最新【人教版适用】初一数学上册《【说课稿】 角的比较与运算》
- 格式:doc
- 大小:31.50 KB
- 文档页数:3
人教版数学七年级上册4.3.2《角的比较和运算》教案一. 教材分析《角的比较和运算》是人教版数学七年级上册第四章第三节的内容,本节内容主要让学生掌握角的比较方法,了解角的大小与边的长短没有关系,学会用符号表示角的大小,以及学会角的运算方法。
教材通过生活实例和几何图形,引导学生探究角的大小与边的长短之间的关系,从而引出角的符号表示方法,再通过角的加减运算,让学生进一步理解和掌握角的概念。
二. 学情分析七年级的学生已经掌握了角的基本概念,对于角的画法和识别有一定的基础。
但是,对于角的比较和运算,他们可能还不太熟悉,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对于角的符号表示方法感到困惑,需要教师进行详细的解释和引导。
三. 教学目标1.让学生掌握角的比较方法,了解角的大小与边的长短没有关系。
2.让学生学会用符号表示角的大小。
3.让学生学会角的运算方法。
四. 教学重难点1.角的比较方法。
2.角的符号表示方法。
3.角的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生活实例和几何图形,引导学生探究角的大小与边的长短之间的关系,从而引出角的符号表示方法,再通过角的加减运算,让学生进一步理解和掌握角的概念。
六. 教学准备1.PPT课件。
2.几何图形。
3.练习题。
七. 教学过程导入(5分钟)通过一个生活实例,如钟表的指针所形成的角度,引导学生思考角的大小与边的长短之间的关系。
让学生认识到角的大小与边的长短没有关系,而是与角的开口大小有关。
呈现(10分钟)通过PPT课件,展示各种几何图形中的角,让学生观察和比较这些角的大小。
引导学生发现,角的大小与边的长短没有关系,而是与角的开口大小有关。
操练(10分钟)让学生用尺子和圆规画出不同大小的角,并比较这些角的大小。
教师巡回指导,解答学生的疑问。
巩固(10分钟)让学生用符号表示所画出的角的大小。
例如,用“∠1”表示第一个角,“∠2”表示第二个角,等等。
4.3.2 角的比较与运算说课稿一.教材分析:本节课是在学生已经学习了线段的比较、角的概念、角的表示方法、角的单位和度量的基础上开始学习的.角的比较方法与线段的比较方法类似, 有度量法和叠合法两种方法.角的和差与线段的和差一样,主要是从形上说明它的意义,并用符号表示,在图形与等之间建立一种关系.把几何意义和度数的数量表示结合起来,达到数与形的结合.教学重点角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义这是重点.难点(考点角平分线的几何语言的表达方式的选择这是难点,也是考点.教学目标:1.认知目标:掌握角的两种比较方法, 角的和、差运算和角平分线的概念.2. 能力上:培养学生的动手操作能力、几何语言的表达能力及几何识图能力.3.情感目标:培养学生严谨的科学态度,对学生进行辩证唯物主义思想教育.4.解决问题:(1)会比较两个角的大小;(2)能够解决有关的角的运算问题;(3)能够解决角平分线方面的问题.教学方法实验探究法、练习法为主,以演示法、讲授法为辅等多种教学方法.学习方法:学生学会科学探究的一般方法,学会自学 , 学会合作学习。
三.设计理念:新课程的理想课堂教育应该蕴含以下理论:生活性,发展性和主体性,应遵循以下原则:与学生生活实际联系要紧,直观性强,动手操作要多,使学生学习兴趣要高,自信心要强,可以总结为:用经验观察,思考释疑,通过活动进行再创造.F教学过程设计一、 创设情境、观察操作,引出本节课研究的第一个问题――角的比较 我们已经知道如何比较两条线段的大小,今天我们首先研究一下如何比较角的大小.观察:怎样比较这两个角的大小?问题1(投影显示):两个度数相差1度以内的角,不标明度数,只凭眼观察又不能确定两个角的大小,对于这两个角你能说出它们哪一个大?哪一个小吗?学生活动设计:学生基本知道一副三角板各角的度数,可能利用度数比较,也可能通过观察,也会有同学用叠合法.这里可以让学生讨论,说出采用的比较方法.但叙述一定不规范,教师既不给予肯定也不否定,只是再提出新问题.教师活动设计:由学生熟知的三角板各角的比较入手,把学生带入比较角的大小的意境.但问题一转,出现了不标度数,观察又不能确定大小的角,当学生束手无策时,教师提出这就是我们要研究的新内容,调动学生的积极性,吸引其注意力. 经过讨论,探索,可以得到下列方法:(1)叠合法教师通过活动投影演示:两个角设计成不同颜色,三种情况: ∠DEF =∠ABC ,∠DEF <∠ABC ,∠DEF >∠ABC ,如图所示.FEDCBAFEDCBAFEDCBA演示:移动∠DEF ,使其顶点E 与∠ABC 的顶点B 重合,一边ED 和BA 重合,出现以下三种情况,如图所示:FEDC B A FEDC B A FEDCB A∠DEF =∠ABC ∠DEF <∠ABC ∠DEF >∠ABC学生活动设计:观察教师演示后,同桌也可以利用两副三角板演示以上过程,帮助理解比较两角的大小,回答教师提出的问题.①EF 与BC 重合,∠DEF 等于∠ABC ,记作∠DEF =∠ABC .②EF 落在∠ABC 的内部,∠DEF 小于∠ABC ,记作∠DEF <∠ABC . ③EF 落在∠ABC 的外部,∠DEF 大于∠ABC ,记作∠DEF >∠ABC .通过直观的实物演示和投影(电脑)显示,既加强了角的比较的直观性,又可提高学生的兴趣.注意再次强调角的大小只与开口大小有关,与边的长短无关,以及角的符号与小于号、大于号书写时的区别.(2)测量法(测量前教师可提问使用量角器应注意的问题.即三点:对中;重合;读数.让学生动手操作,培养他们动手能力).小学学过用量角器测量一个角,角的大小也可以按其度数比较度数大的角则大,度数小的则小.反之,角大度数大,角小度数小.学生活动设计:请同学们同桌分别画一个角,然后交换用量角器测量其度数,比较它们的大小.二、 问题探究、引导学生探索角的运算问题2:如图∠1>∠2,把∠2移到∠1上,使它们的顶点重合,一边重合,会有几种情况? 由此可以对角如何运算?学生活动设计:请同学们在练习本上画出.你如何把∠2移到∠1上,才能保证∠2的大小不变呢?讨论∠2如何移到∠1上,移动后有几种情况,在练习本上画出图形(有小学测量的基础,学生不会感到困难,可放手让学生自己动手操作),量角器可起移角的作用,先测量∠2的度数然后以∠1的顶点为顶点,其中一边为边作一个角等于∠2,出现两种情况如图所示:(1)∠2在∠1内部时,如图1-26∠ABC 是∠1与∠2的差,记作:∠ABC =∠1-∠2; (2)∠2在∠1外部时,如图1-27∠DEF 是∠1与∠2的和,记作:∠DEF =∠1+∠2. 教师活动设计:在学生表述过程中注意提醒语言的简洁性和准确性,注意训练学生的看图能力和几何语句表达能力,如∠1与∠2的和差所得到的两个图形中,还可让学生观察得到图中存在的其他的结论.归纳:角的和差倍分的度数等于它们的度数的和差倍分.三、 问题引申,引导学生发现角平分线,并归纳角平分线定义 线段的中点,是把这条线段分成相等两部分的点.问题3:类比线段中点,你能给角平分线下定义吗?从中你能得到什么数量关系? 学生活动设计:与线段中点类比,可以得到角平分线的定义――从角的顶点出发,把一个角分成两部分的一条射线,叫这个角的平分线.21COBA通过对角平分线的理解,可以得到如下数量关系: 若OC 平分∠AOB ,则(1)∠1=∠2;(2)∠1=∠2=21∠AOB ; (3)∠AOB =2∠1=2∠2.教师活动设计:此时由学生进行归纳,在归纳、交流的过程中,及时纠正学生的表述问题,初步渗透推理过程,培养学生的逻辑推理能力.问题4:如何作一个角的平分线?你能想到什么方法?学生活动:方法1度量法;方法2折纸法――对折角始角的两边重合,折痕就是角平分线.教师活动设计:此时培养学生动手操作能力.四、 拓展创新、应用提高,培养学生的动手能力、创新能力、初步的逻辑推理能力问题5如图,OB 是∠AOC 的平分线,OE 是∠COD 的平分线,若∠AOC =50°,∠COD =80°,那么∠BOE 是多少OEDCBA°.教师活动设计:本问题的解决主要让学生在解决问题的过程中,体会逻辑推理的过程,培养学生的逻辑推理能力.问题6:借助手中的一副三角板,你能拼出15°、75°、105°的角吗?你还可以拼出其他角吗?学生活动设计:一副三角板中,有30°、45°、60°、90°的角,可以用30°和45°的角拼出15°和75°的角,用45°和60°拼出105°的角.CCB A还可以拼出135°的角、150°的角、165°的角(注意观察角度的特点,发现都是15°的倍数).练一练1.已知射线OA ,若从点O 再引两条射线OB 和OC , 使∠AOB=60°,∠BOC=20 ° ,求∠AOC 的度数。
《角比较与运算》说课稿《角比较与运算》说课稿 1一.教材分析1.教材的地位与作用本节课是人教版七年级(上册)第四章第三节的内容。
在此之前,学生已经学习了角的基本概念、角的度量以及直线、线段、射线的概念及相关性质。
这为本节课的教学做了知识和思维上的准备。
同时它对学生下一节余角、补角的概念的理解进行了思维上的铺垫,从而为学生进一步学习,平面几何图形打下了基础。
所以本节内容取到了复习旧知识、承接新知识的承上启下的作用。
2.教学目标分析(1)知识与能力目标:会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。
(2)过程与方法目标:引导学生在试验、观察、交流、比较等活动的基础上通过类比、总结、逐渐培养学生的动手能力、几何语言的表达能力以及几何识图能力。
让学生认识到用新知识建构新体系的过程。
(3)情感与态度目标:增强学生学数学的愿望和信心,培养学生爱思考,善于交流的良好学习习惯;通过对角的大小比较,使学生进一步体会几何图形的形象直观美。
3.教学重难点分析重点:角的大小比较,角平分线的概念难点:理解角的和、差、倍、分关系二.教学方法分析本节课依照新数学课程标准的要求,结合学生已有的知识和能力水平,从提高学生数学兴趣入手,我主要采用启发式、类比式教学。
具体体现在以下几个方面:(1)教学中力求体现“问题情景---问题解决---知识延伸---归纳概念”的模式。
(2)引导学生经历同化新知识、构建新意义的过程,从而更好的掌握必要的基础知识的基本技能。
三.学情分析初一学生刚刚从小学升人初中,还以形象思维能力为主。
遵循这一特点,应该充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的'学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展。
同时教学时还应该针对不同层次的学生,给与不同层次的关注,实现有梯度层次的教学。
人教版数学七年级上册3.2《角的比较与运算》教学设计一. 教材分析《角的比较与运算》是人教版数学七年级上册第三章第二节的内容,本节课主要让学生了解并掌握角的比较方法和角的运算规则。
通过本节课的学习,学生能够理解角的大小比较方法,会运用角的大小比较方法解决实际问题,并掌握角的加减运算和乘除运算。
二. 学情分析学生在学习本节课之前,已经掌握了角的定义和基本性质,具备了一定的观察和操作能力。
但部分学生在角的比较和运算方面可能还存在困难,因此,在教学过程中,需要针对这部分学生进行重点辅导。
三. 教学目标1.知识与技能目标:让学生掌握角的比较方法,能够运用角的比较方法解决实际问题;让学生掌握角的加减运算和乘除运算,能够运用角的运算规则解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的动手能力和合作意识。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的耐心和毅力。
四. 教学重难点1.教学重点:角的比较方法,角的加减运算和乘除运算。
2.教学难点:角的运算规则的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解角的大小比较和运算在实际生活中的应用。
2.动手操作法:让学生通过实际操作,加深对角的大小比较和运算的理解。
3.小组合作法:引导学生进行小组讨论,培养学生的合作意识和团队精神。
4.问答法:教师提问,学生回答,激发学生的思维,提高学生的表达能力。
六. 教学准备1.教具准备:三角板、量角器、直尺等。
2.课件准备:角的比较和运算的课件。
3.作业准备:与本节课内容相关的练习题。
七. 教学过程1.导入(5分钟)教师通过生活实例,如门的形状、钟表的指针等,引导学生了解角的大小比较和运算在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件呈现角的比较和运算的定义和规则,让学生初步了解角的大小比较和运算的方法。
3.操练(10分钟)教师引导学生利用三角板、量角器等教具,进行角的比较和运算的实践操作,让学生在实际操作中加深对角的大小比较和运算的理解。
角的比较和运算一、教学目标1. 让学生理解角的概念,能够识别和比较不同类型的角。
2. 培养学生运用角的性质和运算方法解决实际问题的能力。
3. 提高学生对几何图形的认识,培养学生的观察能力和空间想象力。
二、教学内容1. 角的概念和分类:锐角、直角、钝角、平角、周角。
2. 角的度量:度、分、秒的换算。
3. 角的比较:大于、小于、等于。
4. 角的运算:加法、减法、乘法、除法。
5. 实际问题:运用角的运算解决生活中的几何问题。
三、教学重点与难点1. 重点:角的分类、度的换算、角的比较和运算。
2. 难点:角的运算方法和实际问题的解决。
四、教学方法1. 采用直观演示法,通过实物和图形引导学生认识角的概念。
2. 采用讲授法,讲解角的分类、度的换算、角的比较和运算方法。
3. 运用案例分析法,让学生通过实际问题学会运用角的运算解决几何问题。
4. 采用小组讨论法,培养学生的合作能力和解决问题的能力。
五、教学准备1. 教具:角模型、度量工具、几何图形。
2. 教学素材:PPT、案例分析题。
3. 学具:学生角模型、度量工具、练习本。
六、教学步骤1. 导入新课:通过一个几何图形,引导学生认识角的概念。
2. 讲解角的分类:介绍锐角、直角、钝角、平角、周角的定义和特点。
3. 讲解角的度量:介绍度、分、秒的换算方法。
4. 角的比较:引导学生通过观察和操作,学会比较不同角的大小。
5. 角的运算:讲解角的加法、减法、乘法、除法运算方法。
七、课堂练习1. 完成PPT上的练习题,巩固角的分类和度量的知识。
2. 进行小组讨论,探讨角的比较和运算的方法。
八、案例分析1. 出示一个实际问题,要求学生运用角的运算方法解决。
2. 分组讨论,引导学生学会分析问题、解决问题。
九、课堂小结1. 回顾本节课所学内容,总结角的分类、度的换算、角的比较和运算的方法。
2. 强调角的运算在实际生活中的应用。
十、作业布置1. 完成练习本上的相关练习题,巩固角的比较和运算的知识。
人教版七年级数学上册4.3.2《角的比较与运算》教学设计一. 教材分析《角的比较与运算》是人教版七年级数学上册4.3.2的内容,本节课主要让学生掌握角的比较方法,学会用度量工具(量角器)测量角的大小,并了解角的大小与两边叉开的大小有关,与边的长短无关。
教材通过实例和练习,让学生在实际操作中掌握角的大小比较和运算方法,培养学生观察、思考、动手操作的能力。
二. 学情分析七年级的学生已具备初步的空间观念和一定的几何知识,对图形有了一定的认识。
但在角的比较和运算方面,部分学生可能还存在着一定的困难。
因此,在教学过程中,要关注学生的个体差异,针对不同程度的学生进行有针对性的教学,引导他们通过观察、操作、思考、交流等活动,掌握角的比较和运算方法。
三. 教学目标1.知识与技能:让学生掌握角的比较方法,学会用度量工具(量角器)测量角的大小,了解角的大小与两边叉开的大小有关,与边的长短无关。
2.过程与方法:培养学生观察、思考、动手操作的能力,提高他们解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.教学重点:角的比较方法,用度量工具(量角器)测量角的大小。
2.教学难点:角的大小与两边叉开的大小有关,与边的长短无关。
五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生观察、思考角的比较方法。
2.实践操作法:让学生动手用度量工具(量角器)测量角的大小,提高他们的实践能力。
3.合作学习法:学生进行小组讨论,培养他们团队合作的精神。
六. 教学准备1.教具:量角器、三角板、课件等。
2.学具:量角器、三角板、练习本等。
七. 教学过程1.导入(5分钟)利用生活实例或几何图形,引导学生观察角的大小,激发学生的兴趣,引发思考。
2.呈现(10分钟)介绍角的比较方法,讲解用度量工具(量角器)测量角的大小的步骤。
通过课件演示,让学生直观地了解角的大小与两边叉开的大小有关,与边的长短无关。
人教版七年级数学上册4.3.2《角的比较与运算》说课稿一. 教材分析《角的比较与运算》是人教版七年级数学上册4.3.2的内容,这部分内容是在学生已经掌握了角的概念和分类的基础上进行学习的。
本节课的主要内容是让学生掌握角的比较方法和角的运算方法,包括角的度量、角的加减法和乘除法等。
通过这部分的学习,让学生能够解决一些与角有关的问题,为后续学习更复杂的几何知识打下基础。
二. 学情分析七年级的学生已经具备了一定的几何基础知识,对角的概念和分类有了初步的了解。
但是,学生对于角的度量方法和角的运算方法可能还不够熟悉,需要通过本节课的学习来进一步掌握。
此外,学生可能对于角的比较和运算的内在联系还不够理解,需要通过教师的引导和学生的实践来逐步领悟。
三. 说教学目标1.知识与技能目标:让学生掌握角的度量方法,能够正确地进行角的度量;让学生掌握角的加减法和乘除法运算方法,能够正确地进行角的运算。
2.过程与方法目标:通过学生的实践操作,培养学生的动手能力和观察能力;通过教师的引导,培养学生的思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验到数学的趣味性和实用性,增强学生对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:角的度量方法,角的加减法和乘除法运算方法。
2.教学难点:角的比较和运算的内在联系,角的乘除法运算方法。
五. 说教学方法与手段本节课采用讲授法、实践操作法、小组合作法等多种教学方法。
通过教师的讲解,让学生掌握角的度量方法和角的运算方法;通过学生的实践操作,让学生加深对角的概念的理解;通过小组合作,让学生互相交流和学习,提高学生的合作能力。
六. 说教学过程1.导入:通过一些与角有关的生活实例,引发学生对角的比较和运算的思考,激发学生的学习兴趣。
2.角的度量:讲解角的度量方法,让学生进行角的度量实践,巩固角的度量方法。
3.角的加减法:讲解角的加减法运算方法,让学生进行角的加减法实践,巩固角的加减法运算方法。
《角的比较与运算》开场白:尊敬的各位考官,上午好,今天我说课的题目是《角的比较与运算》。
下面我将从说教材、说学情、说教法、说学法、说教学过程、说板书设计这六个方面进行说课。
一、说教材《角的比较与运算》是人教版七年级上册第四章第三节的教学内容,本节课主要由学生动手,利用线段的比较与运算进行知识迁移,得到角的比较与运算方法,同时理解角平分线的意义。
本节是在学生学习了直线射线线段、角的基础上展开教学的,同时为后续学习余角和补角打下了基础。
起到了承上启下的作用。
在理解教材地位与作用的基础上,结合新课程标准,特制定如下三维教学目标:1.知识与技能目标:学生学会比较角的大小的方法,并且能够进行简单的角度加减运算。
2.过程与方法目标:学生通过合作交流、探索发现的形式归纳出比较角度大小的方法,并且学会运算。
3.情感态度价值观目标:培养自主学习、归纳比较的能力,增强数学学习的乐趣。
根据教学三维目标以及对教材的分析,我将本节课的重点确定为:学会比较角的大小的方法,并且能够进行简单的角度加减运算;而基于学生身心发展特点将本节课的难点确定为:体会数学在实际生活中的应用价值。
二、说学情掌握学生的基本情况,对于把握和处理教材具有重要作用,接下来我来说一下学情。
七年级的学生虽抽象思维占优势,但还需感性经验的支持,这一年级的学生活泼、好动,叛逆心理比较强,教师应关注这些特点,多鼓励学生,充分发挥学生的主体作用。
三、说教法科学合理的教学方法可以使教学活动达到事半功倍的效果,作为老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。
本节课我主要采用引导设问法、讨论法、练习法等方法,激发学生学习兴趣。
四、说学法教法为学法导航,学法是教法的缩影。
因此,本节课的学习以学生的自主探究、合作交流为主要学习方式。
学生通过对新知的自主探究,促使学生更深入地去学习数学,乐于探究数学。
五、说教学过程根据新课标教材及学生特点,为真正实现学生的自主学习,学生参与知识的过程,我将从五个环节展开我的教学。
§4.3.2 角的比较与运算说课稿一、说教材一)说课内容:我说课的内容是初中数学课本七年级上册第四单元《几何图形初步》第三节。
二)教材分析《角的比较与运算》第一课时是初中数学课本七年级上册第四单元《几何图形初步》第三节,角的比较、角的和与差、角的平分线,这三个内容是本章重要的基础知识,也是后续学习图形与几何必备的基础。
比较两角的大小是本节知识的起点,角的和与差是问题的延伸,等分问题又是角的和与差的特殊化,这三个知识点相互之间是紧密联系的,而且与生活息息相关。
三)学情分析在前面已经学过线段的大小比较、线段的和与差,线段的中点,本节课可以采用类比的学习方法,便于理解与掌握。
这是学生的有利条件。
然而学生处于几何的启蒙阶段,如何正确的用图形语言、文字语言、符号语言综合描述所研究的对象将是他们的难处。
四)教学目标根据学生的年龄特点,认知规律及对教材的剖析与学生的分析,我确立了本课教学目标及重难点。
1、会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。
2、学生经历“观察——对比——归纳”的学习过程,培养用数学语言描述图形的能力及类比的数学思想方法。
3、培养学生爱思考的习惯,通过对角大小的比较,使学生体会数学的形象直观美,向学生渗透团结协作的合作精神,培养勇于探索的精神和解决问题的优化意识。
五)教学重难点重点:角的大小的比较方法,角平分线的定义难点:角的加减运算,角的平分线的运用六)教学具为了突出重点,突破难点,加大课堂练习密度,我采用了多媒体教学与教具。
二、说教学法教法:学生在前面学习过线段的大小比较,线段的和与差,线段的中点基础上,教师采用启发式教学,引导学生自主探索,合作交流,体会类比的数学思想。
学法:初一学生仍以形象思维能力为主,因此要充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展.三、教学流程(一)情景导入:以登山的情景导入新课,学生在选择登山路径的过程中,若考虑路径的长短,则是对线段的大小比较,若是考虑坡度的陡与缓,则是对角的大小比较。
(封面)初中数学《角的比较与运算》说课稿授课学科:授课年级:授课教师:授课时间:XX学校各位老师,我今天说课的内容是角的比较与运算,我将从教材分析、教学方法、学情分析和教学环节设计四个方面进行说课,请老师们指正。
一.教材分析1.教材的地位与作用本节课是人教版七年级(上册)第四章第三节的内容。
在此之前,学生已经学习了角的基本概念、角的度量以及直线、线段、射线的概念及相关性质。
这为本节课的教学做了知识和思维上的准备。
同时它对学生下一节余角、补角的概念的理解进行了思维上的铺垫,从而为学生进一步学习平面几何图形打下了基础。
所以本节内容取到了复习旧知识、承接新知识的承上启下的作用。
2.教学目标分析(1)知识与能力目标:会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。
(2)过程与方法目标:引导学生在试验、观察、交流、比较等活动的基础上通过类比、总结、逐渐培养学生的动手能力、几何语言的表达能力以及几何识图能力。
让学生认识到用新知识建构新体系的过程。
(3)情感与态度目标:增强学生学数学的愿望和信心,培养学生爱思考,善于交流的良好学习习惯;通过对角的大小比较,使学生进一步体会几何图形的形象直观美。
3.教学重难点分析重点:角的大小比较,角平分线的概念难点:理解角的和、差、倍、分关系二.教学方法分析本节课依照新数学课程标准的要求,结合学生已有的知识和能力水平,从提高学生数学兴趣入手,我主要采用启发式、类比式教学。
具体体现在以下几个方面:(1)教学中力求体现“问题情景---问题解决---知识延伸---归纳概念”的模式。
(2)引导学生经历同化新知识、构建新意义的过程,从而更好的掌握必要的基础知识的基本技能。
三.学情分析初一学生刚刚从小学升人初中,还以形象思维能力为主。
遵循这一特点,应该充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展。
角的比较与运算
析和教学环节设计四个方面进行说课,请老师们指正。
一.教材分析
1.教材的地位与作用
本节课是人教版七年级(上册)第四章第三节的内容。
在此之前,学生已经学习了角的基本概念、角的度量以及直线、线段、射线的概念及相关性质。
这为本节课的教学做了知识和思维上的准备。
同时它对学生下一节余角、补角的概念的理解进行了思维上的铺垫,从而为学生进一步学习平面几何图形打下了基础。
所以本节内容取到了复习旧知识、承接新知识的承上启下的作用。
2.教学目标分析
(1)知识与能力目标:会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。
(2)过程与方法目标:引导学生在试验、观察、交流、比较等活动的基础上通过类比、总结、逐渐培养学生的动手能力、几何语言的表达能力以及几何识图能力。
让学生认识到用新知识建构新体系的过程。
(3)情感与态度目标:增强学生学数学的愿望和信心,培养学生爱思考,善于交流的良好学习习惯;通过对角的大小比较,使学生进一步体会几何图形的形象直观美。
3.教学重难点分析
重点:角的大小比较,角平分线的概念
难点:理解角的和、差、倍、分关系
二.教学方法分析
本节课依照新数学课程标准的要求,结合学生已有的知识和能力水平,从提高学生数学兴趣入手,我主要采用启发式、类比式教学。
具体体现在以下几个方面:(1)教学中力求体现“问题情景---问题解决---知识延伸---归纳概念”的模式。
(2)引导学生经历同化新知识、构建新意义的过程,从而更好的掌握必要的基础知识的基本技能。
三.学情分析
初一学生刚刚从小学升人初中,还以形象思维能力为主。
遵循这一特点,应该充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展。
同时教学时还应该针对不同层次的学生,给与不同层次的关注,实现有梯度层次的教学。
四.教学过程展开分析
(1)新课导入
问题的引入师生行为设计意图
复习小学时学习过的角的概念。
问题1:角的大小由那些量决定?
问题2:已知两条线段AB和线段CD,如何比较这两条线段的大小?
[活动1]
让学生拿出课前准备剪好的角,同伴之间交流。
问题1:请五位同学上来,老师请你们五位站成一排,前后顺序由手中角的大小决定,怎样排呢?
老师提问,学生在回答问题过程中回忆并补充。
教师通过提问,让学生分组讨论,找到他们的争论的关键:比较角的大小
教师通过不断提问启发学生通过实践,对角的比较方法有一个初步的认识。
回忆角的相关概念、两条线段的比较方法,为比较两个角的大小作铺垫,明确知识间的联系。
从一个生动的实际问题展开角的大小讨论,激发学生的求知欲,提高学生的兴趣着手,引导学生主动探索问题。
培养学生对数学新知识学习的兴趣。
(2)讲授新课
问题的解决师生行为设计意图
[活动2]
问题1:请学生在纸上任意画两个角,讨论比较大小的方法。
教师提出问题,学生动手,分组讨论,总结出可以通过角度的度量来比较交的大小。
教师指出:把这种比较角学生积极参与探索,培养学生动手、合作交流的习惯。
问题的解决师生行为设计意图
问题2:请学生思考任意剪好的两个角,在不使用量角器的情况下,用什么方法比较?
问题3:估计下列途中∠1和∠2的大小关系,并用适当的方法验证。
的大小的方法称为度量法。
学生动手操作,教师加入学生一起讨论,听取他们解决问题的方法和建议。
师生共同比较出另一种方法称为叠合法。
强调:
(1)将两个角的定点及一边重合。
(2)两个角的另一边落在重合边的同侧。
(3)有两个角的另一边位置而确定两个角的大小。
教师提出问题。
学生估计后正确回答。
强调:
学生能否运用数学语言清楚地表达解决问题的过程。
让学生从具体的操作中体会交的另一种比较法,在已有经验的基础上进行探究,更有利于对知识的理解和掌握。
在活动中渗透着实验观察、类比、归纳概括的数学思想,培养学生的动手能力、几何语言的表达能力以及几何试图能力。
对新方法的变式练习,让学生运用所学知识来解决问题,在成功中体会数学的乐趣。
知识的延伸师生行为设计意图
[活动3]
问题1:图中共有几个角?
它们之间有什么关系?
问题2:借助三角尺画15 、75 的角。
用一副三角尺能画出来吗?试一试。
教师提出问题
学生观察图形,正确回答。
教师引导学生回答,给出角的和差的表示,只出角的和差任是一个角。
学生动手,分组讨论,分组展示,寻找正确的解决方法,总结出凡是15的倍数的角都可以利用三角尺画出来。
引导学生在复杂的几何图形中找到基本图形之间的关系。
对角的和差关系的一个巩固练习,增强学生的应用实践能力,激发他们的学习兴趣。
[活动4]
问题1:如图∠AOB=∠BOC,那么∠AOC与∠AOB,
∠BOC之间关系是什么?射线OB有什么特征?
问题2:你能折叠出角的平分线吗?
学生观察图形回答:
教师指出角平分线的概念,类似地,还有角的三等分线。
让学生分组交流,讨论,师生共同归纳得出结论。
学生掌握角平分线的定义及几何意义。
充分相信学生的能力,让他们尽情展示,教师给与指导,让学生体会数学在实际生活中的应用价值。
(3)归纳总结
[活动5]
1小结。
2布置作业
教师批改,总结。
对不同层次学生对知识的理解程度,、有针对性地给予分析。
学生在练习中反映的问题有针对的讲解。
通过学生对立思考完成作业,做我评价学习效果,学会反思,发现问题。