高中数学 (4.2.1 直线与圆的位置关系 第2课时)示范教案 新人教A版必修2
- 格式:doc
- 大小:185.00 KB
- 文档页数:8
4.2.2 圆与圆的位置关系
一、教学目标 1、知识与技能
(1)理解直线与圆的位置的种类;
(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. 2、过程与方法
设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心
)2,2(E
D --
到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离; (2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想. 二、教学重点、难点:
重点:直线与圆的位置关系的几何图形及其判断方法. 难点:用坐标法判直线与圆的位置关系. 三、教学设想。
直线与圆的位置关系教案一、教学目标1、知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系.2、过程与方法设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;3、情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.二、教学重点、难点:重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判直线与圆的位置关系.四、教学过程设计复习提问:1、点与圆有几种位置关系?2、若将点改成直线 ,那么直线与圆的位置关系又如何呢?1、直线 与圆的位置关系:观察右边的三个图形:直线与圆分别有多少个公共点?1、如图1,直线与圆_______公共点,那么这条直线与圆_________.2、如图2,直线与圆有______公共点时,那么直线与圆________.此时,这条直线叫做圆的_______,这个公共点叫做_______.3、如图3,直线与圆有_______公共点时,那么直线与圆________.此时,这条直线叫做________.二、学生动手画出圆心到直线的距离d 与半径r 比较,得出结论:1、当d>r 时,直线与圆相离;2、当d=r 时,直线与圆相切;3、当d<r 时,直线与圆相交 .归纳与小结:三、例题讲解例1 :如图,已知直线L:063=-+y x 和圆心为C 的圆04222=--+y y x ,.O a b.A .O c . F .E.O判断直线L 与圆的位置关系;如果相交,求它们交点的坐标.解法一:圆04222=--+y y x 可化为5)1(22=-+y x . 其圆心C的坐标为(0,1),半径长为5 ,点C (0,1)到直线L 的距离所以,直线 l 与圆相交,有两个公共点. 解法二:由直线 l 与圆的方程,得:消去y ,得:所以,直线 l 与圆相交,有两个公共点.所以,直线 l 与圆有两个交点,它们的坐标分别是:A (2,0),B (1,3)四、课堂小结直线与圆的位置关系的判断方法有两种:①代数法:通过直线方程与圆的方程所组成的方程组,根据解的个数来研究,若有两组不同的实数解,即⊿>0,则相交;若有两组相同的实数解,即⊿=0,则相切;若无实数解,即⊿<0,则相离. ②几何法:由圆心到直线的距离d 与半径r 的大小来判断:当d<r 时,直线与圆相交;当d=r 时,直线与圆相切;当d>r 时,直线与圆相离. 五、课堂练习 1.判断直线 与圆 的位置关系. 510513|6103|22<=+-+⨯=d 214)3(2⨯⨯--=∆由 ,解得: 0232=+-x x 1,221==x x 把 代入方程①,得 ; ,221==x x 01=y 把 代入方程① ,得 .1,221==x x 32=y 0243=++y x 0222=-+x y x .04222=--+y y x2.已知直线,圆C:试判断直线l与圆C有无公共点,有几个公共点.六、课后练习试解本节引言中的问题.七、课后作业习题4.2 A组1、3、5八、板书设计在教学中我把黑板分为三部分,把知识要点写在左侧,中间多媒体展示,右边实例应用.yl:+6=x。
4.2.1 直线与圆的位置关系一、教学目标 1、知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系. 2、过程与方法设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离; (2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 3、情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.二、教学重点、难点:重点:直线与圆的位置关系的几何图形及其判断方法. 难点:用坐标法判直线与圆的位置关系. 三、教学设想4.2.2 圆与圆的位置关系一、教学目标1、知识与技能(1)理解圆与圆的位置的种类;(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;(3)会用连心线长判断两圆的位置关系. 2、过程与方法设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离; (2)当21r r l +=时,圆1C 与圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交; (4)当||21r r l -=时,圆1C 与圆2C 内切; (5)当||21r r l -<时,圆1C 与圆2C 内含; 3、情态与价值观让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想.二、教学重点、难点:重点与难点:用坐标法判断圆与圆的位置关系. 三、教学设想4.2.3 直线与圆的方程的应用一、教学目标1、知识与技能(1)理解直线与圆的位置关系的几何性质;(2)利用平面直角坐标系解决直线与圆的位置关系;(3)会用“数形结合”的数学思想解决问题.2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.3、情态与价值观让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.二、教学重点、难点:重点与难点:直线与圆的方程的应用.三、教学设想。
§4.2 直线、圆的位置关系§4.2.1 直线与圆的位置关系一、教材分析学生在初中的学习中已了解直线与圆的位置关系,并知道可以利用直线与圆的交点的个数以及圆心与直线的距离d 与半径r 的关系判断直线与圆的位置关系,但是,在初中学习时,利用圆心与直线的距离d 与半径r 的关系判断直线与圆的位置关系的方法却以结论性的形式呈现.在高一学习了解析几何以后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法.解决问题的方法主要是几何法和代数法.其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d 后,比较与半径r 的关系从而作出判断.适可而止地引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”.含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度地引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度.虽然学生学习解析几何了,但把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质. 二、教学目标1.知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. (二)过程与方法设直线l :ax + by + c = 0,圆C :x 2 + y 2+ Dx + Ey + F = 0,圆的半径为r ,圆心(,)22D E--到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当d >r 时,直线l 与圆C 相离; (2)当d =r 时,直线l 与圆C 相切; (3)当d <r 时,直线l 与圆C 相交; 3.情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想. 三、教学重点与难点教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判断直线与圆的位置关系. 四、课时安排2课时五、教学设计第1课时(一)导入新课思路1.平面解析几何是高考的重点和热点内容,每年的高考试题中有选择题、填空题和解答题,考查的知识点有直线方程和圆的方程的建立、直线与圆的位置关系等,本节主要学习直线与圆的关系.思路2.(复习导入)(1)直线方程Ax+By+C=0(A,B 不同时为零).(2)圆的标准方程(x-a)2+(y-b)2=r 2,圆心为(a,b),半径为r.(3)圆的一般方程x 2+y 2+Dx+Ey+F=0(其中D 2+E 2-4F >0),圆心为(-2D ,-2E),半径为21F E D 422-+.(二)推进新课、新知探究、提出问题①初中学过的平面几何中,直线与圆的位置关系有几类? ②在初中,我们怎样判断直线与圆的位置关系呢?③如何用直线与圆的方程判断它们之间的位置关系呢?④判断直线与圆的位置关系有几种方法?它们的特点是什么?讨论结果:①初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种.②直线与圆的三种位置关系的含义是: 直线与圆的位置关系公共点个数 圆心到直线的距离d 与半径r 的关系图形相交 两个 d <r 相切 只有一个 d=r相离没有d >r方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.④直线与圆的位置关系的判断方法: 几何方法步骤:1°把直线方程化为一般式,求出圆心和半径.2°利用点到直线的距离公式求圆心到直线的距离.3°作判断:当d >r 时,直线与圆相离;当d=r 时,直线与圆相切;当d <r 时,直线与圆相交.代数方法步骤:1°将直线方程与圆的方程联立成方程组.2°利用消元法,得到关于另一个元的一元二次方程. 3°求出其判别式Δ的值.4°比较Δ与0的大小关系,若Δ>0,则直线与圆相离;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相交.反之也成立. (三)应用示例思路1例1 已知直线l :3x+y-6=0和圆心为C 的圆x 2+y 2-2y-4=0,判断直线l 与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.解法一:由直线l 与圆的方程,得消去y,得x 2-3x+2=0,因为Δ=(-3)2-4×1×2=1>0,所以直线l 与圆相交,有两个公共点.解法二:圆x 2+y 2-2y-4=0可化为x 2+(y-1)2=5,其圆心C 的坐标为(0,1),半径长为5,圆心C 到直线l 的距离d=2213|1603|+-+⨯=105<5.所以直线l 与圆相交,有两个公共点.由x 2-3x+2=0,得x 1=2,x 2=1.把x 1=2代入方程①,得y 1=0;把x 2=1代入方程①,得y 2=3.所以直线l 与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3).点评:比较两种解法,我们可以看出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程组求解.例2 已知圆的方程是x 2+y 2=2,直线y=x+b,当b 为何值时,圆与直线有两个公共点,只有一个公共点没有公共点.活动:学生思考或交流,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价.我们知道,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解,或依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.反过来,当已知圆与直线的位置关系时,也可求字母的取值范围,所求曲线公共点问题可转化为b 为何值时,方程组⎪⎩⎪⎨⎧+==+bx y y x ,222有两组不同实数根、有两组相同实根、无实根的问题.圆与直线有两个公共点、只有一个公共点、没有公共点的问题,可转化为b 为何值时圆心到直线的距离小于半径、等于半径、大于半径的问题.解法一:若直线l :y=x+b 和圆x 2+y 2=2有两个公共点、只有一个公共点、没有公共点,则方程组⎪⎩⎪⎨⎧+==+bx y y x ,222有两个不同解、有两个相同解、没有实数解,消去y,得2x 2+2bx+b 2-2=0,所以Δ=(2b)2-4×2(b 2-2)=16-4b 2.所以,当Δ=16-4b 2>0,即-2<b <2时,圆与直线有两个公共点;当Δ=16-4b 2=0,即b=±2时,圆与直线只有一个公共点;当Δ=16-4b 2<0,即b >2或b <-2时,圆与直线没有公共点.解法二:圆x 2+y 2=2的圆心C 的坐标为(0,0),半径长为2,圆心C 到直线l:y=x+b 的距离d=2||11|0101|22b b =+-⨯+⨯-.当d >r 时,即2||b >2,即|b|>2,即b >2或b <-2时,圆与直线没有公共点;当d=r 时,即2||b =2,即|b|=2,即b=±2时,圆与直线只有一个公共点;当d <r 时,即2||b <2,即|b|<2,即-2<b <2时,圆与直线有两个公共点.点评:由于圆的特殊性,判断圆与直线的位置关系,多采用圆心到直线的距离与半径的大小进行比较的方法,而以后我们将要学习的圆锥曲线与直线位置关系的判断,则需要利用方程组解的个数来判断.变式训练已知直线l 过点P(4,0),且与圆O :x 2+y 2=8相交,求直线l 的倾斜角α的取值范围.解法一:设直线l 的方程为y=k(x-4),即kx-y-4k=0,因为直线l 与圆O 相交,所以圆心O 到直线l 的距离小于半径,即1|4|2+-k k <22,化简得k 2<1,所以-1<k <1,即-1<tanα<1.当0≤tanα<1时,0≤α<4π;当-1<tanα<0时,43π<α<π.所以α的取值范围是[0,4π)∪(43π,π).解法二:设直线l 的方程为y=k(x-4), 由⎪⎩⎪⎨⎧=+-=,8),4(22y x x k y ,消去y 得(k 2+1)x 2-8k 2x+16k 2-8=0. 因为直线l 与圆O 相交,所以Δ=(-8k 2)2-4(k 2+1)(16k 2-8)>0,化简得k 2<1.(以下同解法一)点评:涉及直线与圆的位置关系的问题,常可运用以上两种方法.本题若改为选择题或填空题,也可利用图形直接得到答案.思路2例1 已知圆的方程是x 2+y 2=r 2,求经过圆上一点M(x 0,y 0)的切线方程.活动:学生思考讨论,教师提示学生解题的思路,引导学生回顾直线方程的求法,既考虑通法又考虑图形的几何性质.此切线过点(x 0,y 0),要确定其方程,只需求出其斜率k,可利用待定系数法(或直接求解).直线与圆相切的几何特征是圆心到切线的距离等于圆的半径,切线与法线垂直.解法一:当点M 不在坐标轴上时,设切线的斜率为k,半径OM 的斜率为k 1,因为圆的切线垂直于过切点的半径,所以k=-11k . 因为k 1=00x y 所以k=-00y x .所以经过点M 的切线方程是y-y 0=-00y x(x-x 0). 整理得x 0x+y 0y=x 02+y 02.又因为点M(x 0,y 0)在圆上,所以x 02+y 02=r 2.所以所求的切线方程是x 0x+y 0y=r 2.当点M 在坐标轴上时,可以验证上面的方程同样适用.解法二:设P(x,y)为所求切线上的任意一点,当P 与M 不重合时,△OPM 为直角三角形,OP为斜边,所以OP 2=OM 2+MP 2,即x 2+y 2=x 02+y 02+(x-x 0)2+(y-y 0)2.整理得x 0x+y 0y=r 2.可以验证,当P 与M 重合时同样适合上式,故所求的切线方程是x 0x+y 0y=r 2.解法三:设P(x,y)为所求切线上的任意一点,当点M 不在坐标轴上时,由OM⊥MP 得k OM ·k MP =-1,即0x y ·x x y y --00=-1,整理得x 0x+y 0y=r 2.可以验证,当点M 在坐标轴上时,P 与M重合,同样适合上式,故所求的切线方程是x 0x+y 0y=r 2.点评:如果已知圆上一点的坐标,我们可直接利用上述方程写出过这一点的切线方程. 变式训练求过圆C:(x-a)2+(y-b)2=r 2上一点M(x 0,y 0)的圆的切线方程.解:设x 0≠a,y 0≠b,所求切线斜率为k,则由圆的切线垂直于过切点的半径,得k=by a x k CM---=-001,所以所求方程为y-y 0=by ax ---00(x-x 0),即(y-b)(y 0-b)+(x-a)(x 0-a)=(x 0-a)2+(y 0-b)2.又点M(x 0,y 0)在圆上,则有(x 0-a)2+(y 0-b)2=r 2.代入上式,得(y-b)(y 0-b)+(x-a)(x 0-a)=r 2.当x 0=a,y 0=b 时仍然成立,所以过圆C:(x-a)2+(y-b)2=r 2上一点M(x 0,y 0)的圆的切线方程为(y-b)(y 0-b)+(x-a)(x 0-a)=r 2.例2 从点P(4,5)向圆(x -2)2+y 2=4引切线,求切线方程.活动:学生思考交流,提出解题的方法,回想直线方程的求法,先验证点与圆的位置关系,再利用几何性质解题.解:把点P(4,5)代入(x -2)2+y 2=4,得(4-2)2+52=29>4,所以点P 在圆(x -2)2+y 2=4外.设切线斜率为k,则切线方程为y -5=k(x -4),即kx -y +5-4k=0.又圆心坐标为(2,0),r=2.因为圆心到切线的距离等于半径,即1|4502|2+-+-k k k =2,k=2021. 所以切线方程为21x -20y +16=0.当直线的斜率不存在时还有一条切线是x=4.点评:过圆外已知点P(x,y)的圆的切线必有两条,一般可设切线斜率为k,写出点斜式方程,再利用圆心到切线的距离等于半径,写出有关k 的方程.求出k,因为有两条,所以应有两个不同的k 值,当求得的k 值只有一个时,说明有一条切线斜率不存在,即为垂直于x 轴的直线,所以补上一条切线x=x 1. 变式训练求过点M(3,1),且与圆(x-1)2+y 2=4相切的直线l 的方程.解:设切线方程为y-1=k(x-3),即kx-y-3k+1=0, 因为圆心(1,0)到切线l 的距离等于半径2,所以22)1(|13|-++-k k k =2,解得k=-43. 所以切线方程为y-1=-43(x-3),即3x+4y-13=0. 当过点M 的直线的斜率不存在时,其方程为x=3,圆心(1,0)到此直线的距离等于半径2,故直线x=3也符合题意.所以直线l 的方程是3x+4y-12=0或x=3. 例3 (1)已知直线l :y=x+b 与曲线C :y=21x -有两个不同的公共点,求实数b 的取值范围;(2)若关于x 的不等式21x ->x+b 解集为R ,求实数b 的取值范围.图1解:(1)如图1(数形结合),方程y=x+b 表示斜率为1,在y 轴上截距为b 的直线l ; 方程y=21x -表示单位圆在x 轴上及其上方的半圆, 当直线过B 点时,它与半圆交于两点,此时b=1,直线记为l 1; 当直线与半圆相切时,b=2,直线记为l 2.直线l 要与半圆有两个不同的公共点,必须满足l 在l 1与l 2之间(包括l 1但不包括l 2), 所以1≤b<2,即所求的b 的取值范围是[1,2).(2)不等式21x ->x+b 恒成立,即半圆y=21x -在直线y=x+b 上方, 当直线l 过点(1,0)时,b=-1,所以所求的b 的取值范围是(-∞,-1). 点评:利用数形结合解题,有时非常方便直观. (四)知能训练本节练习2、3、4. (五)拓展提升圆x 2+y 2=8内有一点P 0(-1,2),AB 为过点P 0且倾斜角为α的弦.(1)当α=43π时,求AB 的长; (2)当AB 的长最短时,求直线AB 的方程. 解:(1)当α=43π时,直线AB 的斜率为k=tan 43π=-1,所以直线AB 的方程为y-2=-(x+1),即y=-x+1.解法一:(用弦长公式)由⎪⎩⎪⎨⎧=++-=,8,122y x x y 消去y,得2x 2-2x-7=0, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=1,x 1x 2=-27, 所以|AB|=2)1(1-+|x 1-x 2|=2·212214)(x x x x -+=2·)27(41-⨯-=30.解法二:(几何法)弦心距d=21,半径r=22,弦长|AB|=230218222=-=-dr . (2)当AB 的长最短时,OP 0⊥AB,因为k OP0=-2,k AB =21,直线AB 的方程为y-2=21(x+1), 即x-2y+5=0.(六)课堂小结(1)判断直线与圆的位置关系的方法:几何法和代数法.(2)求切线方程. (七)作业习题4.2 A 组1、2、3.第2课时(一)导入新课思路1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km 处,受影响的范围是半径长为30 km 的圆形区域.已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图2分析:如图2,以台风中心为原点O,以东西方向为x 轴,建立直角坐标系,其中,取10 km 为单位长度.则台风影响的圆形区域所对应的圆心为O 的圆的方程为x 2+y 2=9;轮船航线所在的直线l 的方程为4x+7y-28=0.问题归结为圆心为O 的圆与直线l 有无公共点.因此我们继续研究直线与圆的位置关系. (二)推进新课、新知探究、提出问题①过圆上一点可作几条切线?如何求出切线方程? ②过圆外一点可作几条切线?如何求出切线方程? ③过圆内一点可作几条切线?④你能概括出求圆切线方程的步骤是什么吗? ⑤如何求直线与圆的交点?⑥如何求直线与圆的相交弦的长?讨论结果:①过圆上一点可作一条切线,过圆x 2+y 2=r 2上一点(x 0,y 0)的切线方程是x 0x+y 0y=r 2;过圆(x-a)2+(y-b)2=r 2上一点(x 0,y 0)的切线方程是(x 0-a)(x-a)+(y 0-b)(y-b)=r 2.②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要条件——Δ=0去求出k 的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k 的值.③过圆内一点不能作圆的切线.④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k 的值.⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求. (三)应用示例思路1例1 过点P(-2,0)向圆x 2+y 2=1引切线,求切线的方程.图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组⎪⎩⎪⎨⎧=++=,1),2(22y x x k y 得x 2+k 2(x+2)2=1. 上述一元二次方程有一个实根,Δ=16k 4-4(k 2+1)(4k 2-1)=12k 2-4=0,k=±33, 所以所求切线的方程为y=±33(x+2). 方法二:设所求切线的斜率为k,则切线方程为y=k(x+2),由于圆心到切线的距离等于圆的半径(d=r),所以d=21|2|k k +=1,解得k=±33. 所以所求切线的方程为y=±33(x+2). 方法三:利用过圆上一点的切线的结论.可假设切点为(x 0,y 0),此时可求得切线方程为x 0x+y 0y=1.然后利用点(-2,0)在切线上得到-2x 0=1,从中解得x 0=-21. 再由点(x 0,y 0)在圆上,所以满足x 02+y 02=1,既41+y 02=1,解出y 0=±23.这样就可求得切线的方程为22102320+--±=+-x y ,整理得y=±33(x+2). 点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r”比较好(简便).变式训练已知直线l 的斜率为k,且与圆x 2+y 2=r 2只有一个公共点,求直线l 的方程.活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得d=21||k b +=r,∴b=±r 21k +,求得切线方程是y=kx±r 21k +.方法二:设所求的直线方程为y=kx+b,直线l 与圆x 2+y 2=r 2只有一个公共点,所以它们组成的方程组只有一组实数解,由⎪⎩⎪⎨⎧=++=222,ry x b kx y ,得x 2+k 2(x+b)2=1,即x 2(k 2+1)+2k 2bx+b 2=1,Δ=0得b=±r 21k +,求得切线方程是y=kx±r 21k +.例2 已知圆的方程为x 2+y 2+ax+2y+a 2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a 的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+2a )2+(y+1)2=4342a -,圆心C 的坐标为(-2a ,-1),半径r=4342a -,条件是4-3a 2>0,过点A(1,2)所作圆的切线有两条,则点A 必在圆外, 即22)12()21(+++a >4342a -.化简,得a 2+a+9>0,由⎪⎩⎪⎨⎧>->++,034,0922a a a解得-332<a <332,a ∈R . 所以-332<a <332. 故a 的取值范围是(-332,332). 点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同时注意圆的一般方程的条件.思路2 例1 已知过点M(-3,-3)的直线l 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线l 的方程.活动:学生思考或讨论,教师引导学生考虑问题的思路,求直线l 的方程,一般设点斜式,再求斜率.这里知道弦长,半径也知道,所以弦心距可求,如果设出直线的方程,由点到直线的距离等于弦心距求出斜率;另外也可利用弦长公式,结合一元二次方程根与系数的关系求解.解法一:将圆的方程写成标准形式有x 2+(y+2)2=25,所以圆心为(0,-2),半径为5.因为直线l 被圆x 2+y 2+4y-21=0所截得的弦长为45,所以弦心距为22)52(5-=5,圆心到直线的距离为5,由于直线过点M(-3,-3),所以可设直线l 的方程为y+3=k(x+3),即kx-y+3k-3=0.根据点到直线的距离公式,圆心到直线的距离为5,因此d=1|332|2+-+k k =5,两边平方整理得2k 2-3k-2=0,解得k=21,k=2. 所以所求的直线l 的方程为y+3=21(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.解法二:设直线l 和已知圆x 2+y 2+4y-21=0的交点为A(x 1,y 1),B(x 2,y 2),直线l 的斜率为k,由于直线过点M(-3,-3),所以可设直线l 的方程为y+3=k(x+3),即y=kx+3k-3.代入圆的方程x 2+y 2+4y-21=0,并整理得(1+k 2)x 2+2k(3k-1)x+(3k-1)2-25=0.结合一元二次方程根与系数的关系有x 1+x 2=21)13(2k k k +--,x 1·x 2=22125)13(k k +--.①|AB|==-+=-+-=-+-22122212221221221))(1()()()()(x x k x x k x x y y x x因为|AB|=45,所以有(1+k 2)[(x 1+x 2)2-4x 1·x 2]=80.②把①式代入②式,得(1+k 2){[21)13(2k k k +--]2-422125)13(k k +--}=80.经过整理,得2k 2-3k-2=0,解得k=21,k=2.所以所求的直线l 的方程为y+3=21(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.点评:解法一突出了适当地利用图形的几何性质有助于简化计算,强调图形在解题中的作用,加强了数形结合;解法二是利用直线被曲线截得的弦长公式求出斜率后求直线方程,思路简单但运算较繁.变式训练已知圆C :x 2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交于不同两点A 、B,若|AB|=17,求l 的倾斜角; (3)求弦AB 的中点M 的轨迹方程; (4)若定点P(1,1)分弦AB 为PB AP =21,求此时直线l 的方程. 解:(1)判断圆心到直线的距离小于半径即可,或用直线系过定点P(1,1)求解;点P(1,1)在圆内.(2)利用弦心距、半径、弦构成的直角三角形求弦长,得m=±3,所以α=3π或32π.(3)设M 的坐标为(x,y),连结CM 、CP,因为C(0,1),P(1,1),|CM|2+|PM|2=|CP|2,所以x 2+(y-1)2+(x-1)2+(y-1)2=1,整理得轨迹方程为x 2+y 2-x-2y+1=0(x≠1). (4)设A(x 1,y 1),B(x 2,y 2),由PBAP =21,得21212++x x =1.①又由直线方程和圆的方程联立消去y,得(1+m 2)x 2-2m 2x+m 2-5=0,(*)故x 1+x 2=2212m m +,② 由①②,得x 1=2213mm ++,代入(*),解得m=±1. 所以直线l 的方程为x-y=0或x+y-2=0.例2 已知直线l:y=k(x+22)与圆O:x 2+y 2=4相交于A 、B 两点,O 为坐标原点,△ABO 的面积为S,①试将S 表示成k 的函数S(k),并指出它的定义域;②求S 的最大值,并求出取得最大值时的k 值.活动:学生审题,再思考讨论,教师提示学生欲求△ABO 的面积,应先求出直线被圆截得的弦长|AB|,将|AB|表示成k 的函数.图5解:①如图5所示,直线的方程为kx-y+22k=0(k≠0),点O 到l 之间的距离为|OC|=1||222+k k ,弦长|AB|=22222221141842||||k k k k OC OA +-=+-=-, ∴△ABO 的面积S=21|AB|·|OC|=2221)1(24kk k +-•, ∵|AB|>0,∴-1<k <1(k≠0). ∴S(k)=`2221)1(24k k k +-•(-1<k <1且k≠0).②△ABO 的面积S=21|OA|·|OB|sin∠AOB=2sin∠AOB, ∴当∠AOB=90°时,S max =2,此时|OC|=2,|OA|=2,即1||222+k k =2, ∴k=±33. 点评:在涉及到直线被圆截得的弦长时,要巧妙利用圆的有关几何性质,如本题中的Rt△BOC,其中|OB|为圆半径,|BC|为弦长的一半.变式训练已知x,y 满足x 2+y 2-2x+4y=0,求x-2y 的最大值.活动:学生审题,再思考讨论,从表面上看,此问题是一个代数,可用代数方法来解决.但细想后会发现比较复杂,它需把二次降为一次.教师提示学生利用数形结合或判别式法.解法一:(几何解法):设x-2y=b,则点(x,y)既在直线x-2y=b 上,又在圆x 2+y 2-2x+4y=0上,即直线x-2y=b 和圆x 2+y 2-2x+4y=0有交点,故圆心(1,-2)到直线的距离小于或等于半径, 所以5|5|b -≤5.所以0≤b≤10,即b 的最大值是10.解法二:(代数解法):设x-2y=b,代入方程x 2+y 2-2x+4y=0,得(2y+b)2+y 2-2(2y+b)+4y=0,即5y 2+4by+b 2-2b=0.由于这个一元二次方程有解,所以其判别式Δ=16b 2-20(b 2-2b)=40b-4b 2≥0,即b 2-10b≤0,0≤b≤10.所以求出b 的最大值是10.点评:比较两个解法,我们可以看到,数形结合的方法难想但简单,代数法易想但较繁,要多练习以抓住规律.例3 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m+1)x+(m+1)y -7m -4=0(m ∈R ).(1)证明不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时l 的方程.活动:学生先思考,然后讨论,教师引导学生考虑问题的方法,由于直线过定点,如果该定点在圆内,此题便可解得.最短的弦就是与过定点与此直径垂直的弦.解:(1)证明:因为l 的方程为(x+y -4)+m(2x+y -7)=0.因为m ∈R ,所以⎩⎨⎧=-+=-+.04,072y x y x ,解得⎩⎨⎧==,1,3y x 即l 恒过定点A(3,1).因为圆心C(1,2),|AC |=5<5(半径),所以点A 在圆C内,从而直线l 恒与圆C 相交于两点. (2)弦长最小时,l⊥AC,由k AC =-21,所以l 的方程为2x -y -5=0. 点评:证明直线与圆恒相交,一是可以将直线与圆的方程联立方程组,进而转化为一元二次方程,根据判别式与0的大小来判断,这是通性通法,但过程繁琐,计算量大;二是说明直线过圆内一点,由此直线与圆必相交.对于圆中过A 点的弦,以直径为最长,过A 点与此直径垂直的弦为最短.变式训练求圆x 2+y 2+4x-2y+4=0上的点到直线y=x-1的最近距离和最远距离.解:圆方程化为(x+2)2+(y-1)2=1,圆心(-2,1)到直线y=x-1的距离为d=22)1(1|112|-+---=22,所以所求的最近距离为22-1,最远距离为22+1.(四)知能训练1.已知直线l:y=2x -2,圆C:x 2+y 2+2x +4y +1=0,请判断直线l 与圆C 的位置关系,若相交,则求直线l 被圆C 所截的线段长.活动:请大家独立思考,多想些办法.然后相互讨论,比较解法的不同之处.学生进行解答,教师巡视,掌握学生的一般解题情况.解法一:由方程组⎩⎨⎧=++++-=.0142,2222x x y x x y 解得⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧-==,4,154,53y x y x 或 即直线l 与圆C 的交点坐标为(53,-54)和(-1,-4),则截得线段长为558. 解法二:由方程组(略)消去y,得5x 2+2x -3=0,设直线与圆交点为A(x 1,y 1),B(x 2,y 2),则AB 中点为(-51,-512), 所以⎪⎪⎩⎪⎪⎨⎧-=•-=+,53,522111x x y x 得(x 1-x 2)2=2564, 则所截线段长为|AB|=(1+k 2)(x 1-x 2)2=558. 解法三:圆心C 为(-1,-2),半径r=2,设交点为A 、B,圆心C 到直线l 之距d=552,所以5542||22=-=d r AB .则所截线段长为|AB|=558. 点评:前者直接求交点坐标,再用两点距离公式求值;后者虽然也用两点距离公式,但借用韦达定理,避免求交点坐标.解法三利用直线与圆的位置关系,抓住圆心到直线之距d 及圆半径r 来求解.反映了抓住本质能很快接近答案的特点.显然,解法三比较简洁.2.已知直线x+2y-3=0交圆x 2+y 2+x-6y+F=0于点P 、Q,O 为原点,问F 为何值时,OP⊥OQ?解:由⎪⎩⎪⎨⎧=+-++=-+06,03222F y x y x y x 消去y,得5x 2+10x+4F-27=0, 所以x 1x 2=5274-F ,x 1+x 2=-2. 所以y 1y 2=51249)(34)3)(3(212121F x x x x x x +=++-=--. 因为OP⊥OQ,所以x 1x 2+y 1y 2=0,即5125274F F ++-=0.所以F=3. 点评:(1)解本题之前先要求学生指出解题思路.(2)体会垂直条件是怎样转化的,以及韦达定理的作用:处理x 1,x 2的对称式.在解析几何中经常运用韦达定理来简化计算.(五)拓展提升已知点P 到两个定点M(-1,0)、N(1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程.解:设点P 的坐标为(x,y),由题设有||||PN PM =2,即22)1(y x ++=2·22)1(y x +-,整理得x 2+y 2-6x+1=0. ①因为点N 到PM 的距离为1,|MN|=2,所以∠PMN=30°,直线PM 的斜率为±33. 直线PM 的方程为y=±33(x+1).② 将②代入①整理,得x 2-4x+1=0.解得x 1=2+3,x 2=2-3. 代入②得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y=x -1或y=-x+1.(六)课堂小结1.直线和圆位置关系的判定方法:代数法和几何法.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.注意弦长公式和圆的几何性质.4.求与圆有关的最值问题,往往利用数形结合,因此抽象出式子的几何意义是至关重要的.(七)作业课本习题4.2 A 组5、6、7.§4.2.2 圆与圆的位置关系一、教材分析本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上结合前面学习的点与圆、直线与圆的位置关系,得到圆与圆的位置关系的几何方法,用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的常用方法.因此,增加了用代数方法来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧对今后整个圆锥曲线的学习有着非常重要的意义.根据学生的基础,学习的自觉性和主动性,自主学习和探究学习能力,平时的学习养成的善于观察、分析和思考的习惯,同时由于本节课从内容结构与思维方法上与直线与圆的位置关系相似,学生对上节课内容掌握较好,从而本节课从学生学习的角度来看不会存在太多的障碍,因而教学方法可以是引导学生从类比直线与圆位置关系来自主研究圆与圆的位置关系.二、教学目标1.知识与技能。
必修二 4.2.1直线与圆的位置关系教案一、教学目标1、知识与技能:能根据给定直线、圆的方程,判断直线与圆的位置关系。
2、过程与方法:通过具体事例探究直线与圆的位置关系,经历利用点到直线距离来判断直线与圆位置关系的过程,学会求弦长或圆的切线的方法。
3、情感态度与价值观:通过观察图形,理解并掌握直线与圆的位置关系,培养数形结合的思想。
二、教学重点、难点:重点:直线与圆的位置关系的几何图形及其判断方法。
难点:用坐标法判直线与圆的位置关系。
三、教学过程(一)实例引入例1、已知直线l :3x + y – 6 = 0和圆心为C 的圆04222=--+y y x ,判断直线l 与圆C 的位置关系;如果相交,求直线l 被圆C 所截得的弦长。
问题1:在平面几何中,直线与圆的位置关系有几种?(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点。
问题2:在初中,我们怎样判断直线与圆的位置关系?如何用直线和圆的方程判断它们之间的位置关系?方法一:联立方程组,考察方程组有无实数解;方法二:依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系。
(二)问题解决解法一:联立方程组:023042063222=+-⇒⎩⎨⎧=--+=-+x x y y x y x ,因为判别式△ > 0,所以直线l 与圆C 相交,有两个公共点。
解法二:圆心C (0,1),半径5=r ,圆心C 到直线l 的距离5210<=d ,所以直线l 与圆C 相交。
结论:判断直线l 与圆C 的位置关系的方法:1、判断直线l 与圆C 组成的方程组是否有解:(1)有两组实数解,则直线l 与圆C 相交;(2)有一组实数解,则直线l 与圆C 相切;(3)没有实数解,则直线l 与圆C 相离。
2、判断圆C 的圆心C 到直线的距离与圆的半径的关系:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;拓展:如何求直线l 被圆C 所截得的弦AB 的长?解法一:联立方程组,消去一个未知数,得关于的一元二次方程:思路一:求出交点的坐标,由两点间的距离公式求得弦长。
课题 4.2.1 直线与圆的位置关系课时 第 1 课时课型 新授课授课班级课时教学 目标(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系.教学重点、难点1、直线与圆的位置关系的几何图形及其判断方法.2、用坐标法判直线与圆的位置关系.教 学 方 法实验用具及教具教学过程设计教师教学活动设计学生活动设计 一、问题提出: 在初中,我们怎样判断直线与圆的位置关系呢? 二、探索求解:如何用直线与圆的方程判断它们之间的位置关系呢?①代数法:判断直线l 与圆C 的方程组成的方程组是否有解。
如果有解,直线l 与圆C 有公共点。
有两组实数解时,直线l 与圆C 相交;有一组实数解时,直线l 与圆C 相切;无实数解时,直线l 与圆C 相离,即△>0直线l 与圆C 相交;△=0直线l 与圆C 相切;△<0直线l 与圆C 相离。
②几何法:判断圆心到直线的距离d 与半径r 的关系,即d <r 直线l 与圆C 相交;d =r 直线l 与圆C 相切;d >r直线l 与圆C 相离。
三、例题选讲例1:已知直线l :052=+-y x 与圆C :36)1()7(22=-+-y x .(1)判断直线l 圆的位置关系; (2)求直线l 被圆C 所截得的弦长. 点拨:运用代数法或几何法求解。
归纳:1、运用代数的方法来求解的,运算虽然烦琐了一些,但此方法是一种 通法,更具有一般性,它对讨论直线与二次曲线的相关问题都适用;2、几何方法来求解只对圆适用,也是一种较为简便的方法.交点的个数 数形结合练习1、 完成P128练习教学过程设计。
4.2.1 直线与圆的位置关系(一)教学目标 1.知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. (二)过程与方法设直线l :ax + by + c = 0,圆C :x 2 + y 2 + Dx + Ey + F = 0,圆的半径为r ,圆心(,)22D E --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当d >r 时,直线l 与圆C 相离; (2)当d =r 时,直线l 与圆C 相切; (3)当d <r 时,直线l 与圆C 相交; 3.情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.(二)教学重点、难点重点:直线与圆的位置关系的几何图形及其判断方法. 难点:用坐标法判定直线与圆的位置关系. (三)教学过程设想 教学环节 教学内容师生互动设计意图复习引1.初中学过的师;让学生之间进行启入平面几何中,直线与圆的位置关系有几类?讨论、交流,引导学生观察图形,导入新课.生:看图,并说出自己的看法.发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.概念形成2.直线与圆的位置关系有哪几种呢?三种(1)直线与圆相交,有两个公共点.(2)直线与圆相切,只有一个公共点.(3)直线与圆相离,没有公共点.师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.生:观察图形,利用类比的方法,归纳直线与圆的位置关系.得出直线与圆的位置关系的几何特征与种类.概念深化3.在初中,我们怎样判断直线与师:引导学生回忆初中判断直线与圆的位置使学生回圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?关系的思想过程.生:回忆直线与圆的位置关系的判断过程.忆初中的数学知识,培养抽象概括能力.4.你能说出判断直线与圆的位置关系的两种方法吗?方法一:利用圆心到直线的距离d.方法二:利用直线与圆的交点个数.师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.生:利用图形,寻找两种方法的数学思想.抽象判断直线与圆的位置关系的思路与方法.应用举例5.你能用两种判断直线与圆的位置关系的数学思想解决例1的问题吗?例 1 如图,师:指导学生阅读教科书上的例1.生:仔细阅读教科书上的例1,并完成教科书第140页的练习题2.例 1 解法一:由直线l与圆的方程,得体会判断直线与圆的位置关系的思想方法,关①②已知直线l:3x +y– 6 = 0和圆心为C的圆x2 + y2–2y– 4 = 0,判断直线l与圆的位置关系;如果相交,求它们交点的坐标.分析:方法一:由直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系.22360240x yx y y+-=⎧⎨+--=⎩消去y,得x2– 3x+ 2 = 0,因为△= (–3)2–4×1×2= 1>0所以,直线l与圆相交,有两个公共点.解法二:圆x2 + y2–2y–4 = 0可化为x2+(y– 1)2 =5,其圆心C的坐标为(0,1),半径长为5,点C (0,1)到直线l的距离d =22|3016|51031⨯+-=+<5.所以,直线l与圆相交,有两个公共点.由x2–3x + 2 = 0,解得x1 =2,x2 = 1.把x1=2代入方程①,得y1= 0;把x2=1代入方程①,注量与量之间的关系.使学生熟悉判断直线与圆的位置关系的基本步骤.6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?例 2 已知过点M (–3,–3)的直线l被圆x2+ y2 + 4y–21 = 0所截得的弦长为45,求直线l的方程. 得y2= 0;所以,直线l与圆有两个交点,它们的坐标分别是A(2,0),B(1,3).生:阅读例1.师:分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.生:交流自己总结的步骤.师:展示解题步骤.例2 解:将圆的方程写成标准形式,得x2 + (y2 + 2)2 =25,所以,圆心的坐标是(0,–2),半径长r =5. 如图,因为直线l的距离为45,所以弦心距为22455()52-=,即圆心到所求直线l 的距离为5.因为直线l 过点M (–3,–3),所以可设所求直线l 的方程为y + 3 = k (x + 3),即k x – y + 3k –3 = 0.根据点到直线的距离公式,得到圆心到直线l 的距离d =2|233|1k k +-+.因此,2|233|51k k +-=+, 即|3k –1|=255k +,两边平方,并整理得到2k 2 –3k –2 = 0, 解得k =12,或k =2.所以,所求直线l 有两条,它们的方程分别为y + 3 =12(x + 3),或y+ 3 = 2(x+ 3).即x +2y = 0,或2x –y + 3 = 0.7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?8.通过例2的学习,你发现了什么?半弦、弦心距、半径构成勾股弦关系.师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.生:阅读教科书上的例2,并完成137页的练习题.师:引导并启发学生探索直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法.进一步深化“数形结合”的数学思想.明确弦长的运算方法.9.完成教科书第136页的练习题1、2、3、4.师:引导学生完成练习题.生:互相讨论、交流,完成练习题.巩固所学过的知识,进一步理解和掌握直线与圆的位置关系.归纳总结10.课堂小结:教师提出下列问题让学生思考:(1)通过直线与圆的位置关系的判断,你学到了什么?(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?(3)如何求出直线与圆的相交弦长?师生共同回顾回顾、反思、总结形成知识体系课外作业布置作业:见习题4.2 第一课时学生独立完成巩固所学知识备选例题例1 已知圆的方程x2 + y2 = 2,直线y = x + b,当b为何值时,(1)圆与直线有两个公共点; (2)圆与直线只有一个公共点; (3)圆与直线没有公共点.解法1:圆心O (,0)到直线y = x + b 的距离为||2b d =,圆的半径2r =.(1)当d <r ,即–2<b <2时,直线与圆相交,有两个公共点;(2)当d = r ,即b = 2±时,直线与圆相切,有一个公共点;(3)当d >r ,即b >2或b <–2时,直线与圆相离, 无公共点. 解法2:联立两个方程得方程组222x y y x b ⎧+=⎨=+⎩.消去y 2得2x 2 + 2bx + b 2 – 2 = 0,∆=16 – 4b 2.(1)当∆>0,即–2 <b <2时,直线与圆有两个公共点; (2)当∆=0,即2b =±时,直线与圆有一个公共点; (3)当∆<0即b >2或b <–2时,直线与圆无公共点.例2 直线m 经过点P (5,5)且和圆C :x 2 + y 2 = 25相交,截得弦长l 为45,求m 的方程.【解析】设圆心到直线m 的距离为 d ,由于圆的半径r = 5,弦长的一半252l=, 所以由勾股定理,得:225(25)5d =-=,所以设直线方程为y – 5 = k (x – 5) 即kx – y + 5 – 5k = 0. 由2|55|51k k-=+ ,得12k =或k = 2.所以直线m 的方程为x – 2y + 5 = 0或2x – y – 5 = 0.例3 已知圆C :x 2 + y 2 – 2x + 4y – 4 = 0. 问是否存在斜率为1的直线l , 使l 被圆C 截得弦AB 满足:以AB 为直径的圆经过原点.【解析】假设存在且设l 为:y = x + m ,圆C 化为(x – 1)2 – (y + 2)2 = 9,圆心C (1,–2).解方程组2(1)y x m y x =+⎧⎨+=--⎩得AB 的中点N 的坐标11(,)22m m N +--,由于以AB 为直径的圆过原点,所以|AN | = |ON |. 又22(3)||||||92m AN CA CN +=-=-,2211||()()22m m ON +-=-+所以22(3)(1)19()222m m m ++--=+解得m = 1或m = –4.所以存在直线l ,方程为x – y + 1 = 0和x – y – 4 = 0, 并可以检验,这时l 与圆是相交于两点的.。
4. 2.1 直线与圆的位置关系【教学目标】1.能根据给定的直线、圆的方程,判断直线与圆的位置关系.2.通过直线与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.【教学重难点】教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判直线与圆的位置关系. 【教学过程】㈠情景导入、展示目标 问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西80km 处,受影响的范围是半径长为30km 的圆形区域.已知港口位于台风中心正北40km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?运用平面几何知识,你能解决这个问题吗?请同学们动手试一下. ㈡检查预习、交流展示1.初中学过的平面几何中,直线与圆的位置关系有几种? 2.怎样判断直线与圆的位置关系呢? ㈢合作探究、精讲精练探究一:用直线的方程和圆的方程怎样判断它们之间的位置关系?教师:利用坐标法,需要建立直角坐标系,为使直线与圆的方程应用起来简便,在这个实际问题中如何建立直角坐标系?学生:以台风中心为原点O ,东西方向为x 轴,建立直角坐标系,其中,取10km 为单位长度.则受台风影响的圆形区域所对应的圆心为O 的圆的方程为922=+y x轮船航线所在直线 l 的方程为082=-+y x .教师:请同学们运用已有的知识,从方程的角度来研究一下直线与圆的位置关系. 让学生自主探究,互相讨论,探究知识之间的内在联系。
教师对学生在知识上进行适当的补遗,思维上的启迪,方法上点拨,鼓励学生积极、主动的探究. 由学生回答并补充,总结出以下两种解决方法: 方法一:代数法由直线与圆的方程,得:⎩⎨⎧=-+=+082922y x y x 消去y ,得0,74x 2x 2=+-因为040724(-4)2<△-=⨯⨯-= 所以,直线与圆相离,航线不受台风影响。
4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系整体设计教学分析学生在初中的学习中已了解直线与圆的位置关系,并知道可以利用直线与圆的交点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系,但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现.在高一学习了解析几何以后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法.解决问题的方法主要是几何法和代数法.其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系从而作出判断.适可而止地引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”.含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度地引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度.虽然学生学习解析几何了,但把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质.三维目标1.理解直线与圆的位置关系,明确直线与圆的三种位置关系的判定方法,培养学生数形结合的数学思想.2.会用点到直线的距离来判断直线与圆的位置关系及会利用直线与圆的位置关系解决相关的问题,让学生通过观察图形,明确数与形的统一性和联系性.重点难点教学重点:直线与圆的位置关系的几何图形及其判断方法.教学难点:用坐标法判断直线与圆的位置关系.课时安排2课时教学过程第1课时导入新课思路1.平面解析几何是高考的重点和热点内容,每年的高考试题中有选择题、填空题和解答题,考查的知识点有直线方程和圆的方程的建立、直线与圆的位置关系等,本节主要学习直线与圆的关系. 思路2.(复习导入)(1)直线方程Ax+By+C=0(A,B 不同时为零).(2)圆的标准方程(x-a)2+(y-b)2=r 2,圆心为(a,b),半径为r.(3)圆的一般方程x 2+y 2+Dx+Ey+F=0(其中D 2+E 2-4F >0),圆心为(-2D ,-2E),半径为21F E D 422-+.推进新课 新知探究 提出问题①初中学过的平面几何中,直线与圆的位置关系有几类? ②在初中,我们怎样判断直线与圆的位置关系呢? ③如何用直线与圆的方程判断它们之间的位置关系呢? ④判断直线与圆的位置关系有几种方法?它们的特点是什么?讨论结果:①初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种.②直线与圆的三种位置关系的含义是: 直线与圆的位置关系 公共点个数圆心到直线的距离d与半径r 的关系图形相交 两个 d <r 相切 只有一个 d=r相离没有d >r③方法一,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系. ④直线与圆的位置关系的判断方法: 几何方法步骤:1°把直线方程化为一般式,求出圆心和半径.2°利用点到直线的距离公式求圆心到直线的距离.3°作判断:当d >r 时,直线与圆相离;当d=r 时,直线与圆相切;当d <r 时,直线与圆相交. 代数方法步骤:1°将直线方程与圆的方程联立成方程组.2°利用消元法,得到关于另一个元的一元二次方程. 3°求出其判别式Δ的值.4°比较Δ与0的大小关系,若Δ>0,则直线与圆相离;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相交.反之也成立. 应用示例思路1例1 已知直线l :3x+y-6=0和圆心为C 的圆x 2+y 2-2y-4=0,判断直线l 与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.解法一:由直线l 与圆的方程,得⎪⎩⎪⎨⎧=--+=-+)2(.042)1(,06322y y x y x消去y,得x 2-3x+2=0,因为Δ=(-3)2-4³1³2=1>0,所以直线l 与圆相交,有两个公共点. 解法二:圆x 2+y 2-2y-4=0可化为x 2+(y-1)2=5,其圆心C 的坐标为(0,1),半径长为5,圆心C到直线l 的距离d=2213|1603|+-+⨯=105<5.所以直线l 与圆相交,有两个公共点.由x 2-3x+2=0,得x 1=2,x 2=1.把x 1=2代入方程①,得y 1=0;把x 2=1代入方程①,得y 2=3.所以直线l 与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3).点评:比较两种解法,我们可以看出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程组求解.例2 已知圆的方程是x 2+y 2=2,直线y=x+b,当b 为何值时,圆与直线有两个公共点,只有一个公共点没有公共点.活动:学生思考或交流,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价.我们知道,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解,或依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.反过来,当已知圆与直线的位置关系时,也可求字母的取值范围,所求曲线公共点问题可转化为b 为何值时,方程组⎪⎩⎪⎨⎧+==+bx y y x ,222有两组不同实数根、有两组相同实根、无实根的问题.圆与直线有两个公共点、只有一个公共点、没有公共点的问题,可转化为b 为何值时圆心到直线的距离小于半径、等于半径、大于半径的问题.解法一:若直线l :y=x+b 和圆x 2+y 2=2有两个公共点、只有一个公共点、没有公共点,则方程组⎪⎩⎪⎨⎧+==+bx y y x ,222有两个不同解、有两个相同解、没有实数解,消去y,得2x 2+2bx+b 2-2=0, 所以Δ=(2b)2-4³2(b 2-2)=16-4b 2.所以,当Δ=16-4b 2>0,即-2<b <2时,圆与直线有两个公共点;当Δ=16-4b 2=0,即b=±2时,圆与直线只有一个公共点;当Δ=16-4b 2<0,即b >2或b <-2时,圆与直线没有公共点. 解法二:圆x 2+y 2=2的圆心C 的坐标为(0,0),半径长为2,圆心C 到直线l:y=x+b 的距离d=2||11|0101|22b b =+-⨯+⨯-.当d >r 时,即2||b >2,即|b|>2,即b >2或b <-2时,圆与直线没有公共点;当d=r 时,即2||b =2,即|b|=2,即b=±2时,圆与直线只有一个公共点;当d <r 时,即2||b <2,即|b|<2,即-2<b <2时,圆与直线有两个公共点.点评:由于圆的特殊性,判断圆与直线的位置关系,多采用圆心到直线的距离与半径的大小进行比较的方法,而以后我们将要学习的圆锥曲线与直线位置关系的判断,则需要利用方程组解的个数来判断. 变式训练已知直线l 过点P(4,0),且与圆O :x 2+y 2=8相交,求直线l 的倾斜角α的取值范围. 解法一:设直线l 的方程为y=k(x-4),即kx-y-4k=0,因为直线l 与圆O 相交,所以圆心O 到直线l 的距离小于半径, 即1|4|2+-k k <22,化简得k 2<1,所以-1<k <1,即-1<tan α<1.当0≤tan α<1时,0≤α<4π;当-1<tan α<0时,43π<α<π.所以α的取值范围是[0,4π)∪(43π,π).解法二:设直线l 的方程为y=k(x-4),由⎪⎩⎪⎨⎧=+-=,8),4(22y x x k y ,消去y 得(k 2+1)x 2-8k 2x+16k 2-8=0. 因为直线l 与圆O 相交,所以Δ=(-8k 2)2-4(k 2+1)(16k 2-8)>0,化简得k 2<1.(以下同解法一) 点评:涉及直线与圆的位置关系的问题,常可运用以上两种方法.本题若改为选择题或填空题,也可利用图形直接得到答案.思路2例1 已知圆的方程是x 2+y 2=r 2,求经过圆上一点M(x 0,y 0)的切线方程.活动:学生思考讨论,教师提示学生解题的思路,引导学生回顾直线方程的求法,既考虑通法又考虑图形的几何性质.此切线过点(x 0,y 0),要确定其方程,只需求出其斜率k,可利用待定系数法(或直接求解).直线与圆相切的几何特征是圆心到切线的距离等于圆的半径,切线与法线垂直.解法一:当点M 不在坐标轴上时,设切线的斜率为k,半径OM 的斜率为k 1, 因为圆的切线垂直于过切点的半径,所以k=-11k . 因为k 1=00x y 所以k=-00y x .所以经过点M 的切线方程是y-y 0=-00y x(x-x 0). 整理得x 0x+y 0y=x 02+y 02.又因为点M(x 0,y 0)在圆上,所以x 02+y 02=r 2. 所以所求的切线方程是x 0x+y 0y=r 2.当点M 在坐标轴上时,可以验证上面的方程同样适用.解法二:设P(x,y)为所求切线上的任意一点,当P 与M 不重合时,△OPM 为直角三角形,OP 为斜边,所以OP 2=OM 2+MP 2,即x 2+y 2=x 02+y 02+(x-x 0)2+(y-y 0)2.整理得x 0x+y 0y=r 2.可以验证,当P 与M 重合时同样适合上式,故所求的切线方程是x 0x+y 0y=r 2. 解法三:设P(x,y)为所求切线上的任意一点,当点M 不在坐标轴上时,由OM⊥MP 得k OM ²k MP =-1,即0x y ²x x y y --00=-1,整理得x 0x+y 0y=r 2.可以验证,当点M 在坐标轴上时,P 与M 重合,同样适合上式,故所求的切线方程是x 0x+y 0y=r 2.点评:如果已知圆上一点的坐标,我们可直接利用上述方程写出过这一点的切线方程. 变式训练求过圆C:(x-a)2+(y-b)2=r 2上一点M(x 0,y 0)的圆的切线方程.解:设x 0≠a,y 0≠b,所求切线斜率为k,则由圆的切线垂直于过切点的半径,得k=by ax k CM---=-001,所以所求方程为y-y 0=by ax ---00(x-x 0),即(y-b)(y 0-b)+(x-a)(x 0-a)=(x 0-a)2+ (y 0-b)2.又点M(x 0,y 0)在圆上,则有(x 0-a)2+(y 0-b)2=r 2. 代入上式,得(y-b)(y 0-b)+(x-a)(x 0-a)=r 2.当x 0=a,y 0=b 时仍然成立,所以过圆C:(x-a)2+(y-b)2=r 2上一点M(x 0,y 0)的圆的切线方程为(y-b)(y 0-b)+(x-a)(x 0-a)=r 2.例2 从点P(4,5)向圆(x -2)2+y 2=4引切线,求切线方程.活动:学生思考交流,提出解题的方法,回想直线方程的求法,先验证点与圆的位置关系,再利用几何性质解题.解:把点P(4,5)代入(x -2)2+y 2=4,得(4-2)2+52=29>4,所以点P 在圆(x -2)2+y 2=4外.设切线斜率为k,则切线方程为y -5=k(x -4),即kx -y +5-4k=0.又圆心坐标为(2,0),r=2.因为圆心到切线的距离等于半径,即1|4502|2+-+-k k k =2,k=2021. 所以切线方程为21x -20y +16=0.当直线的斜率不存在时还有一条切线是x=4.点评:过圆外已知点P(x,y)的圆的切线必有两条,一般可设切线斜率为k,写出点斜式方程,再利用圆心到切线的距离等于半径,写出有关k 的方程.求出k,因为有两条,所以应有两个不同的k 值,当求得的k 值只有一个时,说明有一条切线斜率不存在,即为垂直于x 轴的直线,所以补上一条切线x=x 1. 变式训练求过点M(3,1),且与圆(x-1)2+y 2=4相切的直线l 的方程. 解:设切线方程为y-1=k(x-3),即kx-y-3k+1=0,因为圆心(1,0)到切线l 的距离等于半径2, 所以22)1(|13|-++-k k k =2,解得k=-43. 所以切线方程为y-1=-43(x-3),即3x+4y-13=0. 当过点M 的直线的斜率不存在时,其方程为x=3,圆心(1,0)到此直线的距离等于半径2,故直线x=3也符合题意.所以直线l 的方程是3x+4y-12=0或x=3.例3 (1)已知直线l :y=x+b 与曲线C :y=21x -有两个不同的公共点,求实数b 的取值范围;(2)若关于x 的不等式21x ->x+b 解集为R,求实数b 的取值范围.图1解:(1)如图1(数形结合),方程y=x+b 表示斜率为1,在y 轴上截距为b 的直线l ; 方程y=21x -表示单位圆在x 轴上及其上方的半圆, 当直线过B 点时,它与半圆交于两点,此时b=1,直线记为l 1; 当直线与半圆相切时,b=2,直线记为l 2.直线l 要与半圆有两个不同的公共点,必须满足l 在l 1与l 2之间(包括l 1但不包括l 2), 所以1≤b<2,即所求的b 的取值范围是[1,2).(2)不等式21x ->x+b 恒成立,即半圆y=21x -在直线y=x+b 上方, 当直线l 过点(1,0)时,b=-1,所以所求的b 的取值范围是(-∞,-1). 点评:利用数形结合解题,有时非常方便直观. 知能训练本节练习2、3、4. 拓展提升圆x 2+y 2=8内有一点P 0(-1,2),AB 为过点P 0且倾斜角为α的弦.(1)当α=43π时,求AB 的长; (2)当AB 的长最短时,求直线AB 的方程. 解:(1)当α=43π时,直线AB 的斜率为k=tan 43π=-1,所以直线AB 的方程为y-2=-(x+1),即y=-x+1.解法一:(用弦长公式)由⎪⎩⎪⎨⎧=++-=,8,122y x x y 消去y,得2x 2-2x-7=0, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=1,x 1x 2=-27, 所以|AB|=2)1(1-+|x 1-x 2|=2²212214)(x x x x -+=2²)27(41-⨯-=30.解法二:(几何法)弦心距d=21,半径r=22,弦长|AB|=230218222=-=-dr . (2)当AB 的长最短时,OP 0⊥AB,因为k OP0=-2,k AB =21,直线AB 的方程为y-2=21(x+1), 即x-2y+5=0. 课堂小结(1)判断直线与圆的位置关系的方法:几何法和代数法. (2)求切线方程. 作业习题4.2 A 组1、2、3.设计感想本节课是在学习了点和圆的位置关系的基础上进行的,是为后面的圆与圆的位置关系作铺垫的一节课.本节的主题是直线和圆,在解析几何中,直线与圆的关系是一个非常重要的知识点,可以对学生的思维有一个很好的锻炼,将几种重要的数学思想灌输给学生.首先,一开始的复习提问全面又突出重点,特别是“初中学习的如何判断直线和圆的位置关系?”这个问题,为学生思考提供了很好的引导.其次对于例题的选择有很高的要求,好的例题是一个好教案的重要保证.在例题的设计方面,本教案共分为三个层次来一步步的推进,让学生由浅入深,从思维容量上层层递进,对学生的思考和分析都有很好的引导作用,通过思路1的例题1、2对直线与圆的几种位置关系作了巩固,是每个学生都必须也能够掌握的.但这几题虽是基础题也并不是平淡无奇的题,它印证了判定的条件和结论在一定条件下是可以转化的.通过思路2的例题1、2,对圆的切线方程的求法进行了说明和总结.这个知识点与“直线与圆”联系起来,而且同时又渗透了数形结合的思想.让学生通过具体的练习,通过自主地思考、研究,来体会数学思想对我们解题和研究的作用.例题3的设计给学生留下了讨论的空间,不仅将与直线与圆有关的各知识点联系了起来,而且还通过各知识点之间的联系、综合应用,组织学生一起思考起来,对应用的加强更是体现了“分类活动,激发潜能”的基本要求.。
4.2.1 直线与圆的位置关系(一)教学目标1.知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系.(二)过程与方法设直线l :ax + by + c = 0,圆C :x 2 + y 2 + Dx + Ey + F = 0,圆的半径为r ,圆心(,)22D E --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当d >r 时,直线l 与圆C 相离;(2)当d =r 时,直线l 与圆C 相切;(3)当d <r 时,直线l 与圆C 相交3.情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.(二)教学重点、难点重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判定直线与圆的位置关系.分析:方法一:由直与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直即圆心到所求直线l的距离为因为直线l过点M (–所以可设所求直线l的方程为 + 3 = k (x + 3),k x–y + 3k–3 = 0.例1 已知圆的方程x 2 + y 2 = 2,直线y = x + b ,当b 为何值时, (1)圆与直线有两个公共点; (2)圆与直线只有一个公共点; (3)圆与直线没有公共点.解法1:圆心O (,0)到直线y = x + b 的距离为d =r =(1)当d <r ,即–2<b <2时,直线与圆相交,有两个公共点; (2)当d = r ,即b = 2±时,直线与圆相切,有一个公共点; (3)当d >r ,即b >2或b <–2时,直线与圆相离, 无公共点.解法2:联立两个方程得方程组222x y y x b⎧+=⎨=+⎩.消去y 2得2x 2 + 2bx + b 2 – 2 = 0,∆=16 – 4b 2.(1)当∆>0,即–2 <b <2时,直线与圆有两个公共点;(2)当∆=0,即2b =±时,直线与圆有一个公共点; (3)当∆<0即b >2或b <–2时,直线与圆无公共点.例2 直线m 经过点P (5,5)且和圆C :x 2 + y 2 = 25相交,截得弦长l 为m 的方程.【解析】设圆心到直线m 的距离为 d ,由于圆的半径r = 5,弦长的一半2l=,所以由勾股定理,得:d 所以设直线方程为y – 5 = k (x – 5) 即kx – y + 5 – 5k = 0.=,得12k =或k = 2. 所以直线m 的方程为x – 2y + 5 = 0或2x – y – 5 = 0.例3 已知圆C :x 2 + y 2 – 2x + 4y – 4 = 0. 问是否存在斜率为1的直线l , 使l 被圆C 截得弦AB 满足:以AB 为直径的圆经过原点.【解析】假设存在且设l 为:y = x + m ,圆C 化为(x – 1)2 – (y + 2)2 = 9,圆心C (1,–2).解方程组2(1)y x m y x =+⎧⎨+=--⎩得AB 的中点N 的坐标11(,)22m m N +--,由于以AB 为直径的圆过原点,所以|AN | = |ON |.又||AN ==,||ON =所以22(3)(1)19()222m m m ++--=+解得m = 1或m = –4.所以存在直线l ,方程为x – y + 1 = 0和x – y – 4 = 0, 并可以检验,这时l 与圆是相交于两点的.。
4.2.1 直线与圆的位置关系【教学目标】1.能根据给定的直线、圆的方程,判断直线与圆的位置关系.2.通过直线与圆的位置关系的学习,体会用代数方法解决几何问题的思想. 3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.【教学重难点】教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判直线与圆的位置关系. 【教学过程】 ㈠情景导入、展示目标 问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西80km 处,受影响的X 围是半径长为30km 的圆形区域.已知港口位于台风中心正北40km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?运用平面几何知识,你能解决这个问题吗?请同学们动手试一下. ㈡检查预习、交流展示1.初中学过的平面几何中,直线与圆的位置关系有几种? 2.怎样判断直线与圆的位置关系呢? ㈢合作探究、精讲精练探究一:用直线的方程和圆的方程怎样判断它们之间的位置关系?教师:利用坐标法,需要建立直角坐标系,为使直线与圆的方程应用起来简便,在这个实际问题中如何建立直角坐标系?学生:922=+y x轮船航线所在直线 l 的方程为082=-+y x .教师:请同学们运用已有的知识,从方程的角度来研究一下直线与圆的位置关系. 让学生自主探究,互相讨论,探究知识之间的内在联系。
教师对学生在知识上进行适当的补遗,思维上的启迪,方法上点拨,鼓励学生积极、主动的探究. 由学生回答并补充,总结出以下两种解决方法: 方法一:代数法由直线与圆的方程,得:⎩⎨⎧=-+=+082922y x y x 消去y ,得0,74x 2x 2=+-因为040724(-4)2<△-=⨯⨯-= 所以,直线与圆相离,航线不受台风影响。
方法二:几何法圆心(0,0)到直线082=-+y x 的距离3558582180201d 22〉==+-⨯+⨯=所以,直线与圆相离,航线不受台风影响.探究二:判断直线与圆的位置关系有几种方法? 让学生通过实际问题的解决,对比总结,掌握方法. ①代数法:由方程组⎩⎨⎧=-+-=++222)()(0rb y a x C By Ax , 得)0(022≠=++m p nx mx ,mp n 42-=∆0>∆,则方程组有两解,直线与圆相交;0=∆,则方程组有一解,直线与圆相切;0<∆,则方程组无解,直线与圆相离. ②几何法:直线与圆相交 ,则r d <;直线与圆相切 ,则r d =;直线与圆相离 ,则r d >.例1 已知直线l :x +y -5=0和圆C:0126422=-+-+y x yx ,判断直线和圆的位置关系.解析:方法一,判断直线与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系.解:(法一) 联立方程组,消y 得0432022=+-x x因为()021********>=⨯⨯-=∆-所以直线与圆相交.(法二) 将圆的方程化为()()532222=++-y x .可得圆心C(2,-3),半径r=5. 因为圆心到直线的距离d=23<5, 所以直线与圆相交.点评:巩固用方程判断直线与圆位置关系的两种方法. 变式1.判断直线x -y +5=0和圆C:0126422=-+-+y x yx 的位置关系.解:将圆的方程化为()()532222=++-y x .可得圆心C(2,-3),半径r=5. 因为圆心到直线的距离d=25>5, 所以直线与圆相离.例2.求直线l :3x-y-6=0被圆C:04222=--+y x yx 截得的弦AB的长.解析:可以引导学生画图分析几何性质. 解:(法一)将圆的方程化为()()52122=+--y x .可得圆心C(1,2),半径r=5. 圆心到直线的距离21010623=--=d . 弦AB的长102552=-=AB . (法二)联立方程组,消y 得0652=+-x x得3,221==xx ,则3,021==yy ,所以直线l 被圆C截得的弦AB的长()()10303222=+=--AB .(法三)联立方程组,消y 得0652=+-x x根据一元二次方程根与系数的关系,有.6,52121==+x x xx直线l 被圆C截得的弦AB的长()()()()10641421153222122=⨯-+=⎥⎦⎤⎢⎣⎡-+=+x x x x k AB点评:强调图形在解题中的辅助作用,加强了形与数的结合. ㈣反馈测试导学案当堂检测㈤总结反思、共同提高【板书设计】一.直线与圆的位置关系(1)相交,两个交点;(2)相切,一个交点;(3)相离,无交点.方法一方法二三.判断直线与圆位置关系的方法四.例题例1变式1例2【作业布置】导学案课后练习与提高4.2.1 直线与圆的位置关系学案课前预习学案一.预习目标回忆直线与圆的位置关系有几种及几何特征,初步了解用方程判断直线与圆的位置关系的方法.二.预习内容1.初中学过的平面几何中,直线与圆的位置关系有几种?2.怎样判断直线与圆的位置关系呢?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.能根据给定的直线、圆的方程,判断直线与圆的位置关系.2.通过直线与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.学习重点:直线与圆的位置关系的几何图形及其判断方法. 学习难点:用坐标法判直线与圆的位置关系. 二.学习过程 问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西80km 处,受影响的X 围是半径长为30km 的圆形区域.已知港口位于台风中心正北40km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?探究一:用直线的方程和圆的方程怎样判断它们之间的位置关系? 1.如何建立直角坐标系?2.根据直角坐标系写出直线和圆的方程.3.怎样用方程判断他们的位置关系?探究二:判断直线与圆的位置关系有几种方法?例1 已知直线l :x +y -5=0和圆C:0126422=-+-+y x yx ,判断直线和圆的位置关系.变式1.判断直线x -y +5=0和圆C:0126422=-+-+y x yx 的位置关系.例2.求直线l :3x-y-6=0被圆C:04222=--+y x yx 截得的弦AB的长.三.反思总结四.当堂检测1.已知直线5120x y a -+=与圆2220x x y -+=相切,则a 的值为( ) A .8 B .-18 C .-18或8 D .不存在2.设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平 分线方程是.3.求经过点A (2,-1),和直线x+y=1相切,且圆心在直线y= -2x 上的圆的方程.参考答案:1.C 2.0323=--y x 3.解:设圆的方程为(x-a )2+(y-b )2=r 2由题意则有()()⎪⎪⎩⎪⎪⎨⎧-==-+=--+-a b r b a r b a 221122222 解得a=1,b=-2,r=2,故所求圆的方程为 (x-1)2+(y+2)2=2.课后练习与提高1.直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值X 围是( )A .21)B .(2121)C .(221)D .21)0422=-+x y x 在点)3,1(P 处的切线方程为A 、023=-+y x B 、043=-+y x C 、043=+-y x D 、023=+-y x3.若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为22则直线l 的倾斜角的取值X 围是 ( ) A.[,124ππ] B.[5,1212ππ] C.[,]63ππD.[0,]2π4.设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为23,则a =____________.5.已知圆)0()5(:222>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共点,则r 的取值X 围是. 6.已知圆822=+yx ,定点P(4,0),问过P 点的直线斜率在什么X 围内取值时,这条直线与已知圆(1)相切?(2)相交?(3)相离?参考答案:1.A 2.D 3.B 4.0 5.6.解:设过P 点的直线方程为y=k(x-4). 联立方程组,消y 得()0816812222=-+-+k k x k x判别式()k 2132-=∆.(1)当Δ=0,即1±=k 时,直线与圆相切; (2)当Δ>0,即-1<k<1时,直线与圆相交; (3)当Δ<0,即k>1或k<-1时,直线与圆相离.word 11 / 11。
第一课时 4.2.1直线与圆的位置关系(1课时)教学要求:理解和掌握直线与圆的位置关系,利用直线与圆的位置关系解决一些实际问题。
教学重点:直线与圆的位置关系教学难点:直线与圆的位置关系的几何判定. 教学过程: 一、复习准备:1. 在初中我们知道直线现圆有三种位置关系:(1)相交,有一两个公共点;(2)相切,只有一个公共点;(3)相离,没有公共点。
2. 在初中我们知道怎样判断直线与圆的位置关系?现在如何用直线和圆的方程判断它们之间的位置关系? 二、讲授新课:设直线:0l Ax By C ++=,圆()()222:C x a y b r -+-=圆心到直线的距离22Aa Bb C d A B++=+1. 利用直线与圆的位置直观特征导出几何判定:比较圆心到直线的距离d 与圆的半径r ① dr ⇔直线与圆相交②d r =⇔直线与圆相切③d r ⇔直线与圆相离2.看直线与圆组成的方程组有无实数解: 有解,直线与圆有公共点.有一组则相切:有两组,则相交:b 无解,则相离 3.例题讲解:例1 直线y x =与圆()2221x y r +-=相切,求r 的值例2 如图1,已知直线:360l x y +-=和圆心为C 的圆22240x y y +--=.判断直线l 与圆的位置关系;如果相交,求出他们交点的坐标.例3 如图2,已知直线l 过点()5,5M 且和圆22:25C x y +=相交,截得弦长为45,求l 的方程 练习.已知超直线:3230l x y +-=,圆22:4C x y +=求直线l 被圆C 截得的弦长4.小结:判断直线与圆的位置关系有两种方法 (1) 判断直线与圆的方程组是否有解a 有解,直线与圆有公共点.有一组则相切;有两组,则相交b 无解,则直线与圆相离(2) 圆心到直线的距离与半径的关系:22Aa Bb C d A B++=+如果d r < 直线与圆相交; 如果d r =直线与圆相切; 如果d r >直线与圆相离.三、巩固练习:1.圆222430x y x y +++-=上到直线:10l x y ++=的距离为2的点的坐标2.求圆心在直线23x y -=上,且与两坐标轴相切的圆的方程.3.若直线430x y a -=+=与圆22100x y +=(1)相交(2)相切(3)相离分别求实数a 的取值范围 四.作业:p140 4题第二课时 4.2.2圆与圆的位置关系教学要求:能根据给定圆的方程,判断圆与圆的位置关系; 教学重点:能根据给定圆的方程,判断圆与圆的位置关系 教学难点:用坐标法判断两圆的位置关系教学过程: 一、复习准备1. 两圆的位置关系有哪几种?2. 设圆两圆的圆心距设为d.当d R r >+时,两圆 当d R r =+时,两圆当||R r d R r -<<+ 时,两圆 当||d R r =+时,两圆当|d R r <+时,两圆3.如何根据圆的方程,判断它们之间的位置关系?(探讨) 二、讲授新课:1.两圆的位置关系利用半径与圆心距之间的关系来判断例1. 已知圆221:2880C x y x y +++-=,圆222:4420C x y x y ++--=,试判断圆1C 与圆2C 的关系?(配方→圆心与半径→探究圆心距与两半径的关系) 2. 两圆的位置关系利用圆的方程来判断方法:通常是通过解方程或不等式和方法加以解决例2圆1C 的方程是:2222450x y mx y m +-++-=圆2C 的方程是: 2222230x y x my m ++-+-=, m 为何值时,两圆(1)相切.(2)相交(3)相离(4)内含思路:联立方程组→讨论方程的解的情况(消元法、判别式法)→交点个数→位置关系) 练习:已知两圆2260x y x +-=与224x y y m +-=,问m 取何值时,两圆相切。
4.示范教案(4.2.1 直线与圆的位置关系第2课时)导入新课思路1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域.已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图2分析:如图2,以台风中心为原点O,以东西方向为x轴,建立直角坐标系,其中,取10 km为单位长度.则台风影响的圆形区域所对应的圆心为O的圆的方程为x2+y2=9;轮船航线所在的直线l的方程为4x+7y-28=0.问题归结为圆心为O的圆与直线l有无公共点.因此我们继续研究直线与圆的位置关系.推进新课新知探究提出问题①过圆上一点可作几条切线?如何求出切线方程?②过圆外一点可作几条切线?如何求出切线方程?③过圆内一点可作几条切线?④你能概括出求圆切线方程的步骤是什么吗?⑤如何求直线与圆的交点?⑥如何求直线与圆的相交弦的长?讨论结果:①过圆上一点可作一条切线,过圆x2+y2=r2上一点(x0,y0)的切线方程是x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要条件——Δ=0去求出k的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k的值.③过圆内一点不能作圆的切线.④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k的值.⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求.应用示例思路1例1 过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组⎪⎩⎪⎨⎧=++=,1),2(22y x x k y 得x 2+k 2(x+2)2=1. 上述一元二次方程有一个实根, Δ=16k 4-4(k 2+1)(4k 2-1)=12k 2-4=0,k=±33, 所以所求切线的方程为y=±33(x+2). 方法二:设所求切线的斜率为k,则切线方程为y=k(x+2),由于圆心到切线的距离等于圆的半径(d=r),所以d=21|2|k k +=1,解得k=±33. 所以所求切线的方程为y=±33(x+2). 方法三:利用过圆上一点的切线的结论.可假设切点为(x 0,y 0),此时可求得切线方程为x 0x+y 0y=1.然后利用点(-2,0)在切线上得到-2x 0=1,从中解得x 0=-21. 再由点(x 0,y 0)在圆上,所以满足x 02+y 02=1,既41+y 02=1,解出y 0=±23.这样就可求得切线的方程为22102320+--±=+-x y ,整理得y=±33(x+2). 点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r”比较好(简便). 变式训练已知直线l 的斜率为k,且与圆x 2+y 2=r 2只有一个公共点,求直线l 的方程. 活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得 d=21||k b +=r,∴b=±r 21k +,求得切线方程是y=kx±r 21k +.方法二:设所求的直线方程为y=kx+b,直线l 与圆x 2+y 2=r 2只有一个公共点,所以它们组成的方程组只有一组实数解,由⎪⎩⎪⎨⎧=++=222,ry x b kx y ,得x 2+k 2(x+b)2=1,即x 2(k 2+1)+2k 2bx+b 2=1,Δ=0得b=±r 21k +,求得切线方程是y=kx±r 21k +.例2 已知圆的方程为x 2+y 2+ax+2y+a 2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a 的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+2a )2+(y+1)2=4342a -,圆心C 的坐标为(-2a ,-1),半径r=4342a -,条件是4-3a 2>0,过点A(1,2)所作圆的切线有两条,则点A 必在圆外, 即22)12()21(+++a >4342a -.化简,得a 2+a+9>0,由⎪⎩⎪⎨⎧>->++,034,0922a a a 解得-332<a <332,a ∈R . 所以-332<a <332. 故a 的取值范围是(-332,332).点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同时注意圆的一般方程的条件.思路2 例1 已知过点M(-3,-3)的直线l 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线l 的方程. 活动:学生思考或讨论,教师引导学生考虑问题的思路,求直线l 的方程,一般设点斜式,再求斜率.这里知道弦长,半径也知道,所以弦心距可求,如果设出直线的方程,由点到直线的距离等于弦心距求出斜率;另外也可利用弦长公式,结合一元二次方程根与系数的关系求解.解法一:将圆的方程写成标准形式有x 2+(y+2)2=25,所以圆心为(0,-2),半径为5.因为直线l被圆x 2+y 2+4y-21=0所截得的弦长为45,所以弦心距为22)52(5-=5,圆心到直线的距离为5,由于直线过点M(-3,-3),所以可设直线l 的方程为y+3=k(x+3),即kx-y+3k-3=0.根据点到直线的距离公式,圆心到直线的距离为5,因此d=1|332|2+-+k k =5,两边平方整理得2k 2-3k-2=0,解得k=21,k=2. 所以所求的直线l 的方程为y+3=21(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.解法二:设直线l 和已知圆x 2+y 2+4y-21=0的交点为A(x 1,y 1),B(x 2,y 2),直线l 的斜率为k,由于直线过点M(-3,-3),所以可设直线l 的方程为y+3=k(x+3),即y=kx+3k-3.代入圆的方程x 2+y 2+4y-21=0,并整理得(1+k 2)x 2+2k(3k-1)x+(3k-1)2-25=0.结合一元二次方程根与系数的关系有x 1+x 2=21)13(2k k k +--,x 1·x 2=22125)13(k k +--.①|AB|==-+=-+-=-+-22122212221221221))(1()()()()(x x k x x k x x y y x x]4))[(1(212212x x x x k ∙-++因为|AB|=45,所以有(1+k 2)[(x 1+x 2)2-4x 1·x 2]=80.②把①式代入②式,得(1+k 2){[21)13(2kk k +--]2-422125)13(k k +--}=80.经过整理,得2k 2-3k-2=0,解得k=21,k=2.所以所求的直线l 的方程为y+3=21(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.点评:解法一突出了适当地利用图形的几何性质有助于简化计算,强调图形在解题中的作用,加强了数形结合;解法二是利用直线被曲线截得的弦长公式求出斜率后求直线方程,思路简单但运算较繁. 变式训练已知圆C :x 2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交于不同两点A 、B,若|AB|=17,求l 的倾斜角; (3)求弦AB 的中点M 的轨迹方程; (4)若定点P(1,1)分弦AB 为PB AP =21,求此时直线l 的方程. 解:(1)判断圆心到直线的距离小于半径即可,或用直线系过定点P(1,1)求解;点P(1,1)在圆内.(2)利用弦心距、半径、弦构成的直角三角形求弦长,得m=±3,所以α=3π或32π. (3)设M 的坐标为(x,y),连结CM 、CP,因为C(0,1),P(1,1),|CM|2+|PM|2=|CP|2,所以x 2+(y-1)2+(x-1)2+(y-1)2=1,整理得轨迹方程为x 2+y 2-x-2y+1=0(x≠1). (4)设A(x 1,y 1),B(x 2,y 2),由PBAP =21,得21212++x x =1.①又由直线方程和圆的方程联立消去y,得(1+m 2)x 2-2m 2x+m 2-5=0,(*) 故x 1+x 2=2212m m +,②由①②,得x 1=2213m m ++,代入(*),解得m=±1.所以直线l 的方程为x-y=0或x+y-2=0.例2 已知直线l:y=k(x+22)与圆O:x 2+y 2=4相交于A 、B 两点,O 为坐标原点,△ABO 的面积为S,①试将S 表示成k 的函数S(k),并指出它的定义域;②求S 的最大值,并求出取得最大值时的k 值.活动:学生审题,再思考讨论,教师提示学生欲求△ABO 的面积,应先求出直线被圆截得的弦长|AB|,将|AB|表示成k 的函数.图5解:①如图5所示,直线的方程为kx-y+22k=0(k≠0), 点O 到l 之间的距离为|OC|=1||222+k k ,弦长|AB|=22222221141842||||kk k k OC OA +-=+-=-, ∴△ABO 的面积S=21|AB|·|OC|=2221)1(24kk k +-∙, ∵|AB|>0,∴-1<k <1(k≠0). ∴S(k)=`2221)1(24kk k +-∙(-1<k <1且k≠0).②△ABO 的面积S=21|OA|·|OB|sin∠AOB=2sin∠AOB, ∴当∠AOB=90°时,S max =2, 此时|OC|=2,|OA|=2,即1||222+k k =2,∴k=±33. 点评:在涉及到直线被圆截得的弦长时,要巧妙利用圆的有关几何性质,如本题中的Rt△BOC,其中|OB|为圆半径,|BC|为弦长的一半. 变式训练已知x,y 满足x 2+y 2-2x+4y=0,求x-2y 的最大值.活动:学生审题,再思考讨论,从表面上看,此问题是一个代数,可用代数方法来解决.但细想后会发现比较复杂,它需把二次降为一次.教师提示学生利用数形结合或判别式法.解法一:(几何解法):设x-2y=b,则点(x,y)既在直线x-2y=b 上,又在圆x 2+y 2-2x+4y=0上,即直线x-2y=b 和圆x 2+y 2-2x+4y=0有交点,故圆心(1,-2)到直线的距离小于或等于半径, 所以5|5|b -≤5.所以0≤b≤10,即b 的最大值是10.解法二:(代数解法):设x-2y=b,代入方程x 2+y 2-2x+4y=0,得(2y+b)2+y 2-2(2y+b)+4y=0,即5y 2+4by+b 2-2b=0.由于这个一元二次方程有解,所以其判别式Δ=16b 2-20(b 2-2b)=40b-4b 2≥0,即b 2-10b≤0,0≤b≤10.所以求出b 的最大值是10.点评:比较两个解法,我们可以看到,数形结合的方法难想但简单,代数法易想但较繁,要多练习以抓住规律.例3 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m+1)x+(m+1)y -7m -4=0(m ∈R ). (1)证明不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 活动:学生先思考,然后讨论,教师引导学生考虑问题的方法,由于直线过定点,如果该定点在圆内,此题便可解得.最短的弦就是与过定点与此直径垂直的弦. 解:(1)证明:因为l 的方程为(x+y -4)+m(2x+y -7)=0.因为m ∈R ,所以⎩⎨⎧=-+=-+.04,072y x y x ,解得⎩⎨⎧==,1,3y x 即l 恒过定点A(3,1).因为圆心C(1,2),|AC |=5<5(半径),所以点A 在圆C内,从而直线l 恒与圆C 相交于两点. (2)弦长最小时,l⊥AC,由k AC =-21,所以l 的方程为2x -y -5=0. 点评:证明直线与圆恒相交,一是可以将直线与圆的方程联立方程组,进而转化为一元二次方程,根据判别式与0的大小来判断,这是通性通法,但过程繁琐,计算量大;二是说明直线过圆内一点,由此直线与圆必相交.对于圆中过A 点的弦,以直径为最长,过A 点与此直径垂直的弦为最短. 变式训练求圆x 2+y 2+4x-2y+4=0上的点到直线y=x-1的最近距离和最远距离.解:圆方程化为(x+2)2+(y-1)2=1, 圆心(-2,1)到直线y=x-1的距离为d=22)1(1|112|-+---=22,所以所求的最近距离为22-1,最远距离为22+1.知能训练1.已知直线l:y=2x -2,圆C:x 2+y 2+2x +4y +1=0,请判断直线l 与圆C 的位置关系,若相交,则求直线l 被圆C 所截的线段长.活动:请大家独立思考,多想些办法.然后相互讨论,比较解法的不同之处.学生进行解答,教师巡视,掌握学生的一般解题情况.解法一:由方程组⎩⎨⎧=++++-=.0142,2222x x y x x y 解得⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧-==,4,154,53y x y x 或 即直线l 与圆C 的交点坐标为(53,-54)和(-1,-4),则截得线段长为558. 解法二:由方程组(略)消去y,得5x 2+2x -3=0, 设直线与圆交点为A(x 1,y 1),B(x 2,y 2),则AB 中点为(-51,-512),所以⎪⎪⎩⎪⎪⎨⎧-=∙-=+,53,522111x x y x 得(x 1-x 2)2=2564,则所截线段长为|AB|=(1+k 2)(x 1-x 2)2=558. 解法三:圆心C 为(-1,-2),半径r=2,设交点为A 、B,圆心C 到直线l 之距d=552,所以5542||22=-=d r AB .则所截线段长为|AB|=558.点评:前者直接求交点坐标,再用两点距离公式求值;后者虽然也用两点距离公式,但借用韦达定理,避免求交点坐标.解法三利用直线与圆的位置关系,抓住圆心到直线之距d 及圆半径r 来求解.反映了抓住本质能很快接近答案的特点.显然,解法三比较简洁.2.已知直线x+2y-3=0交圆x 2+y 2+x-6y+F=0于点P 、Q,O 为原点,问F 为何值时,OP⊥OQ?解:由⎪⎩⎪⎨⎧=+-++=-+06,03222F y x y x y x 消去y,得5x 2+10x+4F-27=0, 所以x 1x 2=5274-F ,x 1+x 2=-2. 所以y 1y 2=51249)(34)3)(3(212121Fx x x x x x +=++-=--.因为OP⊥OQ,所以x 1x 2+y 1y 2=0,即5125274FF ++-=0.所以F=3. 点评:(1)解本题之前先要求学生指出解题思路.(2)体会垂直条件是怎样转化的,以及韦达定理的作用:处理x 1,x 2的对称式.在解析几何中经常运用韦达定理来简化计算. 拓展提升已知点P 到两个定点M(-1,0)、N(1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程. 解:设点P的坐标为(x,y),由题设有||||PN PM =2,即22)1(y x ++=2·22)1(y x +-,整理得x 2+y 2-6x+1=0. ① 因为点N 到PM 的距离为1,|MN|=2,所以∠PMN=30°,直线PM 的斜率为±33. 直线PM 的方程为y=±33(x+1). ② 将②代入①整理,得x 2-4x+1=0.解得x 1=2+3,x 2=2-3.代入②得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y=x -1或y=-x+1. 课堂小结1.直线和圆位置关系的判定方法:代数法和几何法.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.注意弦长公式和圆的几何性质.4.求与圆有关的最值问题,往往利用数形结合,因此抽象出式子的几何意义是至关重要的. 作业课本习题4.2 A组5、6、7.设计感想本节课是研究直线与圆的位置关系的第二课时,以学生进行自主探索学习为主线,沿用研究问题的科学方法,首先观察探索、寻找规律,最后严格推理求解,很好地体现新课程理念.在教学过程中,打破传统课堂模式,首先由问题引入,强调研究直线与圆的位置关系的重要意义,充分激发学生求知欲望,接着学生回顾刚学过的直线与圆的位置关系的有关知识,并设计两个思路的例题从不同的侧面探索研究,自主地进行学习.例题设置目的在于“以点带面,举一反三”.以直线与圆的位置关系来加深体会数与形的内在联系,比较求解所截线段长的方法,目的在于强化思维的灵活性,突出数形结合思想,在解决问题的过程中,使思路更加清晰、条理更清楚.这样有利于突出教学重点,突破教学难点.本节课除了设置两道巩固练习外,还精心编制多道为教学进一步延伸的问题,给学生课后继续进行自主探索创设问题情境,关注学生的持续学习,培养其自学能力,同时也为后续的教学作好铺垫.充分地体现学生的主体地位.教师关注学生发展的差异,帮助有困难的学生.还通过展示学生探索的成果,促进师生之间互相交流,让学生获得成就感,激发学习的兴趣.。
直线与圆的位置关系(复习)一、教学目标1、掌握直线与圆的位置关系并会用两种方法判断直线与圆的位置关系。
2、熟练掌握切线性质,会求切线长,能熟练应用切线三角形,会求圆的切线方程。
3、掌握相交弦三角形的性质,能用多种思维解决轨迹方程问题,熟练掌握函数、方程、曲线交点的内在联系。
4、注重函数方程思想、等价转换思想、分类讨论思想、数形结合等思想的渗透,提高学生解题能力。
二、教学重难点重点:对位置关系判断、相切问题,相交问题基本题型的熟练应用。
难点:在解题过程中能将试题中涉及到的数学思想提炼出来。
三、教学过程设计视频,思考为什么视频中仅有一条切线学生回答切线长度的最小值找学生上台讲解此时圆心(1,0)-到直线240kx y k--+=2|24|31k kdk--+==+得724k=即直线方程为724820x y-+=故直线方程为2x=或724820x y-+=小结反思:切记直线斜率不存在的情况例3:直线2:50l x y--=上一点M,过M作圆C22:(1)9x y++=切线,求切线长度的最小值。
最小值为3 (构造切线三角形)变式3:直线2:50l x y--=上一点M,过M作圆:C22(1)9x y++=切线,若切点为,A B,求四边形CABM面积的最小值。
面积的最小值为9小结反思:⎧⎪⇒⎨⎪⎩切线长的最小值三角形面积的最小值点到直线的距离四边形面积的最小值程教师提问教师引导学生上台展问题探究三:相交问题例4:求直线:10l x y--=被圆:C22(1)9x y++=截得弦AB的长。
教师引导示这一题的四种方法学生观看几何画板后,思考多种解法学生找该同学的错误学生上台讲解变式与例题的区别和联系弦27AB=变式4:已知圆:C22(1)9x y++=,求过点(0,1)P的弦中点的轨迹方程。
代数法向量法斜率(考虑斜率不存在的情况)几何法小结反思:首选向量法例5:若曲线229(0)x y y+=>与直线(3)4y k x=-+有两个交点,求k的取值范围。
4.示范教案(4.2.1 直线与圆的位置关系第2课时)导入新课思路1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域.已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图2分析:如图2,以台风中心为原点O,以东西方向为x轴,建立直角坐标系,其中,取10 km 为单位长度.则台风影响的圆形区域所对应的圆心为O的圆的方程为x2+y2=9;轮船航线所在的直线l的方程为4x+7y-28=0.问题归结为圆心为O的圆与直线l有无公共点.因此我们继续研究直线与圆的位置关系. 推进新课新知探究提出问题①过圆上一点可作几条切线?如何求出切线方程?②过圆外一点可作几条切线?如何求出切线方程?③过圆内一点可作几条切线?④你能概括出求圆切线方程的步骤是什么吗?⑤如何求直线与圆的交点?⑥如何求直线与圆的相交弦的长?讨论结果:①过圆上一点可作一条切线,过圆x2+y2=r2上一点(x0,y0)的切线方程是x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要条件——Δ=0去求出k的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k 的值.③过圆内一点不能作圆的切线.④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k的值.⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求.应用示例思路1例1 过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组⎪⎩⎪⎨⎧=++=,1),2(22y x x k y 得x 2+k 2(x+2)2=1. 上述一元二次方程有一个实根, Δ=16k 4-4(k 2+1)(4k 2-1)=12k 2-4=0,k=±33, 所以所求切线的方程为y=±33(x+2). 方法二:设所求切线的斜率为k,则切线方程为y=k(x+2),由于圆心到切线的距离等于圆的半径(d=r),所以d=21|2|k k +=1,解得k=±33. 所以所求切线的方程为y=±33(x+2). 方法三:利用过圆上一点的切线的结论.可假设切点为(x 0,y 0),此时可求得切线方程为x 0x+y 0y=1.然后利用点(-2,0)在切线上得到-2x 0=1,从中解得x 0=-21. 再由点(x 0,y 0)在圆上,所以满足x 02+y 02=1,既41+y 02=1,解出y 0=±23. 这样就可求得切线的方程为22102320+--±=+-x y , 整理得y=±33(x+2).点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r”比较好(简便). 变式训练已知直线l 的斜率为k,且与圆x 2+y 2=r 2只有一个公共点,求直线l 的方程. 活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得 d=21||k b +=r,∴b=±r 21k +,求得切线方程是y=kx±r 21k +.方法二:设所求的直线方程为y=kx+b,直线l 与圆x 2+y 2=r 2只有一个公共点,所以它们组成的方程组只有一组实数解,由⎪⎩⎪⎨⎧=++=222,ry x b kx y ,得x 2+k 2(x+b)2=1,即x 2(k 2+1)+2k 2bx+b 2=1,Δ=0得b=±r 21k +,求得切线方程是y=kx±r 21k +.例2 已知圆的方程为x 2+y 2+ax+2y+a 2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a 的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+2a )2+(y+1)2=4342a -,圆心C 的坐标为(-2a ,-1),半径r=4342a -,条件是4-3a 2>0,过点A(1,2)所作圆的切线有两条,则点A 必在圆外, 即22)12()21(+++a >4342a -. 化简,得a 2+a+9>0,由⎪⎩⎪⎨⎧>->++,034,0922a a a 解得-332<a <332,a ∈R . 所以-332<a <332.故a 的取值范围是(-332,332).点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同时注意圆的一般方程的条件.思路2 例1 已知过点M(-3,-3)的直线l 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线l 的方程.活动:学生思考或讨论,教师引导学生考虑问题的思路,求直线l 的方程,一般设点斜式,再求斜率.这里知道弦长,半径也知道,所以弦心距可求,如果设出直线的方程,由点到直线的距离等于弦心距求出斜率;另外也可利用弦长公式,结合一元二次方程根与系数的关系求解.解法一:将圆的方程写成标准形式有x 2+(y+2)2=25,所以圆心为(0,-2),半径为5.因为直线l 被圆x 2+y 2+4y-21=0所截得的弦长为45,所以弦心距为22)52(5-=5,圆心到直线的距离为5,由于直线过点M(-3,-3),所以可设直线l 的方程为y+3=k(x+3),即kx-y+3k-3=0.根据点到直线的距离公式,圆心到直线的距离为5,因此d=1|332|2+-+k k =5,两边平方整理得2k 2-3k-2=0,解得k=21,k=2. 所以所求的直线l 的方程为y+3=21(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.解法二:设直线l 和已知圆x 2+y 2+4y-21=0的交点为A(x 1,y 1),B(x 2,y 2),直线l 的斜率为k,由于直线过点M(-3,-3),所以可设直线l 的方程为y+3=k(x+3),即y=kx+3k-3.代入圆的方程x 2+y 2+4y-21=0,并整理得(1+k 2)x 2+2k(3k-1)x+(3k-1)2-25=0.结合一元二次方程根与系数的关系有x 1+x 2=21)13(2k k k +--,x 1·x 2=22125)13(k k +--.① |AB|==-+=-+-=-+-22122212221221221))(1()()()()(x x k x x k x x y y x x ]4))[(1(212212x x x x k ∙-++因为|AB|=45,所以有(1+k 2)[(x 1+x 2)2-4x 1·x 2]=80.②把①式代入②式,得(1+k 2){[21)13(2k k k +--]2-422125)13(kk +--}=80.经过整理,得2k 2-3k-2=0,解得k=21,k=2.所以所求的直线l 的方程为y+3=21(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.点评:解法一突出了适当地利用图形的几何性质有助于简化计算,强调图形在解题中的作用,加强了数形结合;解法二是利用直线被曲线截得的弦长公式求出斜率后求直线方程,思路简单但运算较繁. 变式训练已知圆C :x 2+(y-1)2=5,直线l:mx-y+1-m=0. (1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交于不同两点A 、B,若|AB|=17,求l 的倾斜角; (3)求弦AB 的中点M 的轨迹方程; (4)若定点P(1,1)分弦AB 为PB AP =21,求此时直线l 的方程. 解:(1)判断圆心到直线的距离小于半径即可,或用直线系过定点P(1,1)求解;点P(1,1)在圆内.(2)利用弦心距、半径、弦构成的直角三角形求弦长,得m=±3,所以α=3π或32π. (3)设M 的坐标为(x,y),连结CM 、CP,因为C(0,1),P(1,1),|CM|2+|PM|2=|CP|2,所以x 2+(y-1)2+(x-1)2+(y-1)2=1,整理得轨迹方程为x 2+y 2-x-2y+1=0(x≠1). (4)设A(x 1,y 1),B(x 2,y 2),由PBAP =21,得21212++x x =1.①又由直线方程和圆的方程联立消去y,得(1+m 2)x 2-2m 2x+m 2-5=0,(*) 故x 1+x 2=2212m m +,②由①②,得x 1=2213m m ++,代入(*),解得m=±1.所以直线l 的方程为x-y=0或x+y-2=0.例2 已知直线l:y=k(x+22)与圆O:x 2+y 2=4相交于A 、B 两点,O 为坐标原点,△ABO 的面积为S,①试将S 表示成k 的函数S(k),并指出它的定义域;②求S 的最大值,并求出取得最大值时的k 值.活动:学生审题,再思考讨论,教师提示学生欲求△ABO 的面积,应先求出直线被圆截得的弦长|AB|,将|AB|表示成k 的函数.图5解:①如图5所示,直线的方程为kx-y+22k=0(k≠0), 点O 到l 之间的距离为|OC|=1||222+k k ,弦长|AB|=22222221141842||||kk k k OC OA +-=+-=-, ∴△ABO 的面积S=21|AB|·|OC|=2221)1(24kk k +-∙, ∵|AB|>0,∴-1<k <1(k≠0). ∴S(k)=`2221)1(24k k k +-∙(-1<k <1且k≠0).②△ABO 的面积S=21|OA|·|OB|sin∠AOB=2sin∠AOB,∴当∠AOB=90°时,S max =2, 此时|OC|=2,|OA|=2,即1||222+k k =2,∴k=±33. 点评:在涉及到直线被圆截得的弦长时,要巧妙利用圆的有关几何性质,如本题中的Rt△BOC,其中|OB|为圆半径,|BC|为弦长的一半. 变式训练已知x,y 满足x 2+y 2-2x+4y=0,求x-2y 的最大值.活动:学生审题,再思考讨论,从表面上看,此问题是一个代数,可用代数方法来解决.但细想后会发现比较复杂,它需把二次降为一次.教师提示学生利用数形结合或判别式法.解法一:(几何解法):设x-2y=b,则点(x,y)既在直线x-2y=b 上,又在圆x 2+y 2-2x+4y=0上,即直线x-2y=b 和圆x 2+y 2-2x+4y=0有交点,故圆心(1,-2)到直线的距离小于或等于半径, 所以5|5|b -≤5.所以0≤b≤10,即b 的最大值是10.解法二:(代数解法):设x-2y=b,代入方程x 2+y 2-2x+4y=0,得(2y+b)2+y 2-2(2y+b)+4y=0,即5y 2+4by+b 2-2b=0.由于这个一元二次方程有解,所以其判别式Δ=16b 2-20(b 2-2b)=40b-4b 2≥0,即b 2-10b≤0,0≤b≤10.所以求出b 的最大值是10. 点评:比较两个解法,我们可以看到,数形结合的方法难想但简单,代数法易想但较繁,要多练习以抓住规律.例3 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m+1)x+(m+1)y -7m -4=0(m ∈R ). (1)证明不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 活动:学生先思考,然后讨论,教师引导学生考虑问题的方法,由于直线过定点,如果该定点在圆内,此题便可解得.最短的弦就是与过定点与此直径垂直的弦. 解:(1)证明:因为l 的方程为(x+y -4)+m(2x+y -7)=0.因为m ∈R ,所以⎩⎨⎧=-+=-+.04,072y x y x ,解得⎩⎨⎧==,1,3y x 即l 恒过定点A(3,1).因为圆心C(1,2),|AC |=5<5(半径),所以点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)弦长最小时,l⊥AC,由k AC =-21,所以l 的方程为2x -y -5=0. 点评:证明直线与圆恒相交,一是可以将直线与圆的方程联立方程组,进而转化为一元二次方程,根据判别式与0的大小来判断,这是通性通法,但过程繁琐,计算量大;二是说明直线过圆内一点,由此直线与圆必相交.对于圆中过A 点的弦,以直径为最长,过A 点与此直径垂直的弦为最短. 变式训练求圆x 2+y 2+4x-2y+4=0上的点到直线y=x-1的最近距离和最远距离.解:圆方程化为(x+2)2+(y-1)2=1, 圆心(-2,1)到直线y=x-1的距离为d=22)1(1|112|-+---=22,所以所求的最近距离为22-1,最远距离为22+1. 知能训练1.已知直线l:y=2x -2,圆C:x 2+y 2+2x +4y +1=0,请判断直线l 与圆C 的位置关系,若相交,则求直线l 被圆C 所截的线段长.活动:请大家独立思考,多想些办法.然后相互讨论,比较解法的不同之处.学生进行解答,教师巡视,掌握学生的一般解题情况.解法一:由方程组⎩⎨⎧=++++-=.0142,2222x x y x x y 解得⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧-==,4,154,53y x y x 或 即直线l 与圆C 的交点坐标为(53,-54)和(-1,-4),则截得线段长为558. 解法二:由方程组(略)消去y,得5x 2+2x -3=0, 设直线与圆交点为A(x 1,y 1),B(x 2,y 2),则AB 中点为(-51,-512),所以⎪⎪⎩⎪⎪⎨⎧-=∙-=+,53,522111x x y x 得(x 1-x 2)2=2564,则所截线段长为|AB|=(1+k 2)(x 1-x 2)2=558. 解法三:圆心C 为(-1,-2),半径r=2,设交点为A 、B,圆心C 到直线l 之距d=552,所以5542||22=-=d r AB .则所截线段长为|AB|=558. 点评:前者直接求交点坐标,再用两点距离公式求值;后者虽然也用两点距离公式,但借用韦达定理,避免求交点坐标.解法三利用直线与圆的位置关系,抓住圆心到直线之距d 及圆半径r 来求解.反映了抓住本质能很快接近答案的特点.显然,解法三比较简洁.2.已知直线x+2y-3=0交圆x 2+y 2+x-6y+F=0于点P 、Q,O 为原点,问F 为何值时,OP⊥OQ?解:由⎪⎩⎪⎨⎧=+-++=-+06,03222F y x y x y x 消去y,得5x 2+10x+4F-27=0,所以x 1x 2=5274-F ,x 1+x 2=-2. 所以y 1y 2=51249)(34)3)(3(212121Fx x x x x x +=++-=--.因为OP⊥OQ,所以x 1x 2+y 1y 2=0,即5125274FF ++-=0.所以F=3. 点评:(1)解本题之前先要求学生指出解题思路.(2)体会垂直条件是怎样转化的,以及韦达定理的作用:处理x 1,x 2的对称式.在解析几何中经常运用韦达定理来简化计算. 拓展提升已知点P 到两个定点M(-1,0)、N(1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程. 解:设点P的坐标为(x,y),由题设有||||PN PM =2,即22)1(y x ++=2·22)1(y x +-,整理得x 2+y 2-6x+1=0. ① 因为点N 到PM 的距离为1,|MN|=2,所以∠PMN=30°,直线PM 的斜率为±33. 直线PM 的方程为y=±33(x+1).②将②代入①整理,得x 2-4x+1=0.解得x 1=2+3,x 2=2-3.代入②得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y=x -1或y=-x+1. 课堂小结1.直线和圆位置关系的判定方法:代数法和几何法.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.注意弦长公式和圆的几何性质.4.求与圆有关的最值问题,往往利用数形结合,因此抽象出式子的几何意义是至关重要的. 作业课本习题4.2 A 组5、6、7.设计感想本节课是研究直线与圆的位置关系的第二课时,以学生进行自主探索学习为主线,沿用研究问题的科学方法,首先观察探索、寻找规律,最后严格推理求解,很好地体现新课程理念.在教学过程中,打破传统课堂模式,首先由问题引入,强调研究直线与圆的位置关系的重要意义,充分激发学生求知欲望,接着学生回顾刚学过的直线与圆的位置关系的有关知识,并设计两个思路的例题从不同的侧面探索研究,自主地进行学习.例题设置目的在于“以点带面,举一反三”.以直线与圆的位置关系来加深体会数与形的内在联系,比较求解所截线段长的方法,目的在于强化思维的灵活性,突出数形结合思想,在解决问题的过程中,使思路更加清晰、条理更清楚.这样有利于突出教学重点,突破教学难点.本节课除了设置两道巩固练习外,还精心编制多道为教学进一步延伸的问题,给学生课后继续进行自主探索创设问题情境,关注学生的持续学习,培养其自学能力,同时也为后续的教学作好铺垫.充分地体现学生的主体地位.教师关注学生发展的差异,帮助有困难的学生.还通过展示学生探索的成果,促进师生之间互相交流,让学生获得成就感,激发学习的兴趣.。