最新人教A版必修5高中数学 2.5等比数列的前n项和教案(精品)
- 格式:doc
- 大小:124.00 KB
- 文档页数:2
等比数列的前n项和一、教学目标1、掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。
2、通过等比数列的前n项和公式的推导过程,体会错位相减法以及分类讨论的思想方法。
3、通过对等比数列的学习,发展数学应用意识,逐步认识数学的科学价值、应用价值,发展数学的理性思维。
二、教学重点与难点重点:掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。
难点:错位相减法以及分类讨论的思想方法的掌握。
三、教学设想本节课采用问题导学式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。
让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探四、教学过程(一)创设问题情景课前给出复习:等比数列的定义及性质课首给出引例:某建筑队,由于资金短缺,向某砖厂赊借红砖盖房,可砖厂厂长很风趣,提出了这样一个条件:在一个月(30天)内,砖厂每天向建筑队提供10000块砖,为了还本付息,建筑队第一天要向厂方返还1块砖,第二天返还2块砖,第三天返还4块砖,即每天返还的砖数是前一天的2倍,请问,假如你是建筑队队长,你会接受这个条件吗?请在座的同学思考讨论一下,建筑队长能否向砖厂借砖?[设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!](二)启发引导学生数学地观察问题,构建数学模型。
学生直觉认为队长可以向砖厂借砖,教师引导学生自主探求,得出:队长30天借到的砖:465230)301(3021'30=⨯+=+++= S (万) 队长需要还的砖:=++++=292302221 S ?[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]教师紧接着把如何求=++++=292302221 S ?的问题让学生探究,292302221++++= S ①若用公比2乘以上面等式的两边,得到302923022222++++= S ②若②式减去①式,可以消去相同的项,得到:1073741823123030=-=S (分) ≈1073(万) > 465(万)答案:穷人不能向富人借钱(三)引导学生用“特例到一般”的研究方法,猜想数学规律。
2.5.1 等比数列的前n项和一、教学内容分析1.教材的地位和作用《等比数列的前n项和》是高中数学人教版第一册(上)第三章《数列》第五节的内容,教学大纲安排本节内容授课时间为两课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导过程并充分揭示公式的结构特征、内在联系及公式的简单应用.《等比数列的前n项和》是数列这一章中的一个重要内容,就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、猜想、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体2.教学的重点等比数列前n项和公式的推导及公式的简单应用.二、学情分析1.学情分析知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用.认知水平与能力:高一学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生q 这一特殊情况,学生也往往容易忽略,尤的思维是一个突破,另外,对于1其是在后面使用的过程中容易出错.任教班级学生特点:我班学生基础知识较扎实、思维较活跃,能够较好的理解教材上的内容,能较好地在教师的引导下独立、合作地解决一些问题.2.教学难点基于上述分析,确定本节课教学难点:错位相减法的生成和等比数列前n项和公式的运用.三、教学目标的确定课程标准要求“了解几何概型的意义”“注重概念的生成过程”“数学思想和方法蕴涵在数学知识发生、发展和应用的过程中”,结合本课教材的特点、学生的认知水平,我从三个方面确定教学目标:①知识与技能目标理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题.②过程与方法目标通过对公式的研究过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质.③情感、态度与价值目标通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,并从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.四、教法和学法课程标准明确指出“要注重提高学生的数学思维能力”,即“在学生学习数学运用数学解决问题时,应经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程”。
教学准备
1. 教学目标
熟练应用等差与等比数列的综合问题2. 教学重点/难点
熟练应用等差与等比数列的综合问题
3. 教学用具
4. 标签
教学过程
解;
借助等差数列的性质判断,通过”转折项”求解;借助二次函数图象求解。
(经过原点)
练习:已知等差数列{an}中,,问S1,S2,S3,…Sn中哪一个值最大。
例 2 已知{an}是等比数列,a1 =2,a3 =18;{bn}是等差数列,b1 =2,b1+ b2+ b3+ b4= a1+ a2+ a3>20.
(1) 求数列{bn}的通项公式;
(2) 求数列{bn}的前n项和Sn的公式;
(3) 设Pn= b1+ b4+ b7+…+ b3n-2,Qn= b10+ b12+ b14+…+ b2n+8,其中
n=1,2,…,试比较Pn与Qn的大小,并证明你的结论。
详见优化设计P44典例剖析例1,解答过程略。
b5=0。
(1)求证:数列{bn}是等差数列;
(2)求{bn}的前n项和Sn及{an}的通项an;
(3)试比较an与Sn的大小。
详见优化设计P44典例剖析例3,解答过程略。
三、小结
解答数列综合题,要重视审题,精心联想,沟通联系,解答数列应用性问题,关键是如何将它转化为数学问题。
四、作业
优化设计。
《等比数列的前n项和》教案一、教材分析从教材的编写顺序上来看,等比数列的前n项和是人教A版高中数学必修5第二章“数列”第五节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到.就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系.二、教学目标依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题.过程与方法目标:通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质.情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.三、教学重点和难点重点:等比数列的前n项和公式的推导及其简单应用.从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能力.突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境→公式推导→公式运用;(二)过程与方法线:特殊到一般、猜想归纳→错位相减法等→转化、方程思想;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度.难点:等比数列的前n项和公式的推导.从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高.从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位相减法是第一次碰到,对学生来说是个新鲜事物.突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导.四、教学方法利用计算机和实物投影等辅助教学,采用启发和探究-建构教学相结合的教学模式.六、教学设计说明1.情境设置生活化.本着新课程的教学理念,考虑到高一学生的心理特点以及初、高中教学的衔接,让学生学生初步了解“数学来源于生活”,采用动漫故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生的探究欲.2.问题探究活动化.教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦.通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性.3.辨析质疑结构化.在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习.通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系.4.巩固提高梯度化.例1采用表格形式,突出表现五个基本量“知三求二”的关系,通过公式的正用和逆用进一步提高学生运用知识的能力;例2由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性.5.思路拓广数学化.从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径.以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学.6.作业布置弹性化.通过布置弹性作业,为学有余力的学生提供进一步发展的空间.介绍相关网站让学生查阅有关资料,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养.。
《等比数列的前n项和》教学设计一、教材分析1.在教材中的地位与作用在《数列》一章中,《等比数列的前n项和》是一项重要的基础内容,从知识体系来看,它不仅是《等差数列的前n项和》与《等比数列》的顺延,也是前面所学《函数》的延续,实质上是一种特殊的函数,而且还为后继深入学习提供了知识基础,错位相减法是一种重要的数学思想方法,是求解一类混合数列前n项和的重要方法,因此,本节具有承上启下的作用;从知识结构和人文价值来看,等比数列与等差数列是平行结构关系,两者之间存在着一定联系,可以进行类比,拓展学生发现、创新的能力,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是增强学生应用意识和数学能力的良好载体;从知识的应用价值来看,它是从大量现实和数学问题中抽象出来的一个模型,前n项和公式的推导过程中蕴涵了基本的数学思想方法,如分类讨论、错位相减等在数列求和问题中时常出现。
等比数列的前n项和在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
2.教材编排与课时安排提出问题→问题解决→等比数列前n项和公式推导→强化公式运用(例题与练习)。
教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程,并充分揭示公式的结构特征和内在联系。
二、教学目标分析依据课程标准,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:【知识与技能】理解等比数列的前n项和公式的推导方法;掌握等比数列的前n 项和公式并能运用公式解决一些简单问题,一是已知等比数列基本量而求其前n项和;二是已知前n项和而逆向求解数列基本量;三是基本思想方法(错位相减法)的运用。
河北省迁安一中数学必修五:3.1不等关系与不等式一、复习引入:提问学生n n n a a a a a S +++++=-13211221a a a a a S n n n n +++++=--)()()(21121a a a a a a S n n n n ++++++=-2)(1n n a a n S += 消去项与项的区别二、新课学习思考:如何求等比数列的Sn?①上式乘得: ② ①-②得所以:特别: 当 说明:1、推导公式的方法:错位相消法。
2、使用公式求和时,需注意对 和 的情况加以讨论三、公式应用:例1:(1)=++++821......41211? (2)已知等比数列{}n a ,?,0,2431,27891=<==S q a a(3)已知等比数列{}n a ,n n a n S q a 及求,364,3,11===例2、求和:n n yy y S 1......112+++=(1,0≠≠y y )变题:去掉1≠y例3、如果一个等比数列前5项的和等于10,前10项的和等于50,那么它前15项的和等于多少?练习:已知n S 是等比数列{}n a 的前项和,且60,482==n n S S ,求n S 3的值。
四、小结:1,等比数列求和公式: 推导方法:错位相减法 2,知三求二 3,整体计算 五、作业;篇子中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
第一课时 2.5等比数列的前n 项和教学要求:探索并掌握等比数列的前n 项和的公式;结合等比数列的通项公式研究等比数列的各量;在具体的问题情境中,发现数列的等比关系,能用有关知识解决相应问题。
教学重点:等比数列的前n 项和的公式及应用教学难点:等比数列的前n 项和公式的推导过程。
教学过程:一、复习准备:提问: 等比数列的通项公式;等比数列的性质;等差数列的前n 项和公式;二、讲授新课:1. 教学:思考:一个细胞每分钟就变成两个,那么经过一个小时,它会分裂成多少个细胞呢?分析:11,a =公比221q ==,因为11n n a a q -=,一个小时有60分钟 5959601125764607523a a q ===思考:那么经过一个小时,一共有多少个细胞呢?()1231n n s a a a a =+++()211121.........2n n s a a q a q a q -⋅=+++()2q =()2121.........3n n qs a q a q a q ⋅=++()()31-=()111n n q s a a q -=- 111(1)11n n n a a q a q s q q--==-- 又因为111n n n a q a q q a q -== 所以11n n a a q s q -=-,则602011212s -=-=1152921504 则一个小时一共有1152921504个细胞2. 练习:列1(解略)列2(解略)在等比数列{}n a 中:()1已知163,96,a a ==求6,q s ()2已知51,11,2q s =-=求15,a a 在等比数列{}n a 中,162533,32a a a a +==,则6s ?三、小结:等比数列的前n 项和公式四、作业:P66, 1题。
2.5等比数列的前n 项和(一)教学目标1、 知识与技能:掌握等比数列的前n 项和公式,并用公式解决实际问题2、 过程与方法:由研究等比数列的结构特点推导出等比数列的前n 项和公式3、 情态与价值:从“错位相减法”这种算法中,体会“消除差别”,培养化简的能力(二)教学重、难点重点:使学生掌握等比数列的前n 项和公式,用等比数列的前n 项和公式解决实际问题 难点:由研究等比数列的结构特点推导出等比数列的前n 项和公式(三)学法与教学用具学法:由等比数列的结构特点推导出前n 项和公式,从而利用公式解决实际问题 教学用具:投影仪(四)教学设想教材开头的问题可以转化成求首项为1,公比为2的等比数列的前64项的和.类似于等差数列,我们有必要探讨等比数列的前n 项和公式。
一般地,对于等比数列a 1,a 2,a 3,..., a n ,...它的前n 项和是Sn= a 1+a 2+a 3+...+a n由等比数列的通项公式,上式可以写成Sn= a 1+a 1q + a 1q 2 +...+a 1q n-1 ①① 式两边同乘以公比q 得qSn= a 1q+ a 1q 2 +...+a 1q n-1+ a 1q n ②①,②的右边有很多相同的项,用①的两边分别减去②的两边,得(1-q)Sn= a 1-a 1q n当q≠1时,Sn=qq a n --1)1(1 (q ≠1) 又a n =a 1q n-1 所以上式也可写成 Sn=qq a a n --11(q ≠1) 推导出等比数列的前n 项和公式,本节开头的问题就可以解决了[相关问题]①当q=1时,等比数列的前n 项和公式为Sn=na 1② 公式可变形为Sn=q q a n --1)1(1=1)1(1--q q a n (思考q>1和q<1时分别使用哪个方便) ③ 如果已知a 1, a n,q,n,Sn 五个量中的任意三个就可以求出其余两个[例题分析]例1 求下列等比数列前8项的和: (1)21,41,81,...;(2) a 1=27, a 9=2431,q<0 评注:第(2)题已知a 1=27,n=8,还缺少一个已知条件,由题意显然可以通过解方程求得公比q,题设中要求q<0,一方面是为了简化计算,另一方面是想提醒学生q 既可以为正数,又可以为负数.例2 某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?评注:先根据等比数列的前n 项和公式列方程,再用对数的知识解方程[随堂练习]第1.2.3题[课堂小结](1) 等比数列的前n 项和公式中要求q ≠1;这个公式可以变形成几个等价的式子(2) 如果已知a 1, a n,q,n,Sn 五个量中的任意三个就可以求出其余两个(五)评价设计(1)课后阅读: [阅读与思考](2)课后作业: 1,2,4题精美句子1、善思则能“从无字句处读书”。
2.5 等比数列的前n 项和教学过程 推进新课 [合作探究]师 在对一般形式推导之前,我们先思考一个特殊的简单情形:1+q+q 2+…+q n=? 师 这个式子更突出表现了等比数列的特征,请同学们注意观察. 生 观察、独立思考、合作交流、自主探究.师 若将上式左边的每一项乘以公比q ,就出现了什么样的结果呢? 生 q+q 2+…+q n +qn +1.生 每一项就成了它后面相邻的一项. 师 对上面的问题的解决有什么帮助吗? 师 生共同探索: 如果记S n =1+q+q 2+…+q n, 那么qS n =q+q 2+…+q n +qn +1.要想得到S n ,只要将两式相减,就立即有(1-q)S n =1-q n. 师 提问学生如何处理,适时提醒学生注意q 的取值.生 如果q≠1,则有qq S n--=11.师 当然,我们还要考虑一下如果q =1问题是什么样的结果. 生 如果q =1,那么S n =n .师 上面我们先思考了一个特殊的简单情形,那么,对于等比数列的一般情形我们怎样思考? 课件展示:a 1+a 2+a 3+…+a n =?[教师精讲]师 在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法”. 师 在解决等比数列的一般情形时,我们还可以使用“错位相减法”. 如果记S n =a 1+a 2+a 3+…+a n , 那么qS n =a 1q+a 2q+a 3q+…+a n q,要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a n q.师 再次提醒学生注意q 的取值. 如果q≠1,则有qqa a S n n --=11.师 上述过程如果我们略加变化一下,还可以得到如下的过程: 如果记S n =a 1+a 1q+a 1q 2+…+a 1q n -1, 那么qS n =a 1q+a 1q 2+…+a 1q n -1+a 1q n,要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a 1q n.如果q≠1,则有qq a S n n --=1)1(1.师 上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”. 形式上,前一个出现的是等比数列的五个基本量:a 1,q,a n ,S n ,n 中a 1,q,a n ,S n 四个;后者出现的是a 1,q,S n ,n 四个,这将为我们今后运用公式求等比数列的前n 项的和提供了选择的余地. 值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式.师 现在请同学们想一想,对于等比数列的一般情形,如果q =1问题是什么样的结果呢? 生 独立思考、合作交流. 生 如果q =1,S n =na 1. 师 完全正确.如果q =1,那么S n =na n 正确吗?怎么解释?生 正确.q =1时,等比数列的各项相等,它的前n 项的和等于它的任一项的n 倍. 师 对了,这就是认清了问题的本质.师 等比数列的前n 项和公式的推导还有其他的方法,下面我们一起再来探讨一下:[合作探究]思路一:根据等比数列的定义,我们有:q a a a a a a a a n n =====-1342312..., 再由合比定理,则得q a a a a a a a a n n=++++++++-1321432......,即q a S a S nn n =--1,从而就有(1-q)S n =a 1-a n q.(以下从略)思路二:由S n =a 1+a 2+a 3+…+a n 得S n =a 1+a 1q+a 2q+…+a n -1q=a 1+q(a 1+a 2+…+a n -1)=a 1+q(S n -a n ), 从而得(1-q)S n =a 1-a n q. (以下从略)师 探究中我们们应该发现,S n -S n -1=a n 是一个非常有用的关系,应该引起大家足够的重视.在这个关系式中,n 的取值应该满足什么条件? 生 n > 1.师 对的,请同学们今后多多关注这个关系式:S n -S n -1=a n ,n > 1. 师 综合上面的探究过程,我们得出:⎪⎩⎪⎨⎧≠--==1,1)1(,1,11q q q a q na S n n 或者1,1,1,11≠⎪⎩⎪⎨⎧--=q q q a a q na n[例题剖析]【例题1】 求下列等比数列的前8项的和:(1)21,41,81,…; (2)a 1=27,a 9=2431,q <0.[合作探究] 师生共同分析:由(1)所给条件,可得211=a ,21=q ,求n =8时的和,直接用公式即可. 由(2)所给条件,需要从24319=a 中获取求和的条件,才能进一步求n =8时的和.而a 9=a 1q 8,所以由条件可得q 8=19a a =272431⨯,再由q <0,可得31-=q ,将所得的值代入公式就可以了.生 写出解答:(1)因为211=a ,21=q ,所以当n =8时,256255211)21(1[2188=--=S .(2)由a 1=27,24319=a ,可得272431198⨯==a a q ,又由q <0,可得31-=q ,于是当n =8时,811640)31(1)2724311(2718=--⨯-=S . 【例题2】 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30 000台(结果保留到个位)?师 根据题意,从中发现等比关系,从中抽象出等比数列,并明确这是一个已知S n =30 000求n 的问题.生 理解题意,从中发现等比关系,并找出等比数列中的基本量,列式,计算.解:根据题意,每年的销售量比上一年增加的百分率相同,所以,从今年起,每年销售量组成一个等比数列{a n },其中a 1=5 000,q=1+10%=1.1,S n =30 000.于是得到300001.11)1.11(5000=--n , 整理得1.1n=1.6,两边取对数,得n lg1.1=lg1.6, 用计算器算得1.1lg 6.1lg =n ≈041.02.0≈5(年). 答:大约5年可以使总销售量达到30 000台. 练习:教材第66页,练习第1、2、3题.课堂小结本节学习了如下内容:1.等比数列前n 项和公式的推导;特别是在推导过程中,学到了“错位相减法”.2.等比数列前n 项和公式的应用.因为公式涉及到等比数列的基本量中的4个量,一般需要知道其中的3个,才能求出另外一个量.另外应该注意的是,由于公式有两个形式,在应用中应该根据题意所给的条件,适当选择运用哪一个公式.在使用等比数列求和公式时,注意q 的取值是至关重要的一个环节,需要放在第一位来思考.布置作业课本第69页习题2.5 A组第1、2、3题.板书设计等比数列前n项和公式的推导与应用等比数列的前n项和公式情境问题的推导一般情形的推导例1练习:(学生板演) 例2练习:(学生板演)第二课时教学过程推进新课[例题剖析]师出示投影胶片2:课本第70页B组题第4题:例1 思考以下问题:(1)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)或6年时一次可支取本息共多少元?(2)依教育储蓄的方式,每月存a元,连续存3年,到期(3年)或6年时一次可支取本息共多少元?(3)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)时一次可支取本息比同档次的“零存整取”多收益多少元?(4)欲在3年后一次支取教育储蓄本息合计1万元,每月应存入多少元?(5)欲在3年后一次支取教育储蓄本息合计a万元,每月应存入多少元?(6)依教育储蓄方式,原打算每月存100元,连续存6年,可是到了4年时,学生需要提前支取全部本息,一次可支取本息共多少元?(7)依教育储蓄方式,原打算每月存a元,连续存6年,可是到了b年时,学生需要提前支取全部本息,一次可支取本息共多少元?(8)不用教育储蓄方式,而用其他的储蓄方式,以每月可存100元,6年后使用为例,探讨以现行的利率标准可能的最大收益,将得到的结果与教育储蓄比较.[合作探究]师要解决上面的这些问题,我们必须要了解一点银行的业务知识,据调查,银行整存整取定期储蓄存款利率计算公式是这样的:若每月固定存a元,连续存n个月,则计算利息的公式为2)1(nna+×月利率.师你能解释这个公式的含义吗?生独立思考、合作交流、自主探究.师 (在学生充分探究后揭示)设月利率为q,则这个公式实际上是数列:a q,2a q,3a q,…,na q,…的前n项和.这个数列的项不正是依次月数的利息数?这个数列具有什么特征呢?生发现等差关系.师用我们的数学语言来说,这是个首项为a q,公差为a q的等差数列,而不是一个等比数列.从这个公式中我们知道,银行整存整取定期储蓄存款利率计算不是按复利(利生息——利滚利)计算的.我们把这样的计算利息的方法叫做按单利(利不生息——利不滚利)计算.这是我们在计算时必须弄明白的,否则,我们计算的结果就会与银行计算的实际结果不一致. 师我们还需要了解银行的三年期、五年期的整存整取的存款利率,以及三年期零存整取的存款利率和利息税率:三年期整存整取存款年利率为2.52%,月利率为0.21%;五年整存整取存款年利率为2.79%,月利率为0.232 5%;三年期零存整取存款年利率为1.89%,月利率为0.157 5%;利息税率为20%.师下面我们来看第一个问题的结果.生计算,报告结果.师生共同解答:(1)解:因为三年期整存整取存款年利率为2.52%,月利率为0.21%,故依教育储蓄的方式,每月存50元,连续存3年,到期一次可支取本息共236 )365050(⨯⨯+×0.21%+1 800=1 869.93(元).因为五年整存整取存款年利率为 2.79%,月利率为0.232 5%,故依教育储蓄的方式,若每月存入每月存50元,连续存6年,到期一次可支取本息共272)725050(⨯⨯+×0.232 5%+3 600=3 905.50(元).(2)每月存入每月存a 元,连续存3年,到期一次可支取本息共236)36(⨯⨯+a a ×0.21%+36a (元).若每月存入每月存a 元,连续存6年,到期一次可支取本息共272)72(⨯⨯+a a ×0.232 5%+72a (元).(3)因为三年期零存整取存款年利率为1.89%,月利率为0.157 5%,故每月存50元,连续存3年,到期一次可支取本息共236)365050(⨯⨯+×0.157 5%×80%+1 800=1 841.96(元).比教育储蓄的方式少收益27.97(元).(4)设每月应存入x 元,由教育储蓄的计算公式得236)36(⨯⨯+x x ×0.21%+36x=10 000.解得x≈267.39(元),即每月应存入267.39(元). (5)设每月应存入x 元,由教育储蓄的计算公式得236)36(⨯⨯+x x ×0.21%+36x=10 000a .解得x=3986.3710000a=267.39a ,即每月应存入267.39a (元).(6)根据银行出台的教育储蓄《管理办法》,需要提前支取的,在提供证明的情况下,按实际存期和开户日同期同档次整存整取定期储蓄存款利率计付利息,并免征储蓄存款利息所得税.故该学生支取时,应按照三年期整存整取存款年利率为2.52%,月利率为0.21%进行计算.由计算公式得248)48100100(⨯⨯+×0.21%+4 800=5 046.96(元).(7)与第6小题类似,应根据实际存期进行同档次计算.一到两年的按一年期整存整取计息.一年期整存整取存款年利率为1.98%,月利率为0.165%,故当b =1或2时,由计算公式得212)12(bb a a ⨯⨯+×0.165%+12ab (元).当b =3或4或5时,应按照三年期整存整取存款年利率为2.52%,月利率为0.21%进行计算.根据计算公式得212 )12(bbaa⨯⨯+×0.21%+12ab(元).(8)此题可以选择多种储蓄方式,学生可能提供多个结果,只要他们计算方式符合规定的储蓄方式即可.教师可以组织学生讨论,然后选择一个最佳答案.[概括总结]师在我们上述探究问题的过程中,我们学到了许多课本上没有的东西,增长了一些银行存款的知识.我们可以用这些知识去规划一下自己将来接受教育的存款计划,并与家长商量,看能不能付诸于现实;我们也可以为身边的亲朋好友当个小参谋,把你学到的知识讲解给他们听一听,看他们能不能接受你的意见和建议.从生产实际和社会生活中,我们还能寻找到更多的探究题材,只要我们做个有心人,我们学到的知识就能与生产实际与社会生活紧密的结合起来.说明:此例文字量大,阅读理解能力要求较高,但是弄通问题的基本含义后,因为其蕴含的数学知识和方法并不深奥,计算量也不大,所以可以说是一个非常好的探究性问题.可以猜想,这也是普通高中新课程标准推崇它作为一个典型例题的理由.师下面的问题需要我们用更多的数学知识才能解决它.出示投影胶片3:例2 你能估计函数y=9-x2在第一象限的图象与x轴、y轴围成的区域的面积吗?出示多媒体图片1:师如图,为了估计函数y=9-x2在第一象限的图象与x轴、y轴围成的区域的面积x,把x轴上的区间[0,3]分成n等份.从各分点作y轴平行线与图象相交,再从各交点向左作x轴平行线,构成(n-1)个矩形.下面用程序来计算这(n-1)个矩形的面积的和S.SUM=0K=1I N PUT请输入将[0,3]分成的份数n:”;NWHILE k<=N-1AN =(9-(k*3/n )^2)*3/NSUM=SUM=ANPRI N T k,AN ,SUMK=k=1WE ND E ND阅读程序,回答下列问题:(1)程序中的AN ,SUM 分别表示什么,为什么?(2)请根据程序分别计算当n =6,11,16时,各个矩形的面积的和(不必在计算机上运行程序). 师 你能回答第一个问题吗?生 AN 表示第k个矩形的面积,SUM 表示前k个矩形面积的和. 生 当把x 轴上的区间[0,3]分成n 等份时,各等份的长都是n3. 理由是:各分点的横坐标分别是n 3,n 23⨯ ,…,nn )1(3-⨯. 从各分点作y 轴平行线与y=9-x 2图象相交,交点的纵坐标分别是2)3(9n -,2)23(9n ⨯- ,…,2])1(3[9nn -⨯-.它们分别是各个相应矩形的高,所以各个矩形面积分别是n n 3])3(9[2⨯-,n n 3])23(9[2⨯⨯-,…, nn n 3)])1(3[(92⨯⎭⎬⎫⎩⎨⎧-⨯-. 师 对学生的思考给予高度的赞扬.师 当我们把x 轴上的区间[0,3]分成n 等份时,按照上面的作图方法,我们得到了函数y=9-x 2在第一象限的图象与x 轴、y 轴围成的区域内的n -1个矩形. 师 想一想,这个由各个矩形面积组成的数列的前n -1项和如何求. 生 自主探究. 列式:nn n n n n n S n 3])1(3[9...3])23(9[3])3(9[2221⨯⎭⎬⎫⎩⎨⎧-⨯-++⨯⨯-+⨯-=-=⎭⎬⎫⎩⎨⎧-⨯-++⨯-+-]))1(3(9[...])23(9[])3(9[3222n n n n n=⎭⎬⎫⎩⎨⎧-+++--])1(...21[)3()1(932222n n n n . 师 引导学生整理所列出的式子,得到上述最后一道式子.师 求和时遇到了12+22+…+n 2的计算问题,这也是一个求数列前n 项和的问题.关于这个问题,我们只要求大家知道,这是求数列:12,22,32,…,n 2,…的前n 项和的问题.由于这个数列不是等差数列,也不是等比数列,因此不能用已经推导出来的等差数列前n 项和公式与等比数列前n 项和公式.而这个和的计算,要求同学们记得它的计算公式. 即要求记住:12+22+…+n 2=6)12)(1(++n n n .关于这个公式的推导过程,我们可以作为知识拓展的材料,放在课外进行探究性学习. 师 运用这个公式,请把上面的n -1个矩形面积的和计算出来. 生 继续运算.S n -1=n 3 {9(n -1)-( n 3)2[12+22+…+(n -1)2]} =n 3[9(n -1)-( n 3)26)12()1(--n n n ] =222)134(9n n n --.师 明确一下计算结果,再继续带领学生一起理解第2小题的含义并得出结果.师 根据程序,当n =6时,5个矩形的面积的和就是输入N =6,SUM 的最后一个输出值,SUM =15.625.那么当n =11时,10个矩形的面积的和就是N =11时,SUM 的最后一个输出值,即SUM=16.736;当n =16时,我们就得到15个矩形面积的和SUM=17.139. 当n =17时,SUM 的最后一个输出值是多少? 生 n =17时,SUM 的最后一个输出值SUM=17.190. 师 你是怎么计算n =17时,SUM 的最后一个输出值的呢?生 是用上面推导出来的计算公式:2212)134(9nn n S n --=-. 当n =500时,SUM 的最后一个输出值SUM=? 当n =1 000时,SUM 的最后一个输出值SUM=?生 用公式2212)134(9n n n S n --=-,不难算出n =500时,SUM=17.973;n =1 000时,SUM=17.986. 师 在计算n =500与n =1 000时的最后一个输出值SUM 时,为什么用上面推导出来的公式而不用程序中的步骤呢?师 这是因为公式2212)134(9nn n S n --=-用起来很方便,只要给出上一个n 的值,就可以代入公式,一下子得出结果.另一方面,程序设计的是一个递推的循环结构.它在上机运行时,对于每个给定的n ,都要从k=1依次循环到k=N -1,这是同学们在没有上机条件时很难做到而又没有必要做到的事.师 至此,你能估计出函数y=9-x 2在第一象限的图象与x 轴、y 轴围成的区域的面积了? 生 由n =500与n =1 000时的最后一个输出值SUM ,可以估计,这个面积大约是18. 师 一个非常准确的结果![教师精讲]师 通过本例的探索,我们来归纳一下收获:1.本例中,程序使用了S n 的递推公式,即⎩⎨⎧+==-)1(,111>n a S S a S n n n这个递推公式的推导,同学们可以自己去思考一下; 2.需要同学们必须想到的是,这个公式还有一个非常重要的作用,那就是:它给我们提供了求数列的首项和第n 项的办法,即⎩⎨⎧+==-)1(,111>n S S a S a n n n 3.关于估计函数y=9-x 2在第一象限的图象与x 轴、y 轴围成的区域的面积,这里采用的是无限逼近的思想,即[0,3]区间分得越细,前k 个矩形面积的和SUM 就越接近函数y=9-x 2在第一象限的图象与x 轴、y 轴围成的区域的面积.教材中已经在用旁白告诉我们,用微积分的知识可得x =18,而我们的估计值也是18,可见我们的估计非常准确.课堂小结本节学习了如下内容:1.教育储蓄中的有关计算.2.用计算机程序计算数列的和.布置作业课本第69页习题2.5第4、5题.板书设计求数列前n项和知识的运用问题情境导引例1 例2。
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
课题: 等比数列前n项和(第一课时)教学目标:1.知识与技能目标:1)掌握等比数列求和公式,并能用之解决简单的问题2)通过对公式的推导,对学生渗透方程思想、分类讨论思想以及等价转化思想。
2过程与方法目标:通过对公式的推导提高学生研究问题、分析问题、解决问题能力;体会公式探求中从特殊到一般的数学思想,同时渗透如上所说的多种数学思想。
3.情感与态度目标:通过公式的推导与简单应用,激发学生求知欲,鼓励学生大胆尝试,敢于探索、创新的学习品质。
二教学重点:等比数列项前n和公式的推导与简单应用。
三教学难点:等比数列n项和公式的推导。
四教学方法:启发引导,探索发现(多媒体辅助教学)。
五教学过程:1.创设情境,导入新课:1)复习旧知,铺垫新知:(1)等比数列定义及通项公式;(2)等比数列的项之间有何特点?说明:如此设计目的是在于引导学生发现等比数列各项特点:从第二项起每一项比前一项多乘以q,从而为“错位相减法”求等比数列前n和埋下伏笔。
2)问题情境,引出课题:从前,一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多一万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠。
穷人听后觉得挺划算,但怕上当受骗,所以很为难。
请在座的同学思考一下,帮穷人出个主意.注:师生合作分别给出两个和式:①学生会求,对②学生知道是等比数列项前n 和的问题但却感到不会解!问1:能不能用等差数列求和方法去求?(不行)问2:怎么办?(用追问的方式引出课题)2.师生互动,新课探究:如何求和:注:(给学生时间让他们观察、思考)如果学生想不出来,师做必要启发:1) 等式右边各项有什么特点?(等比数列30项和)2) 公比是多少?(2)即:从第二项起每一项比前一项多乘以2.3)因此,如果两边……(教师语速放慢,看学生反应状况,再往下提示:把等式两边同乘以公比2)从而有: 3029432302222222++++++= T师:如何求30T ?(此处给学生充分的观察思考的时间,师不忙给出结论,让他们自己得出求解的方法:作差)① 30321S 30 ++++=②T 29283230222221++++++=29283230222221++++++= T 29283230222221++++++= T注:①学生解出30T ,并与30S 比较(到底能不能向富人借钱)。
人教版高中必修5-2.5 等比数列的前 n 项和课程设计课程背景本课程是人教版高中数学必修课程第五章的第二节内容——等比数列的前 n 项和。
在高中数学中,等比数列是一个重要的数学概念,涉及到等比数列的性质、公式及其应用等方面。
其中,等比数列的前 n 项和是其应用中比较常见的问题之一。
教学目标1.熟练掌握等比数列的概念、性质、公式及其应用;2.理解等比数列的前 n 项和的含义,并掌握其求解方法;3.能够应用等比数列的前 n 项和解决实际问题。
教学重点1.等比数列的前 n 项和的概念;2.等比数列的前 n 项和的公式推导;3.等比数列前 n 项和的求解方法;4.等比数列的应用。
教学难点1.等比数列前 n 项和的公式推导;2.等比数列前 n 项和的求解方法。
教学步骤第一步介绍介绍本节内容的主要内容,包括等比数列的概念、性质及其应用;并引入本节重点内容——等比数列的前 n 项和。
第二步概念及性质1.对等比数列的概念进行介绍;2.设a1为等比数列的第一项,q为等比数列的公比,得到等比数列的通项公式:a n=a1q n−1;3.推导等比数列的性质,如对于任意正整数m,n有 $a_m \\cdot a_n= a_{m+n-1}$。
第三步等比数列前 n 项和的推导1.推导计算等比数列前 n 项和的公式:$S_n=\\frac{a_1(1-q^n)}{1-q}$;2.利用等比数列的性质,对上述公式进行变形。
第四步求解等比数列前 n 项和1.按照上述公式和变形方法,求解具体例子;2.引导学生自己尝试使用这些公式与方法解决其他问题。
第五步实际应用1.应用等比数列前 n 项和解决实际问题,如计算定投基金收益等;2.引导学生发现等比数列前 n 项和在实际生活中的应用。
教学评估1.课堂练习:通过课堂练习,测试学生对等比数列的概念、性质及前 n项和的掌握情况;2.课后作业:通过布置课后作业,巩固学生对本节内容的理解和应用;3.期末考试:期末考试将以选择题和应用题的形式,测试学生对等比数列前 n 项和的综合理解和应用能力。
《等比数列的前n项和》教学案例设计一、设计思想1、设计理念本课的教学设计基于“人人都能获得必要得数学”即平等性的考虑,坚持面向全体学生,努力设计“适合学生发展得数学教育”,体现“人人学数学”,“不同的人学不同的数学”的理念。
教学中强调“培养学生情感、态度与价值观”的重要性,注重引导学生主动地进行探索,从而帮助学生树立正确的数学观,但又与教师的设计问题与活动的引导密切结合,强调“活动”的内化,即在头脑中实现必要的重构或认知结构的重组,从而引起真正的数学思维,提高思维的效益。
通过联系学生的生活实际使其真正感到数学是有意义的,一方面培养学生的社会意识,明确肯定“日常数学”的合理性等,另一方面,再调动学生生活经验的同时,又应努力帮助他们清楚地去熟悉生活经验并上升到“学校数学”的必要性。
2、设计背景传统的数学作业单调枯燥,脱离生活和学生实际,不利于学生个性和能力的发展。
在新课程标准的理念下,重新认识作业的意义和价值,突破传统,改变现状,树立正确的作业观,创新作业方式,激发兴趣,发展学生数学素质,既注重基础知识的巩固,更要注重学生思维和能力的发展,既要创新又要保证其科学有效,使学生在做作业的过程中体验快乐、形成能力、学会合作、体验自主。
3、教材的地位与作用本节教材在学生学习过等比数列的概念与性质的基础上,学习等比数列n前项和公式,能用等比数列的前n项和公式解决相关求和问题。
探索公式的推导、体会错位相减法以及分类讨论的思想方法。
本节内容基础知识和基本技能非常重要,涉及的数学思想、方法较为丰富,因此是重点内容之一。
本设计是第一课时的教学内容。
二、学习目标⑴知识与技能掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。
⑵过程与方法通过等比数列的前n项和公式的推导过程,体会错位相减法以及分类讨论的思想方法。
⑶情感、态度与价值观通过对等比数列的学习,发展数学应用意识,逐步认识数学的科学价值、应用价值,发展数学的理性思维。
《等比数列的前n项和公式》说课《等比数列前n项和》是人教版必修5第二章数列中第五节第一课时的内容。
下面,我从教材分析,情境创设、公式推导,公式应用,教学反思等几个方面,谈谈自己的管窥之见,与各位老师探讨。
教材分析等比数列的前n项和是“等差数列的前n项和”与“等比数列”内容的延续、是进一步学习数列知识和解决一类求和问题的重要基础和有力工具。
它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所蕴涵的类比、分类讨论、方程等思想方法,都是学生今后学习和工作中必备的数学素养。
学情分析就学生而言,等差、等比数列的定义和通项公式,等差数列的前n项和的公式是学生在学习之前已经具备的知识基础。
学生具体研究学习了等差数列前n项和公式的推导方法,具备了一定的探究能力。
基于此,学生会产生思考,等比数列前n项和公式应该如何推导,公式是从什么新的角度建构?其重要性和普遍性体现在哪里?应该说学生从内心来讲,有想探究等比数列前n项和公式的欲望和驱动力。
教学目标在知识方面:理解等比数列的前n项和公式的推导方法,掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
在能力方面:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想,优化思维品质。
在情感方面:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质。
重点难点重点:使学生掌握等比数列的前n项和公式,用等比数列的前n项和公式解决实际问题。
难点:由研究等比数列的结构特点推导等比数列的前n项和公式。
情境创设《数学课程标准》中明确指出:教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉.是对课堂教学实践的要求.我选择的问题情景是国王赏麦的故事. 国际象棋起源于古代印度,关于国际象棋有这样一个传说: 相传古印度宰相达依尔,发明了国际象棋。
课题: §2.5等比数列的前n 项和
授课类型:新授课
(第2课时)
●教学目标
知识与技能:会用等比数列的通项公式和前n 项和公式解决有关等比数列的q n a a S n n ,,,,1中知道三个数求另外两个数的一些简单问题;提高分析、解决问题能力
过程与方法:通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.
情感态度与价值观:通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.
●教学重点
进一步熟练掌握等比数列的通项公式和前n 项和公式
●教学难点
灵活使用公式解决问题
●教学过程
Ⅰ.课题导入
首先回忆一下前一节课所学主要内容:
等比数列的前n 项和公式:
当1≠q 时,q
q a S n n --=1)1(1 ① 或q q a a S n n --=11 ② 当q=1时,1na S n =
当已知1a , q, n 时用公式①;当已知1a , q, n a 时,用公式②
Ⅱ.讲授新课
1、等比数列前n 项,前2n 项,前3n 项的和分别是Sn ,S2n ,S3n ,
求证:)S S (S S S n 3n 2n 2n 22
n +=+
2、设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和;
(1)a=0时,S n =0
(2)a ≠0时,若a=1,则Sn=1+2+3+…+n=
)1n (n 21- 若a ≠1,S n -aS n =a (1+a+…+a n-1-na n ),Sn=]na a )1n (1[)
a 1(a 1n n 2+++--
Ⅲ.课堂练习
Ⅳ.课时小结
Ⅴ.课后作业
●板书设计
●授后记。