,在已有认识的基础上,让学生学会用集合与对应的语言来刻画函数的概念,并体会函数是描述客观世界中变量间依赖关系的重要模型,是本节课的教学重点. 本节课的教学难点是:函数概念及符号y=f(x)的理解. 函数的概念比较抽象,但函数现象大量存在于学生周围,因此本节课教学设计的整体指导思想是:让学生通过观察分析,去发现,并归纳概括出函数的概念,从而更好的理解函数的概念,熟练的去应用概念解决问题. 通过本节课的学习,进一步培养学生观察问题,提出问题的探究能力;培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,学会数学表达和交流,发展数学应用意识;同时使学生感受到学习函数的必要性,激发学生学习的积极性.本节课对重难点的处理方法是:(1)为了让学生抽象概括出函数的概念,首先以三个实际问题引入,让学生认识到生活中充满着变量间的依赖关系,先建立起函数的背景,为学生理解函数概念打下感性基础. 在三个不同的实例中,通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征. 进而引导学生从实际问题中抽象概括出函数的概念,培养了学生的抽象概括能力. 教学中让学生体验数学发现和创造的历程,提高分析问题,解决问题的能力. 高一的学生是以感性思维为主的年龄阶段,在第一个例子中,通过动画演示炮弹的发射过程,让学生更清晰直观的感知:对于每一个时间t,都有唯一确定的高度h与它对应. 这样设计符合他们的认知规律,化抽象为直观,学生更容易理解. 第二、三个例子,让学生仿照前例,尝试用集合与对应的语言去描述两个变量之间的依赖关系,学会数学表达和交流.由学生抽象概括出函数的概念,其间经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,进一步提高了学生的数学思维能力;教学中注重培养学生积极主动,勇于探索的学习方式. 本节课选自运动、自然界、经济生活中用三种不同方法表示的函数,既可以让学生感受到函数在许多方面的广泛应用,又可以使学生意识到对应关系不仅可以是明确的解析式,也可以是形象直观的曲线和表格,为下一节函数的表示方法描下伏笔.(2)为了使学生正确理解函数的概念,首先让学生用集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素. 其次通过思考辨析,由学生讨论、列举出函数的例子,再次加深对函数概念的理解,同时也培养了学生的数学应用意识. 最后启发学生对本节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此,数学学习的核心是思考,没有思考就没有真正的数学. 在本节课的教学中,我以学生作为活动的主体, 总是创设恰当的问题情境,引导学生积极思考,大胆探索,最大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,适时地给予适当的思维点拨,必要时进行大面积提问,让学生做课堂的主人,充分发表自己的意见.这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提升能力.教学过程中既注重锻炼学生独立解决问题的能力,又注重对学生交流合作意识和创新意识的培养.通过本节课的教学,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.。
人教版高一数学教案人教版高一数学教案1一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析1、知识与技能(重点和难点)(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。
并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题: (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
《函数的应用(第一课时)》教学设计一、创设情境问题引入:求方程01532=-+x x 的实数根. 变式:求方程01535=-+x x 的实数根. 数学史上,人们曾希望得到一般的五次以上代数方程的根式解,但经过长期的努力仍无结果,1824年挪威年仅22岁的数学家阿贝尔(N.H.Abel ,1802-1829)成功地证明了五次以上一般方程没有根式解.五次以上的高次方程不能用代数运算来求解,我们就必须寻求新的角度——函数来解决这个方程的问题.【设计意图】从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究.通过对数学史的讲解,培养学生学习数学的兴趣,开门见山地提出利用函数思想解决方程根的问题.二、新知探究1.零点的概念问题1:求方程0322=--x x 的实数根,并画出函数322--=x x y 的图像. 1-,3具有多重角色,它能够使这个方程成立,也能够使这个函数的函数值为0,它又是函数图像与x 轴交点的横坐标.这样1-,3就把函数与方程联系到一起了,在方程里,1-,3叫做方程的实数根,在函数里,它能够使得函数值为0,我们就称它为函数的零点. 定义:对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点(zero point ).【设计意图】以学生熟悉一元二次方程和二次函数图像为平台,观察方程和函数形式上的联系,得出函数零点的概念.问题2:下列函数的零点分别多少?(1)38y x =-;(2)(1)(2)(3)y x x x =---;(3)221y x x =-+;(4)223y x x =-+. 结论:方程0)(=x f 有实数根0x ⇔函数)(x f y =的图像与x 轴有交点坐标为)0,(0x ⇔函数)(x f y =有零点0x .【设计意图】通过练习,使学生进一步理解函数零点的概念,强调求函数的零点可转化为求方程的根或求函数图像与x 轴的交点.2.函数零点的判定问题3:如图是某地0~12时的气温变化图,中间一部分看不清楚,假设气温是连续变化的,请将图形补充成完整的函数图像.这段时间内,是否一定有某时刻的气温为ο0C?/h为什么?(展示学生解答)因为气温是连续不断的,并且0时的温度是-4οC ,12时的温度是8οC ,所以这两点之间一定会通过0οC .问题4:满足什么条件,函数)(x f y =在))(,()),(,(b f b B a f a A 间的图像与x 轴一定有交点?图像是连续不断的,端点值异号()()0f a f b ⋅<.【设计意图】从现实生活中的问题,让学生体会动与静的关系,整体与局部的关系.将现实生活中的问题抽象成数学模型,由图形语言转化为数学语言,培养学生的观察能力和提取有效信息的能力.零点存在性定理:如果函数)(x f y =在区间],[b a 上的图像是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么函数)(x f y =在区间),(b a 内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程0)(=x f 的根.下面我们对这个定理做更深入的探讨.问题5:如果函数的图像不是连续不断的,结论会不会一定成立?不一定.(用反比例函数来演示)问题6:若函数)(x f y =在),(b a 内有零点,一定有0)()(<⋅b f a f 吗?不一定.(32)(2--=x x x f ,可以发现在区间]4,2[-上有零点,但0)4()2(>⋅-f f .) 函数存在零点,端点函数值不一定异号.问题7:满足定理条件,函数)(x f y =在区间),(b a 内有几个零点?至少有一个.(用函数(1)(2)(3)(4)y x x x x =----的图像说明).【设计意图】使学生准确理解零点存在性定理,强调结论不能随便改动. 三、新知应用1.回扣:观察下表,分析函数153)(5-+=x x x f 在定义域内是否存在零点?分析:函数153)(5-+=x x x f 图像是连续不断的,又因为0)1()0(<⋅f f ,所以在区间)1,0(上必存在零点.引申:函数在定义域上是不是只有一个零点吗?(通过几何画板作图帮助了解零点的情况.)函数)(x f y =在区间),(b a 上存在零点且单调,则零点唯一.【设计意图】初步应用定理来判断函数零点存在问题.引导学生探索判断函数零点的方法,通过做出)(,x f x 的对应值表,来寻找函数值异号的区间;借助几何画板作出函数的图象分析零点问题,并对函数有一个零点形成直观认识,为例2判断函数零点的个数作好准备.2.例题:求函数62ln )(-+=x x x f 的零点个数.分析:用计算器或计算机作出)(,x f x 的对应值表和图像.由表可知,0)3(,0)2(><f f ,则0)3()2(<⋅f f ,说明函数)(x f 在区间)3,2(内有零点. 结合函数)(x f 的单调性,)(x f 的零点仅有一个.如果没有计算器或计算机,如何来找呢?在定义域(0,)+∞上找特殊点进行估值:(1)40f =-<,(2)ln22lne 210f =-<-=-<,(3)ln3lne 10f =>=>,0)3()2(<⋅f f .结论:图像连续的单调函数若存在零点,则零点唯一.【设计意图】学生应用例题1方法来解决例题2的零点存在性问题,并结合函数的单调性判断零点的个数问题.3.练习:求函数3()35f x x x =--+的零点个数.【设计意图】通过练习使学生进一步理解函数零点个数的判定方法,形成运用定理解决问题的能力.四、达标测试1.若函数b ax x x f --=2)(的两个零点是2和3,则ab =___.2.已知函数图像是连续不断的,且有如下对应值表:A .1个B .2个C .3个D .4个 3.设0x 是方程04ln =-+x x 的根,则0x 在下列哪个区间内 ( )A .)2,1(B .)3,2(C .)4,3(D .)5,4(4.函数1()e 4x f x x -=+-的零点有___个.答案:1.-30 2.C 3.B 4.1【设计意图】通过达标测试,使学生充分理解本课所学知识,检测学生对知识的掌握程度.五、课堂小结一个概念 一个结论 一个例题六、课后作业课本88P 练习2 92P 习题A 1,2.七、下节预告我们已经可以利用求根公式来求一些方程的根,对于没有公式解的方程,我们借助函数的零点能估计方程的根所处的大致区间,能不能求出方程的根呢?这就是我们下节课学习的内容――用二分法求方程的近似解.《函数的应用(第一课时)》学情分析从教材体系安排来看,前面已安排了函数的概念、函数的性质及基本初等函数等有关知识的学习,但是对于函数与方程的关系,学生的理解还不系统.本节课正是由此入手来引发学生的认知冲突,产生求知的欲望,而问题解决的关键依然依赖于学生原有的认知结构──数形结合的思想.学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图像,判断方程根的存在性提供了一定的知识基础.方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础.高一学生虽然具备了一定的分析问题和解决问题的能力,但他们重视具体问题的运算而轻视对问题的抽象分析,对数学思想和方法的认识还不够,归纳类比能力比较欠缺.在函数的学习中,常表现出不适,感觉难以接受,主要是数形结合与数学抽象不能很好地联系,缺乏对函数与方程本质的联系,将函数孤立起来,认识不到函数在高中数学中的核心地位.从方程根的角度理解函数零点,学生并不会觉得困难.而用函数来确定方程根的个数和大致范围,则需要适应,学生存在直观体验与准确理解的矛盾.零点存在性判定的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的实例来验证.《函数的应用(第一课时)》效果分析本节课从一元二次方程的根与相应二次函数的图像关系出发,引出函数零点的概念.从现实生活中“气温”的问题,让学生体会动与静的关系,整体与局部的关系,并将生活中的问题抽象成数学模型,由图形语言转化为数学语言,得到函数存在零点的判定方法,并结合函数的单调性判定函数零点的个数,体会数学的应用价值.在教学过程中注重学生的主导地位,积极调动学生的活动,发挥学生的主动性.在教学设计上,讲练结合,注重教学点拨,让学生充分体会函数与方程、数形结合的思想在解决数学问题中的重要应用.通过本节课的学习,学生基本掌握了求函数零点的方法,但是对于成绩较好的学生可以很轻松的讲方程的问题转化成两个函数交点问题.本节课主要教学目的是让学生了解函数零点的概念,理解函数零点存在的判定方法,并能解决实际问题.本节课的教学重点是理解理解函数零点的概念,探索并掌握函数零点存在性定理,认识方程的根与函数的零点之间的密切联系;难点是在具体的问题情境中,能用有关知识解决相应的问题.1.“教”的效果:(1)在本课的教学一开始,结合一元二次方程、高次方程及相应的函数的关系来引入函数零点的,使学生带着问题进入本节课的讨论.(2)本节课的教学过程分为提出问题、引发认知冲突、观察分析、归纳概括、得出结论、总结提高等环节,在教师的精心组织下,对学生各种能力进行培养,并以促进了学生发展,又以学生的发展带动其学习,同时,也有效促进了学生学会如何学习,使学生的探索能力得到了提高.(3)通过讨论、交流等活动,营造了融洽的课堂气氛,实现了良好的师生互动,完成了预先的教学设计过程,在板书设计方面有待改进,课件展示得当,但时间把握有点仓促.2.“学”的效果:(1)学生通过本节课的学习,认识到方程的根与函数的零点的密切联系,理解了函数零点的概念,大部分同学掌握了函数零点存在性定理并能初步应用.(2)学生对于函数零点存在性定理掌握较好,但对实际运用不太熟练,有是需要教师进行点拨.(3)学生思维活跃,特别是在零点存在性的判断上,都能积极发言,发表自己的见解,并能举出相关的实例.《函数的应用(第一课时)》教材分析函数是中学教学的核心概念,与方程、不等式等其他知识都有广泛的联系,而函数的零点就是它们的一个连接点,将数与形,函数与方程有机的联系在一起.本节是《函数的应用》的第一课时,学生在系统地学习了函数的概念及性质,基本初等函数知识后,学习方程的根与函数零点之间的关系,并结合函数的图像和性质来判断方程的根的存在性及根的个数,从而理解函数在某个区间上存在零点的判定方法,为后继内容“用二分法求方程的近似解”的学习奠定基础,因此本节内容具有承前启后的作用,地位重要.在大学《数学分析》中,函数零点存在性定理有严格的证明,它是证明介值定理的依据,也可以说是介值定理的特殊情形,因此这部分内容是联结初等数学和高等数学的桥梁.本节内容有函数零点的概念、函数零点存在性定理两个主要内容.首先利用具体的一元二次方程的根与相应的二次函数图像与x 轴交点的横坐标的关系,归纳到一般情形,给出函数零点的概念,符合从特殊到一般的认识规律.连续函数零点存在定理是本节的重点内容,在定理形成的过程中,如何将函数图像通过零点且穿过x 轴转化为代数式,并明确定理是函数零点存在的充分不很必要条件是难点.用函数思想解决数学问题是本节课一个重要的教学目标,当我们用函数的观点看待方程的时候,由函数()y f x =所决定的方程是()0f x =,这样方程的根就变成函数的零点,体现了数学知识之间的内在联系和化归思想.数学抽象也是高中数学核心素养的指标之一,在探究连续函数零点存在性定理时,教材从函数图像入手,为学生的思维活动提供直观背景,帮助学生探究和发现结论,这种先直观后抽象的研究方法有利于对数学真正的认识和理解.在函数的学习中一定要形成画函数图像的习惯,这样有助于提高运用几何思想把握图形的能力.基于以上分析,制定本节课教学目标如下:了解函数零点的概念,理解方程的根与函数的零点的关系;理解图像连续的函数存在零点的判定方法,并能进行简单的应用.在探究方程的根与函数的零点的关系,图像连续的函数存在零点的判定方法中体会数形结合、函数与方程的数学思想,从特殊到一般的归纳思想.在函数与方程的联系中体验数学中的转化思想的意义和价值;在教学中让学生体验探究的过程、发现的乐趣,培养学生的辨证思维.《函数的应用(第一课时)》评测练习一、课堂练习1.下列函数的零点分别多少?(1)38y x =-;(2)(1)(2)(3)y x x x =---;(3)221y x x =-+;(4)223y x x =-+.2.求函数3()35f x x x =--+的零点个数.二、达标测试1.若函数b ax x x f --=2)(的两个零点是2和3,则ab =___.2.已知函数)(x f 图像是连续不断的,且有如下对应值表:则函数至少有零点( )A .1个B .2个C .3个D .4个3.设0x 是方程04ln =-+x x 的根,则0x 在下列哪个区间内 ( )A .)2,1(B .)3,2(C .)4,3(D .)5,4( 4.函数1()4x f x e x -=+-的零点有___个.三、测评结果测试试题紧扣本节内容,检查学生对内容的掌握程度,从测评结果来看,学生能较好地理解函数的零点与方程的根的关系,并能利用根的存在性定理与函数的单调性研究函数的零点所在大致区间以及零点的个数.《函数的应用(第一课时)》课后反思本节课在新课标理念的指导下,本着“教师的主导地位与学生的主体地位相统一”的教学原则下组织教学,采用问题探究式的教学方法并配以多媒体辅助教学,通过教师的点拨,启发学生主动思考、动手操作来达到对知识的发现和接受,并形成初步的应用技能.本节课以学生熟悉一元二次方程和二次函数图像为平台,由具体到一般,逐步建立起函数与方程的联系.从现实生活中的气温变化问题,让学生体会动与静的关系,整体与局部的关系,并将生活问题抽象成数学模型,将图形语言转化为数学语言,探究函数的零点存在的条件,并通过深入探究,形成自己对本节课重难点的理解和掌握.课堂练习和例题,由浅入深,承上启下,各有侧重,让学生体会运用函数性质及其图像来解题的重要数学思想,通过达标测试,使学生充分理解本课所学知识,检测学生对知识的掌握程度.从教后反馈来看,我的引导比较到位,讲解透彻,重点突出,前后呼应,学生的课堂活动积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程.从学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,精选细练,力求让每个学生各有所得,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结,同时在教学中我较多地注意了知识的理解与能力的培养,对学生核心素养的形成引导不够.在今后的教学中我仍会坚持将信息技术融入数学教学,努力提升个人的专业素养,培养学生的学习兴趣,提高教学质量.教学过程中出现的两个问题:1.例2还可以看作是两个函数的交点问题.如:函数x y ln =与62+-=x y .因为联立方程组⎩⎨⎧+-==62ln x y x y ,消去y ,得到62ln +-=x x 即062ln =-+x x ,故函数62ln -+=x x y 的零点也是两函数图像交点的横坐标,这样将未知函数图像转化为已知函数图像问题,进一步加强数学建模的应用.2.在目前高考不允许使用计算器的情况下,可提醒学生学会利用估算来确定函数值的大小.如例2中计算:(2)ln22lne 210f =-<-=-<,(3)ln3lne 10f =>=>.《函数的应用(第一课时)》课标分析函数与方程是中学数学的重要内容,是初等数学与高等数学的连接纽带,在教学中有着不可替代的位置.函数的零点为研究方程的根提供了新的途径.《函数的应用》这一单元的课标要求“结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.通过本章的学习,使学生学会二分法求方程近似解的方法,从中体会函数与方程之间的联系.”本节课是《函数的应用》的第一节课,通过对二次函数的图像的研究建立一元二次方程的根与相应的二次函数的图像的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形,提出函数的零点的概念,明确方程的根与函数的零点的关系,并通过生活问题的抽象到函数,探究图像连续的函数的存在零点的判定方法,为“用二分法求方程的近似解”的学习做好准备,同时为方程与函数提供了零点这个连接点,揭示了两者之间的本质联系,这正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础.之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,既体现了函数与方程的思想,又渗透了数形结合的思想,同时培养学生数学抽象、数学建模、数据分析的数学核心素养.。
高中数学教案:函数与方程的关系及应用一、函数与方程的关系介绍
函数与方程是高中数学中的重要内容,它们之间有着密切的关系,并且在实际问题中具有广泛的应用。
本文将对函数与方程的关系进行详细介绍,并展示它们在实际问题中的应用。
二、函数与方程的基本概念
1. 函数的定义和表示方式
函数是两个集合之间的某种特定规律。
常用的表示方式包括显式表达式、隐式表达式和参数方程等。
2. 方程的定义和分类
方程是含有一个未知数(或变量)并且含有一个等号的表达式。
常见类型包括一元一次方程、二元一次方程等。
三、一元一次方程与线性函数
1. 一元一次方程的基本形式
一元一次方程是最简单也最常见的代数方程,形如ax + b = 0,其中a和b为已知实数,x为未知数。
2. 线性函数与一元一次方程的关系
线性函数是指以直线作为图像的函数,其表示形式为f(x) = kx + b,其中k和b 为常数。
可以发现,线性函数就是一个描述了因变量y和自变量x之间关系的一元一次方程。
四、二元一次方程与平面直线
1. 二元一次方程的基本形式
二元一次方程是含有两个未知数(或变量)并且含有一个等号的表达式,形如ax + by = c。
2. 平面直线与二元一次方程的关系
通过对二元一次方程进行变形,我们可以得到它的标准形式y = mx + b,其中m和b为常数。
这就是平面直线的一般表示方式。
五、函数与方程在实际问题中的应用
1. 函数模型的建立与使用
通过对实际问题进行分析和抽象,可以建立相关的函数模型。
例如,在物理学中,运动学方程就是描述运动过程中速度、位移和时间之间关系的函数模型。
2. 方程求解与实际问题解释
利用方程求解方法,我们可以求解出实际问题中所涉及的未知量。
例如,在经济学中,利用成本、收入等相关信息构建代表企业盈亏情况的方程,并通过求解这些方程来分析企业经营状况。
六、总结
通过本文对函数与方程的关系及其应用进行了全面地介绍。
函数是一种特定规律,而方程则是含有等号和未知数(或变量)的表达式。
我们发现,线性函数可以表示为一元一次方程,平面直线可以表示为二元一次方程。
在实际问题中,函数和方程可以用来建立模型,并通过求解方程来解释问题。
深入理解函数与方程的关系和应用,对于数学学习以及实际问题的解决具有重要意义。
七、延伸阅读
1. 《高中数学教案:函数的概念和性质》
本教案详细介绍了函数的基本概念、性质和图像等内容,有助于加深对函数的理解。
2. 《高中数学教案:一元一次方程与应用》
该教案介绍了一元一次方程的基本形式、求解方法及其在实际生活中的应用场景,帮助学生将数学知识与实际问题相结合。
以上是关于高中数学教案:函数与方程的关系及应用的相关内容介绍。
通过深入理解这些知识,我们能够更好地掌握数学的基本思想和方法,并能够运用到具体问题中去。
同时也为进一步研究相关领域奠定了坚实的基础。