2015年福建高考文科数学试题及答案解析(word精校版
- 格式:doc
- 大小:766.00 KB
- 文档页数:9
2015年福建高考数学 文科卷一.选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若(1+i )+(2-3i )=a +b i (a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A.3,-2 B.3,2 C.3,-3 D.-1, 4 【参考答案】A【测量目标】复数形式的代数运算.【试题分析】由已知得3-2i=a+b i ,所以a =3,b = -2,故选A. 2.若集合M ={x |-2≤x <2},N ={0,1,2},则M N 等于( ) A.{0} B.{1} C.{0,1,2} D.{0,1} 【参考答案】D【测量目标】集合的基本运算.【试题分析】由交集定义得M N ={0,1},故选D. 3.下列函数为奇函数的是( )A.y =B.e x y =C.y =cos xD.e e x x y -=-【参考答案】D【测量目标】函数奇偶性的判断.【试题分析】函数y =和e x y =是非奇非偶函数;cos y =x 是偶函数;e e x x y -=-是奇函数,故选D.4.阅读如图所示的程序框图,阅读相应的程序,若输入x 的值为1,则输出y 的值为( ) A.2 B.7 C.8D.128第4题图【参考答案】C【测量目标】流程图.【试题分析】由题意得,该程序表示分段函数2,2,,9,2x x y x x ⎧=⎨-<⎩≥则f (1)=9-1=8.故选C.5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a +b 的最小值等于( ) A.2 B.3 C.4 D.5 【参考答案】C【测量目标】不等式的性质. 【试题分析】由已知得111,a b +=则a +b =(a +b )(11a b +)=2+b a a b+,因为a >0,b >0,所以2a b b a +=≥,故a +b ≥4,当b a a b =,即a =b =2时取等号.6.若sin α=513-,且α为第四象限角,则tan α的值等于( ) A.125 B.125- C.512 D.512- 【参考答案】D【测量目标】同角三角函数的基本关系式. 【试题分析】由sin α=513-,且α为第四象限角,则cos α=1213=,则tan α=sin cos αα=512-,故选D. 7.设(1,2),(1,1),k ===+a b c a b .若,⊥b c 则实数k 的值等于( ) A.32-B.53-C.53D.32【参考答案】A【测量目标】平面向量的数量积.【试题分析】由已知得(1,2)(1,1)(1,2),k k k =+=++c 因为,⊥b c 则0,⋅=b c 因此120k k +++=解得k =32-,故选A. 8.如图,矩形ABCD 中,点A 在x 轴上,B 点的坐标为(1,0).且点C 与点D 在函数f (x )1,011,02x x x x +⎧⎪=⎨-+<⎪⎩≥的图象上,若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A.16 B.14 C.38 D.12第8题图【参考答案】B【测量目标】几何概型.【试题分析】由已知得B (1,0),C (1,2),D (-2,2),F (0,1),则矩形ABCD 面积为3⨯2=6,阴影部分面积为133122⨯⨯=,故该点取自阴影部分的概率为326=14.9.某几何体的三视图如右图所示,则该几何体的表面积等于( )A.8+B.11+C.14+D.15第9题图【参考答案】B【测量目标】三视图和表面积.【试题分析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别是1,2,直角腰长为1底面积为2⨯123⨯=3,侧面积为2+2+4+11+ B.10.变量,x y 满足约束条件0220,0x y x y mx y +⎧⎪-+⎨⎪-⎩≥≥≤若2z x y =-的最大值为2,则实数m 等于( )A.2-B.1-C.1D.2 【参考答案】C【测量目标】线性规划求目标函数的最值.【试题分析】将目标函数变形为y =2x -z ,当z 取最大值时,则直线纵截距最小.故当m ≤0时,不满足题意;当m >0,画出可行域,如图所示,第10题图其中B (22,2121mm m --).显然O (0,0)不是最优解,故只能是B 是最优解,代入目标函数得4222121mm m -=--,解得m=1,故选C. 11.已知椭圆:22221(0)x y a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线l :3x -4y =0交于椭圆E 于A,B ,两点.若|AF|+|BF|=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.(0,2] B.(0,34] C.[2,1] D.[34,1)【参考答案】A【测量目标】椭圆的定义和简单几何性质.【试题分析】设左焦点为1F ,连接11,AF BF .则四边形1BF AF 是平行四边形,故|1|||AF BF =,所以1||||42,A F A Fa +==所以2a =,设(0,)M b 则44,55b ≥故1,b ≥从而2221,03,03,a c c -<<≥≤E 的离心率的取值范围是(0故选A. 12.“对任意π(0,),sin cos "2x k x x x ∈<是“1"k ≤的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【参考答案】B【测量目标】导数的应用.和充分必要条件的定义【试题分析】当1k <时,s i n c o ss i n 22k k x x x =,构造函数()sin 2,2k f x x x =-则()cos 210,f x k x '=-<故()f x 在π(0,)2x ∈单调递减,故()(0)0,f x f <=则sin cos k x x x <;当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数1()sin 2,2g x x x =-则()cos 210g x x '=-<,故()g x 在π(0,)2x ∈递减,故()(0)0g x g <=,则sin cos x x x <.综上所述,“对任意x ∈(0,π2),s i n c o s k x x x <”是“1k ≤”的必要不充分条件.故选B.14.若△ABC 中,45AC A ==,75C =,则BC =__________.【测量目标】正弦定理.【试题分析】由题意得18060B A C =--=,由正弦定理得sin sin AC BCB A=, 则sin sin AC ABC B=,所以BC ==15.若函数||()2(x a f x a -=∈R )满足(1)f x +=(1)f x -,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于______. 【参考答案】1【测量目标】函数的图象与性质.【试题分析】由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故a =1,则|1|()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 16.若,a b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的最小值等于_______. 【参考答案】9【测量目标】等差中项和等比中项.【试题分析】由韦达定理得,,a b p a b q +=⋅=则0,0,a b >>当,,2a b -适当排序后成等比数列时,-2必为等比中项,故44,a b q b a===,当适当排序后成等差数列时,-2必不是等差中项,当a 是等差中项时,422a a =-,解得a=1,b =4;当4a 是等差中项时,82a a =-,解得4,1a b ==,综上所述,5a b p +==,所以9p q +=.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)等差数列{n a }中,2474,15a a a =+=. (1)求数列{n a }的通项公式; (2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值【测量目标】(1)等差数列通项公式; (2)分组求和.【试题分析】(1)设等差数列{n a }的公差为d , 由已知得1114(3)(6)15a d a d a d +=⎧⎨+++=⎩,解得131a d =⎧⎨=⎩所以1(1)2n a a n d n =+-=+. (1) 由(1)可得2n n b n =+所以123b b b +++⋅⋅⋅+10b 23(21)(22)(23)=++++++⋅⋅⋅+10(210)+ =(23222+++⋅⋅⋅+102)(12310)++++⋅⋅⋅+=102(12)(110)10122-+⨯+-=11(22)55-+=112532101+=.18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中的影响程度的综合指标.据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20.(1)现从融合指数在[4,5]和[7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[7,8]的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【测量目标】(1)古典概型; (2)平均数.【试题分析】解法一:(1)融合指数在[7,8]内的“省级卫视新闻台”记为1,23,;A A A 融合指数在[4,5)内的“省级卫视新闻台”记为12,B B .从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取的2家的所有的基本事件是:12{,}A A ,1323{,},{,}A A A A ,1112{,},{,},A B A B 2122{,},{,}A B A B ,31{,}A B ,32{,},A B 12{,}B B ,共10个.其中,至少有1家融合指数在[7,8]内的基本事件是:1213231112{,},{,},{,},{,},{,},A A A A A A A B A B 2122{,},{,},A B A B 3132{,},{,}A B A B ,共9个.所以所求的概率910P =. (2)这20家“省级卫视新闻台”的融合指数平均数 等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(1)融合指数在[7,8] 内的“省级卫视新闻台”记为123,,A A A ;融合指数在[4,5)内的“省级卫视新闻台”记为12,.B B 从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{12,}A A ,132311{,},{,},{,}A A A A A B ,122122{,},{,},{,}A B A B A B313212{,},{,},{,}A B A B B B ,共10个,其中,没有一家融合指数在[7,8]内的基本事件是:12{,}B B ,共1个.所以所求的概率1911010P =-=. (2)同解法一.19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点()2,A m 在抛物线E 上,且||3AF =. (1)求抛物线E 的方程;(2)已知点(1,0),G -延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.第19题图【测量目标】(1)抛物线的定义;(2)直线和圆的位置关系. 【试题分析】解法一:(1)由抛物线的定义得||22p AF =+.因为 ||3,AF =即22p+=3,解得2p =,所以抛物线E 的方程为24y x =.(2)因为点(2,)A m 在抛物线2:4E y x =上,所以m =+A ,由(1,0)A F 可得直线AF 的方程为1)y x =-,由2(1)4y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1(,2B ,又(1,0)G -,所以0012(1)33(1)2GA GB k k ====-----,所以0GA GB k k +=,从而∠AGF =∠BGF ,这表明点F 到直线,GA GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.解法二:(1)同解法一.(2) 设点F 为圆心且与直线GA 相切的圆的半径为r .因为点(2,)A m 在抛物线2:4E y x=上,所以m=±A,(1,0)F可得直线AF的方程为1)y x=-由21)4y xy x⎧=-⎪⎨=⎪⎩,得22520x x-+=,解得122x x==或,从而1(,2B,又(1,0),G-故直线GA的方程为30y-+=,故F到直线AG的距离r=.又直线GB的方程为30y++=,所以点F到直线GB的距离d r===,这表明以点F为圆心且与直线GA相切的圆必与GB相切.20.(本题满分12分)如图,AB是圆O的直径,点C是圆O异于,A B的点,PO垂直于圆O所在的平面,且1PO OB==.第20题图(1)若D为线段AC的中点,求证AC⊥平面PDO;(2)求三棱锥P ABC-体积的最大值;(3)若BC点E在线段PB上,求CE OE+的最小值.【测量目标】(1)直线和平面垂直的判定;(2)三棱锥体积求法; (3)线段和的最值问题.【试题分析】解法一:(1)连接PD,在△AOC中,因为OA OC=,D为AC的中点,所以AC OD⊥,又PO垂直于圆O所在的平面,所以PO AC⊥,因为DO PO O=,所以AC⊥平面PDO.(2)因为点C在圆O上,所以当CO AB⊥时,C到AB的距离最大,且最大距离为 1.又2AB=,所以△ABC面积的最大值为12112⨯⨯=.又因为三棱锥P ABC-的高1PO=,故三棱锥体积的最大值为111133⨯⨯=.(3)在△POB中,1,90PO BO POB==∠=。
高考福建文科数学试题及答案word 分析版2015 年一般高等学校招生全国一致考试(福建卷)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项切合题目要求.( 1)【 2015 年福建,文 1,5 分】若 1 i2 3iabi ( a,b R ,i 是虚数单位),则 a,b 的值分别等于 ()( A ) 3,-2 (B ) 3,2(C ) 3,-3(D ) -1,4【答案】 A【分析】由已知得3 2i a bi ,故 a 3 , b 2,应选 A .( 2)【 2015 年福建,文 2, 5 分】若会合 Mx 2x 2 , N0,1,2 ,则 M IN 等于()(A ) 0(B ) 1( C ) 0,1,2(D ) 0,1【答案】 D【分析】由交集定义得 M I N 0,1 ,应选 D .( 3)【 2015 年福建,文 3, 5 分】以下函数为奇函数的是()( A ) yx( B ) y e x( C ) y cosx( D ) ye x e x【答案】 D【分析】 函数 y x 和 ye x 是非奇非偶函数; y cosx 是偶函数; y e xe x 是奇函数, 应选 D .( 4)【 2015 年福建,文 4, 5 分】阅读如下图的程序框图,阅读相应的程序.若输入x 的值为 1,则输出 y 的值为()(A )2( B )7( C )8(D ) 128【答案】 Cx2,则 f 1【分析】该程序表示分段函数y2x 9 18 ,应选 C .9 xx2( 5)【 2015 年福建,文 5, 5 分】若直线xy 1 a 0,b0 过点 1,1 ,则 a b 的最小值等于()ab(D ) 5(A )2(B ) 3(C )4【答案】 C【分析】由已知得111 ,则 aba b11 2b a ,所以 a 0,b 0 ,所以 ba b a 2,故ab aba b aba bab 4 ,当ba,即 a b2 时取等号,应选 C .ab( 6)【 2015 年福建,文 6, 5 分】若 sin5,且为第四象限角,则tan 的值等于()13(A ) 12(B )12(C )5( D )5 【答案】 D55 1212【分析】由 sin5 ,且 为第四象限角,则 cos 1 sin212,则 tansin5 ,应选 D .13 r1,2 rr r r 13 r r cos 12( 7)【 2015 年福建,文 7, 5 分】设 a, b 1,1 , c a kb .若 bc ,则实数 k 的值等于()( A )3 (B ) 5(C )5(D )3【答案】 A233 2rrr r r1,2k 1,1k 1,k0 ,所以 k 1 k 2 0,解得 k3 ,【分析】由已知得 c2 ,由于 bc ,则 b c应选 A .2( 8)【2015 年福建,文 8,5 分】如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为 1,0 .且点 C高考福建文科数学试题及答案word 分析版与点 D 在函数 fx 1x 0ABCD 内随机取一点,则该点取自x1x 1 x0 的图像上.若在矩形2暗影部分的概率等于( )(A ) 1(B )1(C )3(D )16482【答案】 B【分析】由已知得 B 1,0 ,C 1,2 ,D2,2 ,F 0,1 ,则矩形 ABCD 面积为 3 2 6 ,暗影部分面积为13 1 3 ,3221故该点取自暗影部分的概率等于26 应选 B .4( 9)【 2015 年福建,文 9, 5 分】某几何体的三视图如下图,则该几何体的表面积等于()(A )8 2 2 (B )11 2 2 (C )14 2 2 (D ) 15【答案】 C【分析】由三视图复原几何体,该几何体是底面为直角梯形,高为2 的直四棱柱,且底面直角梯形的两底分别为 1,2,直角腰长为 1,斜腰为2 .底面积为 21 33 ,侧面积为则其表面2积为2242 2 82 2 ,所以该几何体的表面积为11 2 2 ,应选 C .3xy2( 10)【 2015 年福建, 文 10,5 分】变量 x, y 知足拘束条件 x 2 y2 0 ,若 z 2 xy 的1Bmx yCx–4 –3 –2 –1O最大值为 2,则实数 m 等于()1234–1(A )-2(B )-1(C )1(D )2–2【答案】 C–3【分析】 将目标函数变形为y 2x z ,当 z 取最大值, 则直线纵截距最小, 故当 m 0 时,不知足题意; –4当 m 02 2 m .明显 O 0,02 2m 时,画出可行域, 如下图, 此中 B 1 , 不是最优解, 故只好 B ,1 2m 2m 12m 1 2m 是最优解,代入目标函数得 4 2m 1( 11)【 2015 年福建,文 11, 5 分】已知椭圆 2m 2m 1 2xE : 22 ,解得 m 1,应选 C . y 2 2 1 a b 0 的右焦点为 F .短轴的一个端点为 M , b 直线 l :3 x4 y 0 交椭圆 E 于 A, B 两点.若 AF BF4 ,点 M 到直线 l 的距离不小于4,则椭圆 E 的离心率的取值范围是( )5(A ) 0,3 (B ) 0,3( C )3,1(D ) 3,12424【答案】 A【分析】设左焦点为 F ,连结 AF 1 ,BF 1 ,则四边形 BF 1 AF 是平行四边形, 故 AF 1BF ,所以 AF 1 AF 4 2a ,所以 a2 ,设 M 0,b ,则4b4,故 b 1 ,进而 a 2c 2 1 , 0 c 23 , 0 c3 ,所以椭圆 E 的离5 5心率的取值范围是0,3,应选 A .2( 12)【 2015 年福建,文 12, 5 分】 “对随意x 0, , ksin x cosx ”是“ 1”的()2xk( A )充足而不用要条件 (B )必需而不充足条件 (C )充足必需条件 ( D )既不充足也不用要条件【答案】B【分析】当k 1 , k sin xcos xksin 2 x ,结构函数 f xksin 2 x x ,则 f xk cos2x 1 0 .故 f x 在2 2x0,单一递加, 故 f x f2 20 ,则 k sin x cosxx ;当 k 1 时,不等式 k sin x cosx x 等2价于 1sin 2x x ,结构函数 g x1 sin 2x x ,则 g xcos2 x1 0 ,故 g x 在 x0,2 递加,故22g xg0 ,则 sin x cosx x .综上所述, “对随意 x0,, k sin xcosxx ”是 “ 1 ”的2 2k2必需不充足条件,应选B .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共 4 小题,每题 4 分,共 16 分.把答案填在答题卡的相应地点.( 13)【 2015 年福建,文 13,5 分】某校高一年级有 900 名学生,此中女生 400 名,按男女比率用分层抽样的方法,从该年级学生中抽取一个容量为 45 的样本,则应抽取的男生人数为 .【答案】 25 【分析】由题意得抽样比率为45 1 ,故应抽取的男生人数为 500 1 25 .900 20 20( 14)【 2015 年福建,文 14, 5 分】若 ABC 中, AB 3 , A 45 , C 75 ,则 BC 等于 .【答案】 2【分析】由题意得B 180AC 60 .由正弦定理得AC BC,则BC AC sin B A,所以sin B sin Asin3 2BC22.32( 15)【2015 年福建,文 15,5 分】若函数 fx2 x aa R 知足 f 1xf 1 x ,且 f x在 m,单一递增,则实数 m 的最小值等于 .【答案】 1【分析】 由 f 1xf 1 x 得函数 f x 对于 x1对称,故 a1,则 f x2x 1fx在,由复合函数单一性得 1,递加,故 m 1,所以实数 m 的最小值等于 1.( 16)【2015 年福建,文 16,5 分】若 a,b 是函数 f x x 2 px q p0, q 0的两个不一样的零点,且 a,b, 2 这三个数可适合排序后成等差数列,也可适合排序后成等比数列,则p q 的值等于.【答案】 9【分析】由韦达定理得a bp , a b q ,则 a 0,b 0 ,当 a,b, 2 适合排序后成等比数列时, 2 必为等比中项,故 a bq 4 , b4 ,当适合排序后成等差数列时,2 必不是等差中项,当 a 是等差中项时, 4a 4 ;当 4是等差中项时, 82a2 ,解得 a 1,b a 2 ,解得 a 4,b 1 ,综上所述, a b p 5 ,aa a所以 pq 9 .三、解答题:本大题共6 题,共 74 分.解答应写出文字说明,演算步骤或证明过程.( 17)【 2015 年福建,文 17, 12 分】等差数列 a n中, a 2 4 , a 4a 715 .( 1)求数列 a n 的通项公式;( 2)设 b n2a n2n ,求 b 1 b 2 b 3 L b 10 的值.解:( 1)设等差数列 a n 的公差为 d .由已知得 a 1 d 4,解得a 13a 1 3da 1 6d15 d.1所以 a na 1n 1 d n 2 .( 2)由( 1)可得 b n2n n .所以2 11021 10 10211 255 211 53 2101 .122( 18)【 2015 年福建,文 18, 12分】全网流传的交融指数是权衡电视媒体在中国网民中影响了的综合指标.根据有关报导供给的全网流传2015 年某全国性大型活动的“省级卫视新闻台”交融指数的数据,对名列前 20名的“省级卫视新闻台”的交融指数进行分组统计,结果如表所示.组号分组频数12283743( 1)现从交融指数在 4,5和 7,8内的“省级卫视新闻台”中随机抽取 2 家进行调研,求起码有 1 家的交融指数在 7,8 的概率;(2)依据分组统计表求这 20 家“省级卫视新闻台”的交融指数的均匀数.解:解法一:( 1)交融指数在 7,8 内的“省级卫视新闻台”记为A1,A2,A3;交融指数在4,5内的“省级卫视新闻台”记为B1,B2.从交融指数在4,5和 7,8 内的“省级卫视新闻台”中随机抽取 2 家的全部基本领件是:A1, A2,A1,A3, A2,A3, A1,B1, A1, B2, A2, B1, A2, B2, A3, B1, A3, B2, B1, B2,共 10 个.其中,起码有 1 家交融指数在7,8 内的基本领件是:A1, A2, A1, A3, A2, A3, A1, B1, A1, B2, A2,B1,A2, B2, A3 , B1, A3 , B2,共 9 个.所以所求的概率P9 .210873( 2)这 20 家“省级卫视新闻台”的交融指数均匀数等于.20202020解法二:( 1)交融指数在 7,8 内的“省级卫视新闻台”记为A1,A2,A3;交融指数在4,5内的“省级卫视新闻台”记为B1,B2.从交融指数在4,5和 7,8 内的“省级卫视新闻台”中随机抽取 2 家的全部基本领件是:A1, A2,A1,A3, A2,A3, A1,B1, A1, B2, A2, B1, A2, B2, A3, B1, A3, B2, B1, B2,共 10 个.其中,没有 1 家交融指数在7,8 内的基本领件是:B1,B2,共 1 个.所以所求的概率 P119 .( 2)同解法一.1010( 19)【 2015 年福建,文 19, 12 分】已知点F为抛物线 E : y2 2 px p0的焦点,点 A 2, m在抛物线 E 上,且 AF 3 .(1)求抛物线E的方程;(2)已知点 G 1,0 ,延伸AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB 相切.解:解法一:( 1)由抛物线的定义得AF2p.由于 AF3,即2p3,解得 p 2 ,所以抛物线 E 的方程为y222 4x.( 2)由于点 A 2,m在抛物线 E : y2 2 px 上,所以m22 ,由抛物线的对称性,不如设A2,2 2.由A2,2 2 , F1,0 可得直线AF的方程为 y22x1.由y 2 2x 1,得 2x25x20 ,y2 4 x解得 x 2或 x 1,进而B 1 , 2 .又G1,0,所以 k GA 2 2022,k GB2022 ,222131132所以 k GA k GB0 ,进而AGF BGF ,这表示点 F 到直线 GA , GB 的距离相等,故以 F 为圆心且与直线GA相切的圆必与直线GB 相切.解法二:( 1)同解法一.( 2)设以点F为圆心且与直线GA相切的圆的半径为r .由于点 A 2, m 在抛物线 E : y24x 上,所以m 2 2 ,由抛物线的对称性,不如设 A 2,22.由 A2,22, F 1,0 可得直线AF的方程为y 2 2 x1.由y2 2 x 1,得 2x25x20 ,解得x 2 或x1,进而B 1 ,2.又G 1,0 ,y24x22故直线 GA 的方程为2 2 x 3 y220 ,进而 r 2222 4 2.8917又直线 GB 的方程为2 2 x 3 y 220 ,所以点F到直线GB的距离 r 222242r .8917这表示以点 F 为圆心且与直线GA 相切的圆必与直线GB 相切.( 20)【 2015 年福建,文 20,12 分】如图,AB是圆O的直径,点C是圆O上异于A, B的点,PO 垂直于圆 O 所在的平面,且 PO OB 1 .( 1)若D为线段AC的中点,求证AC平面 PDO ;( 2)求三棱锥P ABC 体积的最大值;( 3)若BC 2 ,点 E 在线段 PB 上,求 CE OE 的最小值.解:解法一:( 1)在AOC 中,由于 OA OC , D 为 AC 的中点,所以AC OD .又 PO 垂直于圆 O 所在的平面,所以 PO AC .由于 DO I PO O ,所以 AC平面 PDO .( 2)由于点C在圆O上,所以当CO AB 时, C 到 AB 的距离最大,且最大值为1.又 AB2,所以ABC 面积的最大值为1211 .又由于三棱锥P ABC 的高 PO1,2故三棱锥 P ABC 体积的最大值为111 1 .33( 3)在POB 中, PO OB 1,POB90,所以 PB1212 2 .同理PC 2 ,所以 PB PC BC .在三棱锥 P ABC 中,将侧面 BCP 绕 PB 旋转至平面 BC P ,使之与平面 ABP 共面,如下图.当O, E, C 共线时, CE OE 获得最小值.又由于 OP OB, CP CB,所以OC 垂直均分 PB ,即 E 为 PB 中点.进而OC OE EC2626,亦即 CE OE 的最小值为2 6 .2222解法二:( 1)(2)同解法一.( 3)在POB 中, PO OB1,POB90,所以OPB45, PB12122.同理 PC 2 .所以 PB PC BC ,所以CPB60 .在三棱锥P ABC 中,将侧面 BCP 绕 PB 旋转至平面 BC P ,使之与平面 ABP 共面,如下图.当O,E,C共线时, CE OE 获得最小值.所以在OCP中,由余弦定理得: OC 212 2 12cos 4560122221232 3 .2222进而 OC2326.所以 CE OE 的最小值为226 .2( 21)【 2015 年福建,文21, 12 分】已知函数f x103sin xcosx10cos2x .( 1)求函数 f x222的最小正周期;( 2)将函数 f x的图象向右平移个单位长度,再向下平移 a (a 0)个单位长度后获得函数g x 的6图象,且函数g x的最大值为2.(i )求函数 g x 的分析式;(ii )证明:存在无量多个互不同样的正整数解:( 1) f x 10x x 2 x3sin x 3sin cos10cos5222所以函数 f x 的最小正周期T 2.x0,使得g x00.5cos x 5 10sin x56( 2)( i )将 f x 的图象向右平移个单位长度后获得y10sin x 5 的图象,再向下平移a ( a 0 )个单62,所以 10 5a 2 ,解位长度后获得 g x 10sin x 5 a 的图象.又已知函数g x 的最大值为 得 a 13 .所以 gx 10sin x8 .(ii )要证明存在无量多个互不同样的正整数 x 0 ,使得 g x 00 ,就是要证明存在无量多个互不同样的 正整数 x 0 ,使得 10sin x 0 8 0 ,即 sin x 04.由 4 3 知,存在 0,使得 sin 04 .5 5235由正弦函数的性质可知,当x0 ,时,均有 sin x4.由于 y sin x 的周期为 2 ,5所以当 x2k0 ,2 k0kZ 时,均有 sin x 4 .5由于对随意的整数k , 2k2k2 01 ,3所以对随意的正整数k ,都存在正整数x k2k0 ,2 k 0,使得 sin x k4 .5亦即存在无量多个互不同样的正整数x 0 ,使得 gx 00 .x2( 22)【 2015 年福建,文 22, 14 分】已知函数 f x1ln x.2( 1)求函数 f x 的单一递加区间; ( 2)证明:当 x 1时, f x x 1 ;( 3)确立实数 k 的全部可能取值,使得存在解:( 1) f x1x 1x2x 1, x0,xx故 f x 的单一递加区间是0,15 .2x 0 1 ,当 x 1,x 0 时,恒有 fx k x 1 . .由 f xx 0 解得 0 x 15 .0 得x 1x 22(2)令 F xfxx1 , x0,.则有 F 1 x 2.当 x 1, 时, Fx0,所以 Fx 在xx1, 上单一递减,故当 x 1 时, F xF 10 ,即当 x 1 时, f xx 1 .( 3)由( 2)知,当 k1 时,不存在 x 0 1知足题意.当 k 1 时,对于 x 1 ,有 f xx 1 k x 1 ,则 f xk x 1 ,进而不存在 x 01 知足题意.当 k1 时,令 G xf x kx 1 , x0,,则有 G x 11 k x2 1k x1xx.x1 k241 k24由 G x0 得,21 k x1 0 .解得 x 11 k , x2 1 k 1.x22当 x1,x 2 时, G x 0 ,故 G x 在 1,x 2 内单一递加.进而当 x 1,x 2 时, G x G 10 ,即 f xk x1 ,综上, k 的取值范围是,1 .。
2015年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1+i)+(2-3i)=a+bi(a 、b ∈R,i 是虚数单位),则a ,b 的值分别等于A.3,-2B.3,2C. 3,-3D.-1,42.若集合M={x ︱-2≤x <2},N={0,1,2},则M∩N 等于A.{0}B. {1}C. {0,1,2}D. {0,1}3.下列函数为奇函数的是 A.x y = B.x e y = C.x y cos = D.x x e e y --=4.阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为A.2B.7C.8D.1285.若直线1=+by a x (a >0,b >0)过点(1,1),则a+b 的最小值等于 A.2 B.3 C.4 D.56.若135sin -=α,且α为第四象限角,则tanα的值等于 A.512 B.512- C.125 D. 125- 7.设a=(1,2),b=(1,1),c=a+kb.若b ⊥c ,则实数k 的值等于A.2 3 -B.35- C.35D.238.如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数⎪⎩⎪⎨⎧+-≥+=,121,1)(<xxxxxf的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于A.61B.41C.83D.219.某几何体的三视图如图所示,则该几何体的表面积等于A.228+ B. 2211+ C. 2214+ D.1510.变量x,y满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥+.0,022,0ymxyxyx若z=2x-y的最大值为2,则实数m等于A.-2B.-1C.1D.211.已知椭圆E:12222=+byax(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若4=+BFAF,点M到直线l的距离不小于54,则椭圆E的离心率的取值范围是A.⎥⎥⎦⎤⎝⎛230, B.⎥⎦⎤⎝⎛430, C.⎪⎪⎭⎫⎢⎢⎣⎡123, D.⎪⎭⎫⎢⎣⎡1,4312.“对任意x x x k x <cos sin ,2,0⎪⎭⎫ ⎝⎛∈π”是“k <1”的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数是 .14.若△ABC 中,AC=3,A=45°,C=75°,则BC= .15.若函数a x x f -=2)((a ∈R )满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m 的最小值等于 .16.若a,b 是函数f(x)=x 2-px+q(p >0,q >0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{a n }中,a 2=4,a 4+a 7=15.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设n b n a n +=-22,求b 1+b 2+b 3+…+b 10的值.18.(本小题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(I )现从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8内的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.19.(本小题满分12分)已知点F 为抛物线E:22y px =(0p >)的焦点,点()2,m A 在抛物线E 上,且F 3A =. (I )求抛物线E 的方程;(Ⅱ)已知点G(-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.20.(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO=OB=1.(I )若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(Ⅱ)求三棱锥P-ABC 体积的最大值;(Ⅲ)若C 2B =,点E 在线段PB 上,求CE+OE 的最小值.21.(本小题满分12分)已知函数()2103sin cos 10cos 222x x x f x =+. (I )求函数()f x 的最小正周期;(Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.22.(本小题满分14分)已知函数()()21ln 2x f x x -=-.(I )求函数()f x 的单调递增区间;(Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当()01,x x ∈时,恒有()()1f x k x >-.。
2015年福建省高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)(2015•福建)若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值4.(5分)(2015•福建)阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为()5.(5分)(2015•福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于6.(5分)(2015•福建)若sinα=﹣,则α为第四象限角,则tanα的值等于()B7.(5分)(2015•福建)设=(1,2),=(1,1),=+k,若,则实数k的值等于()﹣8.(5分)(2015•福建)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数f(x)=的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()B9.(5分)(2015•福建)某几何体的三视图如图所示,则该几何体的表面积等于()+24+210.(5分)(2015•福建)变量x,y满足约束条件,若z=2x﹣y的最大值为11.(5分)(2015•福建)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点,若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是(),[[12.(5分)(2015•福建)“对任意x,ksinxcosx<x”是“k<1”的()二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2015•福建)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.14.(4分)(2015•福建)在△ABC中,AC=,∠A=45°,∠C=75°,则BC的长度是.15.(4分)(2015•福建)若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.16.(4分)(2015•福建)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于.三、解答题:本大题共6小题,共74分.17.(12分)(2015•福建)等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.18.(12分)(2015•福建)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标,根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.19.(12分)(2015•福建)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3,(Ⅰ)求抛物线E的方程;(Ⅱ)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA 相切的圆,必与直线GB相切.20.(12分)(2015•福建)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO 垂直于圆O所在的平面,且PO=OB=1,(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;(Ⅱ)求三棱锥P﹣ABC体积的最大值;(Ⅲ)若BC=,点E在线段PB上,求CE+OE的最小值.21.(12分)(2015•福建)已知函数f(x)=10sin cos+10cos2.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)将函数f(x)的图象向右平移个单位长度,再向下平移a(a>0)个单位长度后得到函数g(x)的图象,且函数g(x)的最大值为2.(i)求函数g(x)的解析式;(ii)证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.22.(14分)(2015•福建)已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x ﹣1).。
2015年普通高等学校招生全国统一考试(福建卷)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年福建,文1,5分】若()()1i 23i i a b ++-=+(,a b R ∈,i 是虚数单位),则,a b 的值分别等于( )(A )3,-2 (B )3,2 (C )3,-3 (D )-1,4 【答案】A【解析】由已知得32i i a b -=+,故3a =,2b =-,故选A . (2)【2015年福建,文2,5分】若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于( )(A ){}0 (B ){}1 (C ){}0,1,2 (D ){}0,1 【答案】D【解析】由交集定义得{}0,1MN =,故选D .(3)【2015年福建,文3,5分】下列函数为奇函数的是( )(A )y x = (B )x y e = (C )cos y x = (D )x x y e e -=-【答案】D【解析】函数y x =和x y e =是非奇非偶函数;cos y x =是偶函数;x x y e e -=-是奇函数,故选D .(4)【2015年福建,文4,5分】阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( )(A )2 (B )7 (C )8 (D )128 【答案】C【解析】该程序表示分段函数2292x x y x x ⎧≥=⎨-<⎩,则()1918f =-=,故选C .(5)【2015年福建,文5,5分】若直线()10,0x ya b a b+=>>过点()1,1,则a b +的最小值等于( )(A )2 (B )3 (C )4 (D )5 【答案】C【解析】由已知得111a b +=,则()112b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因此0,0a b >>,所以2b a b a a b a b +≥⋅=,故4a b +≥,当b aa b=,即2a b ==时取等号,故选C .(6)【2015年福建,文6,5分】若5sin 13α=-,且α为第四象限角,则tan α的值等于( )(A )125 (B )125- (C )512 (D )512-【答案】D【解析】由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin 5tan cos 12ααα==-,故选D . (7)【2015年福建,文7,5分】设()1,2a =,()1,1b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) (A )32- (B )53- (C )53(D )32【答案】A【解析】由已知得()()()1,21,11,2c k k k =+=++,因为b c ⊥,则0b c ⋅=,因此120k k +++=,解得32k =-,(8)【2015年福建,文8,5分】如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为()1,0.且点C与点D 在函数()101102x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( )(A )16(B )14 (C )38(D )12【答案】B【解析】由已知得()1,0B ,()1,2C ,()2,2D -,()0,1F ,则矩形ABCD 面积为326⨯=,阴影部分面积为133122⨯⨯=, 故该点取自阴影部分的概率等于31264=故选B .(9)【2015年福建,文9,5分】某几何体的三视图如图所示,则该几何体的表面积等于( )(A )822+ (B )1122+ (C )1422+ (D )15 【答案】C【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为1,2,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为则其表面积为22422822+++=+,所以该几何体的表面积为1122+,故选C .(10)【2015年福建,文10,5分】变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y=-的 最大值为2,则实数m 等于( ) (A )-2 (B )-1 (C )1 (D )2 【答案】C 【解析】将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤当0m >时,画出可行域,如图所示, 其中22,2121m B m m ⎛⎫ ⎪--⎝⎭.显然()0,0O 不是最优解,故只能22,2121m B m m ⎛⎫ ⎪--⎝⎭是最优解,代入目标函数得4222121m m m -=--,解得1m =,故选C . (11)【2015年福建,文11,5分】已知椭圆()2222:10x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )(A )30,2⎛⎤ ⎥ ⎝⎦ (B )30,4⎛⎤ ⎥⎝⎦ (C )3,12⎡⎫⎪⎢⎪⎣⎭(D )3,14⎡⎫⎪⎢⎣⎭ 【答案】A【解析】设左焦点为F ,连接1AF ,1BF ,则四边形1BF AF 是平行四边形,故1AF BF =,所以142AF AF a +==,所以2a =,设()0,M b ,则4455b ≥,故1b ≥,从而221ac -≥,203c <≤,03c <≤,所以椭x–1–2–3–41234–1–2–3–4123BOC心率的取值范围是⎛ ⎝⎦,故选A . (12)【2015年福建,文12,5分】“对任意0,2x π⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】B【解析】当1k <,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则()cos 210f x k x '=-<.故()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,故()022f x f ππ⎛⎫<=-< ⎪⎝⎭,则sin cos k x x x =;当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数()1sin 22g x x x =-,则()cos 210g x x =-<,故()g x 在0,2x π⎛⎫∈ ⎪⎝⎭递增,故()022g x g ππ⎛⎫<=-< ⎪⎝⎭,则sin cos x x x <.综上所述,“对任意0,2x π⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的必要不充分条件,故选B .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.(13)【2015年福建,文13,5分】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为 . 【答案】25【解析】由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.(14)【2015年福建,文14,5分】若ABC ∆中,AB 45A ∠=︒,75C ∠=︒,则BC 等于 .【解析】由题意得18060B A C ∠=︒-∠-∠=︒.由正弦定理得sin sin AC BC B A =∠∠,则sin sin AC ABC B∠=∠,所以BC ==(15)【2015年福建,文15,5分】若函数()()2x af x a R -=∈满足()()11f x f x +=-,且()f x 在[),m +∞单调递增,则实数m 的最小值等于 . 【答案】1【解析】由()()11f x f x +=-得函数()f x 关于1x =对称,故1a =,则()12x f x -=,由复合函数单调性得()f x 在[)1,+∞递增,故1m ≥,所以实数m 的最小值等于1.(16)【2015年福建,文16,5分】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 . 【答案】9【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=,当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以9p q +=.三、解答题:本大题共6题,共74分.解答应写出文字说明,演算步骤或证明过程.(17)【2015年福建,文17,12分】等差数列{}n a 中,24a =,4715a a +=.(1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++的值.解:(1)设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.(2)由(1)可得2n n b n =+.所以()()()()()()2310231012310212223210222212310b b b b +++=++++++++=+++++++++()()()1011112121101022552532101122-+⨯=+=-+=+=-.(18)【2015年福建,文18,12分】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号 分组 频数1 [)4,5 22 [)5,6 83 [)6,7 7 4[]7,83(1)现从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 解:解法一:(1)融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (2)这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(1)融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为 1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个.所以所求的概率1911010P =-=. (2)同解法一. (19)【2015年福建,文19,12分】已知点F 为抛物线()2:20E y px p =>的焦点,点()2,A m在抛物线E 上,且3AF =.(1)求抛物线E 的方程;(2)已知点()1,0G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相 切的圆,必与直线GB 相切.解:解法一:(1)由抛物线的定义得22p AF =+.因为3AF =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =.(2)因为点()2,A m 在抛物线2:2E y px =上,所以22m =±,由抛物线的对称性,不妨设()2,22A . 由()2,22A ,()1,0F 可得直线AF 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22B ⎛⎫- ⎪⎝⎭.又()1,0G -,所以()22022213GA k -==--,()20221312GB k --==---, 所以0GA GB k k +=,从而AGF BGF ∠=∠,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 解法二:(1)同解法一.(2)设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点()2,A m 在抛物线2:4E y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()1,0F 可得直线AF 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22B ⎛⎫- ⎪⎝⎭.又()1,0G -,故直线GA 的方程为223220x y -+=,从而2222428917r +==+.又直线GB 的方程为223220x y ++=,所以点F 到直线GB 的距离2222428917r r +===+.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.(20)【2015年福建,文20,12分】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==. (1)若D 为线段AC 的中点,求证AC ⊥平面PDO ; (2)求三棱锥P ABC -体积的最大值; (3)若2BC =,点E 在线段PB 上,求CE OE +的最小值. 解:解法一:(1)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC OD ⊥.又PO 垂直于圆O 所在的平面,所以PO AC ⊥.因为DO PO O =,所以AC ⊥平面PDO .(2)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1.又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=.又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为111133⨯⨯=.(3)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=.同理2PC =, 所以PB PC BC ==.在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ', 使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,CE OE +取得最小值. 又因为OP OB =,C P C B ''=,所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC +''=+=+=,亦即CE OE +的最小值为262+. 解法二: (1)(2)同解法一.(3)在POB ∆中,1PO OB ==,90POB ∠=︒,所以45OPB ∠=︒,22112PB =+=.同理2PC =. 所以PB PC BC ==,所以60CPB ∠=︒.在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,CE OE +取得最小值.所以在OC P'∆中,由余弦定理得:()2212312212cos 45601222232222OC ⎛⎫'=+-⨯⨯⨯︒+︒=+-⨯-⨯=+ ⎪ ⎪⎝⎭. 从而26232OC +'=+=.所以CE OE +的最小值为262+. (21)【2015年福建,文21,12分】已知函数()2103sin cos 10cos 222x x xf x =+.(1)求函数()f x 的最小正周期;(2)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (i )求函数()g x 的解析式;(ii )证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.解:(1)()2103sin cos 10cos 53sin 5cos 510sin 52226x x x f x x x x π⎛⎫=+=++=++ ⎪⎝⎭所以函数()f x 的最小正周期2T π=. (2)(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =.所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由4352<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >.因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-()k Z ∈时,均有4sin 5x >.因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >.亦即存在无穷多个互不相同的正整数0x ,使得()00g x >.(22)【2015年福建,文22,14分】已知函数()()21ln 2x f x x -=-.(1)求函数()f x 的单调递增区间; (2)证明:当1x >时,()1f x x <-;(3)确定实数k 的所有可能取值,使得存在01x >,当()01,x x ∈时,恒有()()1f x k x >-.解:(1)()2111x x f x x x x -++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <<.故()f x 的单调递增区间是⎛ ⎝⎭.(2)令()()()1F x f x x =--,()0,x ∈+∞.则有()21x F x x -'=.当()1,x ∈+∞时,()0F x '<,所以()F x 在[)1,+∞上单调递减,故当1x >时,()()10F x F <=,即当1x >时,()1f x x <-.(3)由(2)知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()1G x f x k x =--,()0,x ∈+∞,则有()()21111x k x G x x k x x-+-+'=-+-=.由()0G x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()0G x '>,故()G x 在[)21,x 内单调递增.从而当()21,x x ∈时,()()10G x G >=,即()()1f x k x >-,综上,k 的取值范围是(),1-∞.。
2015年普通高等学校招生全国统一考试(福建卷)数 学(文史类)18.(本小题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(I )现从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8内的概率;(II )根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.19.(本小题满分12分)已知点F 为抛物线:E 22y px =(0p >)的焦点,点()2,m A 在抛物线E 上,且F 3A =.(I )求抛物线E 的方程;(II )已知点()G 1,0-,延长F A 交抛物线E 于点B ,证明:以点F 为圆心且与直线G A 相切的圆,必与直线G B 相切.20.(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(I )若D 为线段C A 的中点,求证:C A ⊥平面D P O ; (II )求三棱锥C P -AB 体积的最大值;(III )若C B =,点E 在线段PB 上,求C E +OE 的最小值.21.(本小题满分12分)已知函数()2cos 10cos 222x x x f x =+.(I )求函数()f x 的最小正周期;(II )将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(i ) 求函数()g x 的解析式;(ii )证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.22.(本小题满分14分)已知函数()()21ln 2x f x x -=-. (I )求函数()f x 的单调递增区间;(II )证明:当1x >时,()1f x x <-;(III )确定实数k 的所有可能取值,使得存在01x >,当()01,x x ∈时,恒有()()1f x k x >-.薄雾浓云愁永昼,瑞脑消金兽。
2015年普通高等学校招生全国统一考试(福建卷)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年福建,文1,5分】若()()1i 23i i a b ++-=+(,a b R ∈,i 是虚数单位),则,a b 的值分别等于( ) (A )3,-2 (B )3,2 (C )3,-3 (D )-1,4 【答案】A【解析】由已知得32i i a b -=+,故3a =,2b =-,故选A . (2)【2015年福建,文2,5分】若集合{}22M x x =-≤<,{}0,1,2N =,则M N I 等于( )(A ){}0 (B ){}1 (C ){}0,1,2 (D ){}0,1 【答案】D【解析】由交集定义得{}0,1M N =I ,故选D .(3)【2015年福建,文3,5分】下列函数为奇函数的是( )(A )y x = (B )x y e = (C )cos y x = (D )x x y e e -=-【答案】D【解析】函数y x =和x y e =是非奇非偶函数;cos y x =是偶函数;x x y e e -=-是奇函数,故选D .(4)【2015年福建,文4,5分】阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( )(A )2 (B )7 (C )8 (D )128 【答案】C【解析】该程序表示分段函数2292x x y x x ⎧≥=⎨-<⎩,则()1918f =-=,故选C .(5)【2015年福建,文5,5分】若直线()10,0x ya b a b+=>>过点()1,1,则a b +的最小值等于( )(A )2 (B )3 (C )4 (D )5 【答案】C【解析】由已知得111a b +=,则()112b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因此0,0a b >>,所以2b a b a a b a b +≥⋅=,故4a b +≥,当b aa b=,即2a b ==时取等号,故选C .(6)【2015年福建,文6,5分】若5sin 13α=-,且α为第四象限角,则tan α的值等于( )(A )125 (B )125- (C )512 (D )512-【答案】D【解析】由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin 5tan cos 12ααα==-,故选D .(7)【2015年福建,文7,5分】设()1,2a =r ,()1,1b =r,c a kb =+r r r .若b c ⊥r r ,则实数k 的值等于( )(A )32- (B )53- (C )53(D )32【答案】A【解析】由已知得()()()1,21,11,2c k k k =+=++r ,因为b c ⊥r r ,则0b c ⋅=r r ,因此120k k +++=,解得32k =-,故选A .(8)【2015年福建,文8,5分】如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为()1,0.且点C与点D 在函数()101102x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( )(A )16 (B )14 (C )38(D )12【答案】B【解析】由已知得()1,0B ,()1,2C ,()2,2D -,()0,1F ,则矩形ABCD 面积为326⨯=,阴影部分面积为133122⨯⨯=,故该点取自阴影部分的概率等于31264=故选B .(9)【2015年福建,文9,5分】某几何体的三视图如图所示,则该几何体的表面积等于( ) (A )822+ (B )1122+ (C )1422+ (D )15 【答案】C【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为1,2,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为则其表面积为22422822+++=+,所以该几何体的表面积为1122+,故选C .(10)【2015年福建,文10,5分】变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( ) (A )-2 (B )-1 (C )1 (D )2 【答案】C 【解析】将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,画出可行域,如图所示, 其中22,2121m B m m ⎛⎫ ⎪--⎝⎭.显然()0,0O 不是最优解,故只能22,2121m B m m ⎛⎫ ⎪--⎝⎭是最优解,代入目标函数得4222121mm m -=--,解得1m =,故选C .(11)【2015年福建,文11,5分】已知椭圆()2222:10x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )(A )30,⎛⎤ ⎥ ⎝⎦ (B )30,4⎛⎤ ⎥⎝⎦ (C )3,1⎡⎫⎪⎢⎪⎣⎭(D )3,14⎡⎫⎪⎢⎣⎭ 【答案】A【解析】设左焦点为F ,连接1AF ,1BF ,则四边形1BF AF 是平行四边形,故1AF BF =,所以142AF AF a +==,所以2a =,设()0,M b ,则4455b ≥,故1b ≥,从而221ac -≥,203c <≤,03c <≤,所以椭圆E 的离 心率的取值范围是30,⎛⎤ ⎥ ⎝⎦,故选A . (12)【2015年福建,文12,5分】“对任意0,2x π⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】当1k <,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则()cos 210f x k x '=-<.故()f x 在x–1–2–3–41234–1–2123BOC0,2x π⎛⎫∈ ⎪⎝⎭单调递增,故()022f x f ππ⎛⎫<=-< ⎪⎝⎭,则sin cos k x x x =;当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数()1sin 22g x x x =-,则()cos 210g x x =-<,故()g x 在0,2x π⎛⎫∈ ⎪⎝⎭递增,故()022g x g ππ⎛⎫<=-< ⎪⎝⎭,则sin cos x x x <.综上所述,“对任意0,2x π⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的必要不充分条件,故选B .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.(13)【2015年福建,文13,5分】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为 . 【答案】25【解析】由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.(14)【2015年福建,文14,5分】若ABC ∆中,AB ,45A ∠=︒,75C ∠=︒,则BC 等于 .【解析】由题意得18060B A C ∠=︒-∠-∠=︒.由正弦定理得sin sin AC BC B A =∠∠,则sin sin AC ABC B∠=∠,所以BC ==(15)【2015年福建,文15,5分】若函数()()2x af x a R -=∈满足()()11f x f x +=-,且()f x 在[),m +∞单调递增,则实数m 的最小值等于 . 【答案】1【解析】由()()11f x f x +=-得函数()f x 关于1x =对称,故1a =,则()12x f x -=,由复合函数单调性得()f x 在[)1,+∞递增,故1m ≥,所以实数m 的最小值等于1. (16)【2015年福建,文16,5分】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 . 【答案】9【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=,当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a =-,解得4a =,1b =,综上所述,5a b p +==,所以9p q +=.三、解答题:本大题共6题,共74分.解答应写出文字说明,演算步骤或证明过程. (17)【2015年福建,文17,12分】等差数列{}n a 中,24a =,4715a a +=.(1)求数列{}n a 的通项公式;(2)设22n a n b n -=+,求12310b b b b +++L 的值.解:(1)设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.(2)由(1)可得2n n b n =+.所以()()()()()()2310231012310212223210222212310b b b b +++=++++++++=+++++++++L L L L()()()1011112121101022552532101122-+⨯=+=-+=+=-.(18)【2015年福建,文18,12分】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“组号 分组 频数1 [)4,5 22 [)5,6 83 [)6,7 7 4[]7,83(1[)[]1家的融合 指数在[]7,8的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 解:解法一:(1)融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (2)这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(1)融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个.所以所求的概率1911010P =-=. (2)同解法一. (19)【2015年福建,文19,12分】已知点F 为抛物线()2:20E y px p =>的焦点,点()2,A m 在抛物线E 上,且3AF =.(1)求抛物线E 的方程;(2)已知点()1,0G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相 切的圆,必与直线GB 相切.解:解法一:(1)由抛物线的定义得22p AF =+.因为3AF =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =.(2)因为点()2,A m 在抛物线2:2E y px =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()1,0F 可得直线AF 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=, 解得2x =或12x =,从而1,22B ⎛⎫- ⎪⎝⎭.又()1,0G -,所以()22022GA k -==,()202212GB k --==---, 所以0GA GB k k +=,从而AGF BGF ∠=∠,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.解法二:(1)同解法一.(2)设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点()2,A m 在抛物线2:4E y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()1,0F 可得直线AF 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22B ⎛⎫- ⎪⎝⎭.又()1,0G -, 故直线GA 的方程为223220x y -+=,从而2222428917r +==+.又直线GB 的方程为223220x y ++=,所以点F 到直线GB 的距离2222428917r r +===+.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.(20)【2015年福建,文20,12分】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==.(1)若D 为线段AC 的中点,求证AC ⊥平面PDO ; (2)求三棱锥P ABC -体积的最大值;(3)若2BC =,点E 在线段PB 上,求CE OE +的最小值. 解:解法一:(1)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC OD ⊥.又PO 垂直于圆O 所在的平面,所以PO AC ⊥.因为DO PO O =I ,所以AC ⊥平面PDO .(2)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1.又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=.又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为111133⨯⨯=.(3)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=.同理2PC =,所以PB PC BC ==.在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ', 使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,CE OE +取得最小值. 又因为OP OB =,C P C B ''=,所以OC '垂直平分PB ,即E 为PB 中点.从而2626OC OE EC +''=+=+=,亦即CE OE +的最小值为26+. 解法二: (1)(2)同解法一.(3)在POB ∆中,1PO OB ==,90POB ∠=︒,所以45OPB ∠=︒,22112PB =+=.同理2PC =.所以PB PC BC ==,所以60CPB ∠=︒.在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ', 使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,CE OE +取得最小值.所以在OC P '∆中,由余弦定理得:()2212312212cos 45601222232OC ⎛⎫'=+-⨯⨯⨯︒+︒=+-⨯-⨯=+ ⎪ ⎪⎭. 从而2623OC +'=+=.所以CE OE +的最小值为26+. (21)【2015年福建,文21,12分】已知函数()2103sin cos 10cos 222x x xf x =+.(1)求函数()f x 的最小正周期;(2)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的 图象,且函数()g x 的最大值为2.(i )求函数()g x 的解析式;(ii )证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.解:(1)()2cos 10cos 5cos 510sin 52226x x x f x x x x π⎛⎫=+=++=++ ⎪⎝⎭所以函数()f x 的最小正周期2T π=. (2)(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单 位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =.所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >.因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-()k Z ∈时,均有4sin 5x >.因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >.(22)【2015年福建,文22,14分】已知函数()()21ln 2x f x x -=-.(1)求函数()f x 的单调递增区间; (2)证明:当1x >时,()1f x x <-;(3)确定实数k 的所有可能取值,使得存在01x >,当()01,x x ∈时,恒有()()1f x k x >-.解:(1)()2111x x f x x x x -++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <.故()f x 的单调递增区间是⎛ ⎝⎭.(2)令()()()1F x f x x =--,()0,x ∈+∞.则有()21x F x x-'=.当()1,x ∈+∞时,()0F x '<,所以()F x 在[)1,+∞上单调递减,故当1x >时,()()10F x F <=,即当1x >时,()1f x x <-. (3)由(2)知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意. 当1k <时,令()()()1G x f x k x =--,()0,x ∈+∞,则有()()21111x k x G x x k x x-+-+'=-+-=.由()0G x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()0G x '>,故()G x 在[)21,x 内单调递增.从而当()21,x x ∈时,()()10G x G >=,即()()1f x k x >-,综上,k 的取值范围是(),1-∞.。
2015普通高等学校招生全国统一考试(福建文)一、选择题1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B .3,2 C .3,-3 D .-1,4 【解析】由已知得,3-2i =a +b i ,故a =3,b =-2,选A .2.若集合M ={x |-2≤x <2},N ={0,1,2},则M ∩N =( ) A .{0} B .{1} C .{0,1,2} D .{0,1} 3.下列函数为奇函数的是( )A .y =xB .y =e xC .y =cos xD .y =e x -e -x【解】函数y =x 和y =e x 是非奇非偶函数;y =cos x 是偶函数;y =e x -e -x 是奇函数,故选D .4.阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【解】由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则f (1)=9-1=8,故选C .5.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .56.若sin α=-513,且α为第四象限角,则tan α的值等于( )A .125B .-125C .512D .-512解析:∵sin α=-513,且α为第四象限角,∴cos α=1-sin 2α=1213,于是tan α=sin αcos α=-512,故选D. 7.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( )A .-32B .-53C .53D .328.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A .16B .14C .38D .12解析:因为f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),故C 点坐标为(1,2),D 点坐标为(-2,2),A 点坐标为(-2,0),故矩形ABCD 的面积为2×3=6,阴影部分的面积为12×3×1=32,故P =326=14.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .8+2 2 B .11+2 2 C .14+2 2 D .15【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为1,2,直角腰长为1,斜腰为2.底面积为2×12×3=3,侧面积为则其表面积为2+2+4+22=8+22,故该几何体的表面积为11+22,故选B .10.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,mx -y ≤0.若z =2x -y 的最大值为2,则实数m 等于( )A .-2B .-1C .1D .2x–1–2–3–41234–1–2–3–4123BOC【解析】将目标函数变形为y =2x -z ,当z 取最大值,则直线纵截距最小,故当m ≤0时,不满足题意;当m >0时,画出可行域,如图所示,其中22(,)2121mB m m --.显然O (0,0)不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121mm m -=--,解得m =1,故选C .11.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .(0,32]B .(0,34]C .[32,1)D .[34,1)12.“对任意x ∈(0,π2),k sin x cos x <x ”是“k <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 ∀x ∈⎝⎛⎭⎫0,π2,k sin x cos x <x ⇔∀x ∈⎝⎛⎭⎫0,π2,k <2x sin2x ,令f (x )=2x -sin2x .故f ′(x )=2-2cos2x >0,故f (x )在⎝⎛⎭⎫0,π2为增函数,故f (x )>f (0)=0.故2x >sin2x ,故2x sin2x >1,故k ≤1. 二、填空题13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.【解析】由题意得抽样比例为45:900=120,故应抽取的男生人数为500×120=25.14.若△ABC 中,AC =3,A =45°,C =75°,则BC =________.【解析】由题意得,B =180°-A -C =60°.由正弦定理得AC sin B =BC sin A ,则BC =AC ·sin Asin B ,故BC=2.15.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m的最小值等于________.【解析】由f (1+x )=f (1-x )得函数f (x )关于x =1对称,故a =1,则f (x )=2|x -1|,由复合函数单调性得f (x )在[1,+∞)递增,故m ≥1,故实数m 的最小值等于1.16.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于________. 三、解答题17.(本小题满分12分)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值. 【解】⑴.设等差数列{a n }的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.故a n =a 1+(n -1)d =n +2.18.(本小题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20组号 分组 频数 1 [4,5) 2 2 [5,6) 8 3 [6,7) 7 4 [7,8] 3(1)现从融合指数在[4,5)和2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.解:(1)融合指数在[7,8]内的“省级卫视新闻台”记为A 1,A 2,A 3;融合指数在[4,5)内的“省级卫视新闻台”记为B 1,B 2.从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},共10个.其中,至少有1家融合指数在[7,8]内的基本事件是:{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},共9个.故所求的概率P =910.(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05.解法二:(I )融合指数在[7,8]内的“省级卫视新闻台”记为A 1,A 2,A 3;融合指数在[4,5)内的“省级卫视新闻台”记为B 1,B 2.从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},共10个.其中,没有1家融合指数在[7,8]内的基本事件是:{B 1,B 2},共1个.故所求的概率P =1-110=910.(II )同解法一.19.(本小题满分12分)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【解析】解法一:⑴.由抛物线的定义得AF =2+p 2.因AF =3,即2+p2=3,解得p =2,故抛物线E 的方程为y 2=4x .⑵.因点A (2,m )在抛物线E :y 2=4x 上,故m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).将y =22(x -1)代入y 2=4x 得,x =2或x =12,从而B (12,-2).又G (-1,0),故k AG =223,k BG =-223,故k AG +k BG =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.解法二:(I )同解法一.(II )设以点F 为圆心且与直线GA 相切的圆的半径为r .因点A (2,m )在抛物线E :y 2=4x 上,故m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).将y =22(x -1)代入y 2=4x 得,2x 2-5x +2=0,解得x =2或x =12,从而B (12,-2).又G (-1,0),故直线GA 的方程为22x -3y+22=0,从而r =41734.又直线GB 的方程为22x +3y +22=0,故点F 到直线GB 的距离d=41734=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切. 20.(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值;(3)若BC =2,点E 在线段PB 上,求CE +OE 的最小值.【解析一】⑴.在ΔAOC 中,因为OA =OC ,D 为AC 的中点,故AC ⊥OD .又OP 垂直于圆O 所在的平面,故OP ⊥AC .因DO ∩OP =O ,故AC ⊥平面PDO .⑵.因为点C 在圆O 上,故当CO ⊥AB 时,C 到AB 的距离最大,且最大值为1.又AB =2,故ΔABC 面积的最大值为12×2×1=1.又因为三棱锥P -ABC 的高OP =1,故三棱锥P -ABC 体积的最大值为13×1×1=13. ⑶.在ΔPOB 中,OP =OB =1,∠POB =90°,故∠OPB =45°,所以PB =2.同理PC =2,故PB =PC =BC .在三棱锥P -ABC 中,将侧面BCP 绕BP 旋转至平面BC ′P ,使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值.又OP =OB ,C ′P =BC ′,故OC ′垂直平分PB ,即E 为PB 中点.从而OC ′=OE +EC ′=12(6+2),亦即CE +OE 的最小值为12(6+2).解法二:⑴.⑵.同解法一.⑶.在ΔPOB 中,OP =OB =1,∠POB =90°,故∠OPB =45°,所以PB =2.同理PC =2.故PB =PC =BC ,故∠CPB =60°.在三棱锥P -ABC 中,将侧面BCP 绕PB 旋转至平面BC ′P ,使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值.故在ΔOC ′P 中,由余弦定理得:OC ′2=1+2-2×1×2cos(45°+60°)=1+2-22×22(12-32)=2+3.从而OC ′=12(6+2).故CE +OE 的最小值为12(6+2).21.(本小题满分12分)已知函数f (x )=103sin x 2cos x 2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.①求函数g (x )的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.【解析】⑴.因f (x )=103sin x 2cos x 2+10cos 2x 2=5+53sin x +5cos x =5+10sin(x +π6).故函数f (x )的最小正周期T =2π.⑵.①.将f (x )的图象向右平移π6个单位长度后得到y =5+10sin x 的图象,再向下平移a (a >0)个单位长度后得到g (x )=5-a +10sin x 的图象.又已知函数g (x )的最大值为2,故10+5-a =2,解得a =13.故g (x )=-8+10sin x .②.要证明存在无穷多个互不相同的正整数x 0,使得g (x 0)>0,就是要证明存在无穷多个互不相同的正整数x 0,使得-8+10sin x 0>0,即sin x 0>45.由45<32知,存在0<α0<π3,使得sin α0=45.由正弦函数的性质可知,当x ∈(α0,π-α0)时,均有sin x >45.因为y =sin x 的周期为2π,故当x ∈(2k π+α0,2k π+π-α0)(k ∈Z)时,均有sin x >45.因为对任意的整数k ,(2k π+π-α0)-(2k π+α0)=π-2α0>π3>1,故对任意的正整数k ,都存在正整数x k ∈(2k π+α0,2k π+π-α0)(k ∈Z),使得sin x k >45.亦即存在无穷多个互不相同的正整数x 0,使得g (x 0)>0.22.(本小题满分14分)已知函数f (x )=-12(x -1)2+ln x .⑴.求函数f (x )的单调递增区间; ⑵.证明:当x >1时,f (x )<x -1;⑶.确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1). 【解】⑴.f ′(x )=-1x (x 2-x -1),x >0,由f ′(x )>0得,0<x <5+12,故f (x )的单调递增区间是(0,5+12); ⑵.令F (x )=f (x )-(x -1),x >0,则F ′(x )=-1x (x 2-1).当x ∈(1,+∞)时,F ′(x )<0,故F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1;⑶.由⑵知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令g (x )=f (x )-k (x -1),x >0,则g ′(x )=-1x [x 2+(k -1)x -1].由g ′(x )=0得,x 2+(k -1)x -1=0,解得,10x =<,21x =>.当x ∈(1,x 2)时,g ′(x )>0,故g (x )在(1,x 2)内单调递增.从而当x∈(1,x 2)时,g (x )>g (1)=0,即f (x )>k (x -1),综上,k的取值范围是(-∞,1).。
【高考试题】2015年福建省高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,42.(5分)若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0}B.{1}C.{0,1,2}D.{0,1}3.(5分)下列函数为奇函数的是()A.y=B.y=e x C.y=cosx D.y=e x﹣e﹣x4.(5分)阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为()A.2 B.7 C.8 D.1285.(5分)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2 B.3 C.4 D.56.(5分)若sinα=﹣,则α为第四象限角,则tanα的值等于()A.B.﹣C.D.﹣7.(5分)设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣ B.﹣ C.D.8.(5分)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数f(x)=的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A.B.C.D.9.(5分)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+2B.11+2C.14+2D.1510.(5分)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1 D.211.(5分)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点,若|AF|+|BF|=4,点M到直线l 的距离不小于,则椭圆E的离心率的取值范围是()A.(0,]B.(0,]C.[,1)D.[,1)12.(5分)“对任意x,ksinxcosx<x”是“k<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.14.(4分)在△ABC中,AC=,∠A=45°,∠C=75°,则BC的长度是.15.(4分)若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.16.(4分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于.三、解答题:本大题共6小题,共74分.17.(12分)等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.18.(12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标,根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示:(1)现从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.19.(12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3,(Ⅰ)求抛物线E的方程;(Ⅱ)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.20.(12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;(Ⅱ)求三棱锥P﹣ABC体积的最大值;(Ⅲ)若BC=,点E在线段PB上,求CE+OE的最小值.21.(12分)已知函数f(x)=10sin cos+10cos2.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)将函数f(x)的图象向右平移个单位长度,再向下平移a(a>0)个单位长度后得到函数g(x)的图象,且函数g(x)的最大值为2.(i)求函数g(x)的解析式;(ii)证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.22.(14分)已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x﹣1).2015年福建省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,4【分析】由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b的值.【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.【点评】本题考查复数的加法运算及复数相等的条件,是基础题.2.(5分)若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0}B.{1}C.{0,1,2}D.{0,1}【分析】直接利用交集及其运算得答案.【解答】解:由M={x|﹣2≤x<2},N={0,1,2},得M∩N={x|﹣2≤x<2}∩{0,1,2}={0,1}.故选:D.【点评】本题考查了交集及其运算,是基础题.3.(5分)下列函数为奇函数的是()A.y=B.y=e x C.y=cosx D.y=e x﹣e﹣x【分析】根据函数奇偶性的定义进行判断即可.【解答】解:A.函数的定义域为[0,+∞),定义域关于原点不对称,故A为非奇非偶函数.B.函数y=e x单调递增,为非奇非偶函数.。
第I 卷【选择题共60分】一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、若(1)(23)i i a bi ++-=+【,,a b R i ∈是虚数单位】,则,a b 的值分别等于【 】 A 、3,2- B 、3,2 C 、3,3- D 、1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A 、 考点:复数的概念、2、若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于【 】 A 、{}0 B 、{}1 C 、{}0,1,2 D {}0,1 【答案】D考点:集合的运算、3、下列函数为奇函数的是( )A 、y =B 、x y e =C 、cos y x =D 、x x y e e -=-【答案】D 【解析】试题分析:函数y =x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D 、考点:函数的奇偶性、4、阅读如图所示的程序框图,阅读相应的程序、若输入x 的值为1,则输出y 的值为【 】 A 、2 B 、7 C 、8 D 、128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C 、考点:程序框图、 5、若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于【 】 A 、2 B 、3 C 、4 D 、5 【答案】C考点:基本不等式、 6、若5sin 13α=-,且α为第四象限角,则tan α的值等于【 】 A 、125 B 、125- C 、512 D 、512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα=512=-,故选D 、 考点:同角三角函数基本关系式、7、设(1,2)a = ,(1,1)b =,c a kb =+ 、若b c ⊥ ,则实数k 的值等于【 】A 、32-B 、53-C 、53D 、32【答案】A考点:平面向量数量积、8、如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0)、且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上、若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于【 】 A 、16 B 、14 C 、38 D 、12【答案】B考点:古典概型、9、某几何体的三视图如图所示,则该几何体的表面积等于【】A、8+B、11+C、14+D、151112【答案】B【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为112332⨯⨯=,侧面积为则其表面积为,所以该几何体的表面积为11+B、考点:三视图和表面积、10、变量,x y满足约束条件220x yx ymx y+≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y=-的最大值为2,则实数m等于【】A、2-B、1-C、1D、2【答案】C【解析】–1试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --、显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121mm m -=--,解得1m =,故选C 、 考点:线性规划、11、已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F 、短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点、若4AF BF+=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是【 】 A 、(] B 、3(0,]4C 、D 、3[,1)4 【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式、12、“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的【 】A 、充分而不必要条件B 、必要而不充分条件C 、 充分必要条件D 、既不充分也不必要条件 【答案】B考点:导数的应用、第II 卷【非选择题共90分】二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13、某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______、 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=、 考点:分层抽样、14、若ABC ∆中,AC ,045A =,075C =,则BC =_______、【解析】试题分析:由题意得018060B A C =--=、由正弦定理得s i n s i nA CB CB A =,则sin sin AC ABC B=,所以BC ==考点:正弦定理、 15、若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______、 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1、 考点:函数的图象与性质、16、若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________、 【答案】9考点:等差中项和等比中项、三、解答题:本大题共6小题,共74分、解答应写出文字说明,证明过程或演算步骤、 17、(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=、 【Ⅰ】求数列{}n a 的通项公式; 【Ⅱ】设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值、【答案】【Ⅰ】2n a n =+;【Ⅱ】2101、 【解析】试题分析:【Ⅰ】利用基本量法可求得1,a d ,进而求{}n a 的通项公式;【Ⅱ】求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2n n b n =+,故可采取分组求和法求其前10项和、 试题解析:【I 】设等差数列{}n a 的公差为d 、由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩、所以()112n a a n d n =+-=+、考点:1、等差数列通项公式;2、分组求和法、 18、【本题满分12分】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标、根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示、【Ⅰ】现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;【Ⅱ】根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数、 【答案】【Ⅰ】910;【Ⅱ】6.05、解法一:【I 】融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B 、从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个、其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个、所以所求的概率910P =、 【II 】这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.56.0520202020⨯+⨯+⨯+⨯=、 解法二:【I 】融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B 、从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个、其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个、 所以所求的概率1911010P =-=、 【II 】同解法一、考点:1、古典概型;2、平均值、 19、【本小题满分12分】已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =、 【Ⅰ】求抛物线E 的方程;【Ⅱ】已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切、【答案】【Ⅰ】24y x =;【Ⅱ】详见解析、 【解析】试题分析:【Ⅰ】利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化、本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;【Ⅱ】欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切、可证明点F 到直线GA 和直线GB 的距离相等【此时需确定两条直线方程】;也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数、试题解析:解法一:【I 】由抛物线的定义得F 22pA =+、 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =、 【II 】因为点()2,m A 在抛物线:E 24y x =上,所以m =±(2,A 、由(2,A ,()F 1,0可得直线F A的方程为)1y x =-、由)214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝、 又()G 1,0-,所以()G 0213k A ==--,()G 12k B ==--, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切、 解法二:【I 】同解法一、【II 】设以点F 为圆心且与直线G A 相切的圆的半径为r 、 因为点()2,m A 在抛物线:E 24y x =上,所以m =±(2,A 、由(2,A ,()F 1,0可得直线F A的方程为)1y x =-、由)214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝、 又()G 1,0-,故直线G A的方程为30y -+=,从而r ==、 又直线G B的方程为30y ++=,所以点F 到直线G B的距离d r ===、 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切、 考点:1、抛物线标准方程;2、直线和圆的位置关系、 20、【本题满分12分】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =、【Ⅰ】若D 为线段AC 的中点,求证C A ⊥平面D P O ; 【Ⅱ】求三棱锥P ABC -体积的最大值;【Ⅲ】若BC E 在线段PB 上,求CE OE +的最小值、【答案】【Ⅰ】详见解析;【Ⅱ】13;【Ⅲ】2【解析】试题分析:【Ⅰ】要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线、首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;【Ⅱ】三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;【Ⅲ】将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值、试题解析:解法一:【I 】在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O 、又PO 垂直于圆O 所在的平面, 所以C PO ⊥A 、 因为D O PO =O , 所以C A ⊥平面D P O 、 【II 】因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1、 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=、 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=、 【III 】在∆POB 中,1PO =OB =,90∠POB =,所以PB ==同理C P =C C PB =P =B 、在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示、当O ,E ,C '共线时,C E +OE 取得最小值、 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点、从而C C 222''O =OE +E =+=,亦即C E +OE 的最小值为2解法二:【I 】、【II 】同解法一、【III 】在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,PB ==C P =所以C C PB =P =B ,所以C 60∠PB =、在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示、当O ,E ,C '共线时,C E +OE 取得最小值、 所以在C '∆O P 中,由余弦定理得:()2C 1221cos 4560'O =+-⨯+1122=+--⎭2=从而C 2'O ==所以C E +OE 考点:1、直线和平面垂直的判定;2、三棱锥体积、 21、【本题满分12分】已知函数()2cos 10cos 222x x xf x =+、 【Ⅰ】求函数()f x 的最小正周期; 【Ⅱ】将函数()f x 的图象向右平移6π个单位长度,再向下平移a 【0a >】个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2、【ⅰ】求函数()g x 的解析式;【ⅱ】证明:存在无穷多个互不相同的正整数0x ,使得()00g x >、 【答案】【Ⅰ】2π;【Ⅱ】【ⅰ】()10sin 8g x x =-;【ⅱ】详见解析、 【解析】试题分析:【Ⅰ】首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10s i n 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;【Ⅱ】由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x 、试题解析:【I 】因为()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭、所以函数()f x 的最小正周期2πT =、 【II 】【i 】将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a 【0a >】个单位长度后得到()10sin 5g x x a =+-的图象、 又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =、 所以()10sin 8g x x =-、【ii 】要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >、由452<知,存在003πα<<,使得04sin 5α=、由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >、 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-【k ∈Z 】时,均有4sin 5x >、 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >、 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >、 考点:1、三角函数的图像与性质;2、三角不等式、 22、【本小题满分14分】已知函数2(1)()ln 2x f x x -=-、(Ⅰ)求函数()f x 的单调递增区间; 【Ⅱ】证明:当1x >时,()1f x x <-;【Ⅲ】确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-、【答案】(Ⅰ) ⎛ ⎝⎭;【Ⅱ】详见解析;【Ⅲ】(),1-∞、 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;【Ⅱ】构造函数()()()F 1x f x x =--,()1,x ∈+∞、欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;【Ⅲ】由【II 】知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可、试题解析:【I 】()2111x x f x x x x-++'=-+=,()0,x ∈+∞、由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <<故()f x 的单调递增区间是10,2⎛ ⎝⎭、 【II 】令()()()F 1x f x x =--,()0,x ∈+∞、则有()21F x x x-'=、当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-、 【III 】由【II 】知,当1k =时,不存在01x >满足题意、当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意、当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=、由()G 0x '=得,()2110x k x -+-+=、解得10x =<,21x =>、当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增、 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞、 考点:导数的综合应用、。
2015年福建文一、选择题(共12小题;共60分)1. 若1+i+2−3i=a+b i(a,b∈R,i是虚数单位),则a,b的值分别等于 A. 3,−2B. 3,2C. 3,−3D. −1,42. 若集合M=x−2≤x<2,N=0,1,2,则M∩N等于 A. 0B. 1C. 0,1,2D. 0,13. 下列函数为奇函数的是 A. y=xB. y=e xC. y=cos xD. y=e x−e−x4. 阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为 A. 2B. 7C. 8D. 1285. 若直线xa +yb=1(a>0,b>0)过点1,1,则a+b的最小值等于 A. 2B. 3C. 4D. 56. 若sinα=−513,且α为第四象限角,则tanα的值等于 A. 125B. −125C. 512D. −5127. 设a=1,2,b=1,1,c=a+kb.若b⊥c,则实数k的值等于 A. −32B. −53C. 53D. 328. 如图,矩形ABCD中,点A在x轴上,点B的坐标为1,0,且点C与点D在函数f x=x+1,x≥0,−12x+1,x<0的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于 A. 16B. 14C. 38D. 129. 某几何体的三视图如图所示,则该几何体的表面积等于 A. 8+2B. 11+2C. 14+2D. 1510. 变量x,y满足约束条件x+y≥0,x−2y+2≥0,mx−y≤0.若z=2x−y的最大值为2,则实数m等于 A. −2B. −1C. 1D. 211. 已知椭圆E:x2a2+y2b2=1a>b>0的右焦点为F,短轴的一个端点为M,直线l:3x−4y=0交椭圆E于A,B两点.若 AF + BF =4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是 A. 0,32B. 0,34C. 32,1 D. 34,112. “对任意x∈0,π2,k sin x cos x<x”是“ k<1”的 A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件二、填空题(共4小题;共20分)13. 某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.14. 若△ABC中,AC=A=45∘,C=75∘,则BC=.15. 若函数f x=2 x−a a∈R满足f1+x=f1−x,且f x在m,+∞上单调递增,则实数m的最小值等于.16. 若a,b是函数f x=x2−px+q(p>0,q>0)的两个不同的零点,且a,b,−2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于.三、解答题(共6小题;共78分)17. 等差数列a n中,a2=4,a4+a7=15.(1)求数列a n的通项公式;(2)设b n=2a n−2+n,求b1+b2+b3+⋯+b10的值.18. 全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015 年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组频数1 4,5 22 5,6 83 6,7 74 7,8 3(1)现从融合指数在 4,5 和 7,8 内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在 7,8 内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.19. 已知点F 为抛物线E :y 2=2px p >0 的焦点,点A 2,m 在抛物线E 上,且 AF =3.(1)求抛物线E 的方程;(2)已知点G −1,0 ,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.20. 如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P −ABC 体积的最大值; (3)若BC = ,点E 在线段PB 上,求CE +OE 的最小值.21. 已知函数f x =10 3sin x2cos x2+10cos 2x2.(1)求函数f x 的最小正周期;(2)将函数f x 的图象向右平移π6个单位长度,再向下平移a a >0 个单位长度后得到函数g x的图象,且函数g x 的最大值为2. ①求函数g x 的解析式;②证明:存在无穷多个互不相同的正整数x 0,使得g x 0 >0.22. 已知函数f x=ln x−x−12.2(1)求函数f x的单调递增区间;(2)证明:当x>1时,f x<x−1;(3)确定实数k的所有可能取值,使得存在x0>1,当x∈1,x0,恒有f x>k x−1.答案第一部分1. A2. D3. D4. C5. C6. D7. A8. B9. B 10. C【解析】提示:由约束条件作出大致的可行域:当目标函数对应的直线过点A时z最大.11. A 12. B 【解析】对任意x∈0,π2,k sin x cos x<x,即对任意x∈0,π2,k sin2x<2x,当k<1时,k sin2x<2x恒成立,但是对任意x∈0,π2,k sin x cos x<x,可得k=1也成立,所以“对任意x∈0,π2,k sin x cos x<x”是“ k<1”的必要而不充分条件.第二部分13. 2514. 215. 1【解析】提示:f x的图象关于直线x=1对称.16. 9【解析】由已知得a+b=p,ab=q,∵p>0,q>0,∴a>0,b>0.又a,b,−2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,∴2b=a−2 ab=4 ⋯⋯①或2a=b−2ab=4 ⋯⋯②解①得a=4 b=1;解②得a=1 b=4.∴p=a+b=5,q=1×4=4.第三部分17. (1)设等差数列a n的公差为d.由已知得a1+d=4,a1+3d+a1+6d=15,解得a1=3,d=1.所以a n=a1+n−1d=n+2.(2)由(1)可得b n=2n+n,所以b1+b2+b3+⋯+b10=2+1+22+2+23+3+⋯+210+10=2+22+23+⋯+210+1+2+3+⋯+10=21−2101−2+1+10×102=211−2+55=211+53=2101.18. (1)解法一:融合指数在7,8内的“省级卫视新闻台”记为A1,A2,A3;融合指数在4,5内的“省级卫视新闻台”记为B1,B2.从融合指数在4,5和7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2,共10个.其中,至少有1家融合指数在7,8内的基本事件是:A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,共9个.所以所求的概率P=910.解法二:融合指数在7,8内的“省级卫视新闻台”记为A1,A2,A3;融合指数在4,5内的“省级卫视新闻台”记为B1,B2.从融合指数在4,5和7,8内的“省级卫视新闻台”中随机抽取2家的所有的基本事件是:A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2,共10个.其中,没有1家融合指数在7,8内的基本事件是:B1,B2,共1个.所以所求的概率P=1−110=910.(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05.19. (1)由抛物线的定义得 AF =2+p2.因为 AF =3,即2+p2=3,解得p=2,所以抛物线E的方程为y2=4x.(2)因为点A2,m在抛物线E:y2=4x上,所以m=±22.由抛物线的对称性,不妨设A 2,22.由A 2,2,F1,0可得直线AF的方程为y=2x−1.由y=22x−1,y2=4x,得2x2−5x+2=0,解得x=2或x=12,从而B12,−2.又G−1,0,所以k GA=22−02−−1=223,k GB=−2−01−−1=−223,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.20. (1)在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.又PO垂直于圆O所在的平面,所以PO⊥AC.因为DO∩PO=O,所以AC⊥平面PDO.(2)因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.又AB=2,所以△ABC面积的最大值为12×2×1=1.又因为三棱锥P−ABC的高PO=1,故三棱锥P−ABC体积的最大值为13×1×1=13.(3)解法一:在△POB中,PO=OB=1,∠POB=90∘,所以PB=12+12=2.同理PC=,所以PB=PC=BC.在三棱锥P−ABC中,将侧面BCP绕PB旋转至平面BCʹP,使之与平面ABP共面,如图所示.当O,E,Cʹ共线时,CE+OE取得最小值.又因为OP=OB,CʹP=CʹB,所以OCʹ垂直平分PB,即E为PB的中点.从而OCʹ=OE+ECʹ=22+62=2+62,即CE+OE的最小值为2+62.解法二:在△POB中,PO=OB=1,∠POB=90∘,所以∠OPB=45∘,PB=2+12=2.同理,PC=.所以PB=PC=BC,所以∠CPB=60∘.在三梭锥P−ABC中,将侧面BCP绕PB旋转至平面BCʹP,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.所以在△OCʹP中,由余弦定理得OCʹ2=1+2−2×1×2×cos45∘+60∘=1+2−2222×12−22×32=2+ 3.从而OCʹ=2+3=2+62.所以CE+OE的最小值为2+62.21. (1)因为f x=103sin x2cos x2+10cos2x2=53sin x+5cos x+5=10sin x+π6+5,所以函数f x的最小正周期T=2π.(2)①将f x的图象向右平移π6个单位长度后得到y=10sin x+5的图象,再向下平移a a>0个单位长度后得到g x=10sin x+5−a的图象.又已知函数g x的最大值为2,所以10+5−a=2,解得a=13.所以g x=10sin x−8.②要证明存在无穷多个互不相同的正整数x0,使得g x0>0,就是要证明存在无穷多个互不相同的正整数x0,使得10sin x0−8>0,即sin x0>45.由45<32知,存在0<α0<π3,使得sinα0=45.由正弦函数的性质可知,当x∈α0,π−α0时,均有sin x>45.因为y=sin x的周期为2π,所以当x∈2kπ+α0,2kπ+π−α0k∈Z时,均有sin x>45.因为对任意的整数k,2kπ+π−α0−2kπ+α0=π−2α0>π3>1,所以对任意的正整数k,都存在正整数x k∈2kπ+α0,2kπ+π−α0,使得sin x k>45.即存在无穷多个互不相同的正整数x0,使得g x0>0.22. (1)fʹx=1x −x+1=−x2+x+1x,x∈0,+∞.由fʹx>0,得x>0,−x2+x+1>0,解得0<x<1+52.故f x的单调递增区间是0,1+52.(2)令F x=f x−x−1,x∈0,+∞,则有Fʹx=1−x2x.当x∈1,+∞时,Fʹx<0,所以F x在1,+∞上单调递减,故当x>1时,F x<F1=0,即当x>1时,f x<x−1.(3)由(2)知,当k=1时,不存在x0>1满足题意.当k>1时,对于x>1,有f x<x−1<k x−1,则f x<k x−1,从而不存在x0>1满足题意.当k<1时,令G x=f x−k x−1,x∈0,+∞,则有Gʹx=1x −x+1−k=−x2+1−k x+1x.由Gʹx=0,得−x2+1−k x+1=0,解得x1=1−k−1−k2+42<0,x2=1−k+1−k2+42>1.当x∈1,x2时,Gʹx>0,故G x在1,x2内单调递增.从而当x∈1,x2时,G x>G1=0,即f x>k x−1.综上,k的取值范围是−∞,1.。
第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=-【答案】D 【解析】试题分析:函数y x =x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα=512=-,故选D . 考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12xyOBCDAF【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C .1422+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1212332⨯⨯=,侧面积为则其表面积为2+2+4+22=8+22,所以该几何体的表面积为1122+B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121mm m -=--,解得1m =,故选C . 考点:线性规划.11.已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4 C .3[,1)2D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式.12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=. 考点:分层抽样.14.若ABC ∆中,3AC ,045A =,075C =,则BC =_______.2【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以232232BC ⨯==.考点:正弦定理. 15.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 考点:函数的图象与性质.16.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2n n b n =+,故可采取分组求和法求其前10项和. 试题解析:(I )设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法. 18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组频数1 [4,5)2 2 [5,6) 83 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=. (II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A . 由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,所以()G 22022213k A -==--,()G 20221312k B --==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由(2,22A ,()F 1,0可得直线F A 的方程为)221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,故直线G A 的方程为223220x y -+=,从而2222428917r +==+. 又直线G B 的方程为223220x y ++=,所以点F 到直线G B 的距离2222428917d r +===+. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;26+ 【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值.试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D OPO =O ,所以C A ⊥平面D P O . (II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =, 所以22112PB =+=. 同理C 2P =,所以C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点.从而C C 222''O =OE +E =+=,亦即C E +OE 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,PB ==C P =所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 所以在C '∆O P 中,由余弦定理得:()2C 1221cos 4560'O =+-⨯+1122222⎫=+--⎪⎪⎭2=从而C 'O ==所以C E +OE 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分)已知函数()2cos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象. 又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <<故()f x 的单调递增区间是⎛ ⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.我不否认人与人之间沟通的可能,但我确信其前提是沉默而不是言词。
第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( )A .y =B .x y e =C .cos y x =D .x x y e e -=-【答案】D 【解析】试题分析:函数y =x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则12cos 13α==,则sin tan cos ααα= 512=-,故选D . 考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A.B.C.D.【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) ABCD.1112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为的直四棱柱,且底面直角梯形的两底分别为,直角腰长为B .考点:三视图和表面积.102,则实数等于()A .B .C .D .【答案】C 【解析】–1,当取最大值,则直线纵截距最小,故当C .考点:线性规划. 11的右焦点为.短轴的一个端点为圆于,点到直线的距离不小于,则椭圆的离心率的取值范围是() A .B CD【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式. 12. )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.【答案】【解析】考点:分层抽样.14.【解析】考点:正弦定理.15.则实数的最小值等于_______.【答案】【解析】,所以实数的最小值等于.考点:函数的图象与性质.16这三个数可适当排的值等于________.【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)【答案】【解析】试题分析:(Ⅱ)求数列前n项和,首先考虑其前10项和.试题解析:(I的公差为.考点:1、等差数列通项公式;2、分组求和法.18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.2家进行调研,求至少有1家的(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.【答案】(Ⅰ);解法一:(I内的“省级卫视新闻台”记为,级卫视新闻台”记为,内的“省级卫视新闻台”中随机抽取家的所,共个.其中,至少有家融合指数在9个.(II)这家“省级卫视新闻台”解法二:(I内的“省级卫视新闻台”记为,级卫视新闻台”记为,内的“省级卫视新闻台”中随机抽取家的所,共个.其中,没有,共个.(II)同解法一.考点:1、古典概型;2、平均值.19.(本小题满分12分)已知点为抛物线在抛物线(Ⅰ)求抛物线的方程;交抛物线于点,证明:以点【答案】(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.,可求的值,进而确定抛物线方程;(Ⅱ)欲证明以点为圆心且与直线可证明点到直线(此时需确定两条直线方程);也可以证明试题解析:解法一:(I,所以抛物线的方程为(II,这表明点故以解法二:(I)同解法一.(II)设以点为圆心且与直线相切的圆的半径为.所以点这表明以点为圆心且与直线考点:1、抛物线标准方程;2、直线和圆的位置关系.20.(本题满分12分)是圆的直径,点是圆上异于垂直于圆(Ⅰ)若,点【答案】(Ⅰ)详见解析;(Ⅱ);【解析】试题分析:(Ⅰ)直于圆明结论;此时高为半径,(Ⅲ)试题解析:解法一:(I,为垂直于圆所在的平面,(II)因为点在圆上,时,到的距离最大,且最大值为.(III当,,共线时,即解法二:(I)、(II)同解法一.(III当,,共线时,考点:1、直线和平面垂直的判定;2、三棱锥体积.21.(本题满分12分)的图象向右平移个单位长度,再向下平移(2.(ⅱ)证明:存在无穷多个互不相同的正整数【答案】(Ⅱ)(ⅱ)详见解析.【解析】试题分析:的解析式中给减,再将所得解析式整体减去1欲证明存在无穷多个互不相同的正整数,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数.试题解析:(I(II)(i的图象向右平移的图象,再向下平移的最大值为(ii )要证明存在无穷多个互不相同的正整数正整数,使得,所以对任意的正整数,都存在正整数亦即存在无穷多个互不相同的正整数考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得210x x x >⎧⎨-++>⎩解得0x <<.故()f x 的单调递增区间是⎛ ⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意. 当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-,-∞.综上,k的取值范围是(),1考点:导数的综合应用.。
第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则M N I 等于( ) A .{}0 B .{}1 C .{}0,1,2 D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=-【答案】D 【解析】试题分析:函数y x =x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα=512=-,故选D.考点:同角三角函数基本关系式.7.设(1,2)a=r,(1,1)b=r,c a kb=+r r r.若b c⊥r r,则实数k的值等于()A.32-B.53-C.53D.32【答案】A考点:平面向量数量积.8.如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0).且点C与点D在函数1,0()11,02x xf xx x+≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD内随机取一点,则该点取自阴影部分的概率等于()A.16B.14C.38D.12xyO BCDAF【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C.1422+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为12.底面积为12332⨯⨯=,侧面积为则其表面积为2+2+4+22=8+221122+B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z=-,当z取最大值,则直线纵截距最小,故当0m≤时,不满足题意;当0m>时,画出可行域,如图所示,其中22(,)2121mBm m--.显然(0,0)O不是最优解,故只能22(,)2121mBm m--是最优解,代入目标函数得4222121mm m-=--,解得1m=,故选C.考点:线性规划.11.已知椭圆2222:1(0)x yE a ba b+=>>的右焦点为F.短轴的一个端点为M,直线:340l x y-=交椭圆E于,A B两点.若4AF BF+=,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.3(0,]B.3(0,]4C.3[,1)D.3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式.12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.考点:分层抽样.14.若ABC ∆中,3AC =045A =,075C =,则BC =_______.2 【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BCB A=,则sin sin AC ABC B=,所以23223BC⨯==.考点:正弦定理.15.若函数()2()x af x a R-=∈满足(1)(1)f x f x+=-,且()f x在[,)m+∞单调递增,则实数m的最小值等于_______.【答案】1【解析】试题分析:由(1)(1)f x f x+=-得函数()f x关于1x=对称,故1a=,则1()2xf x-=,由复合函数单调性得()f x在[1,)+∞递增,故1m≥,所以实数m的最小值等于1.考点:函数的图象与性质.16.若,a b是函数()()20,0f x x px q p q=-+>>的两个不同的零点,且,,2a b-这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q+的值等于________.【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{}n a中,24a=,4715a a+=.(Ⅰ)求数列{}n a的通项公式;(Ⅱ)设22n anb n-=+,求12310b b b b+++⋅⋅⋅+的值.【答案】(Ⅰ)2na n=+;(Ⅱ)2101.【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d,进而求{}n a的通项公式;(Ⅱ)求数列前n项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nnb n=+,故可采取分组求和法求其前10项和.试题解析:(I)设等差数列{}n a的公差为d.由已知得()()11143615a da d a d+=⎧⎪⎨+++=⎪⎩,解得131ad=⎧⎨=⎩.所以()112na a n d n=+-=+.考点:1、等差数列通项公式;2、分组求和法.18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组频数1 [4,5) 22 [5,6) 83 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05.解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=. (II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A . 由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,所以()G 22022k A -==,()G 20221312k B --==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由(2,22A ,()F 1,0可得直线F A 的方程为)221y x =-.由)2214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,故直线G A 的方程为223220x y -+=,从而2222428917r +==+. 又直线G B 的方程为223220x y ++=,所以点F 到直线G B 的距离2222428917d r +===+. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;26+【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP共面,此时线段'OC 的长度即为CE OE +的最小值.试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D O PO =O I , 所以C A ⊥平面D P O . (II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =o,所以22112PB =+=.同理C 2P =,所以C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点. 从而2626C C +''O =OE +E =+=,亦即C E +OE 的最小值为2. 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =o,所以45∠OPB =o,PB ==.同理C P =所以C C PB =P =B ,所以C 60∠PB =o.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 所以在C '∆O P 中,由余弦定理得:()2C 1221cos 4560'O =+-⨯+o o1122222⎫=+--⎪⎪⎭2=+从而C 'O ==所以C E +OE 的最小值为2. 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分)已知函数()2cos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象. 又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) 10,2⎛⎫⎪ ⎪⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得210x x x >⎧⎨-++>⎩解得0x <<故()f x 的单调递增区间是10,2⎛ ⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.。
2015年普通高等学校招生全国统一考试(福建卷)文科综合注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必在将自己的姓名、考生号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3. 回答第Ⅱ卷时,将答案卸载答题卡上,写在试卷上无效。
4. 考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(非选择题)本卷共36小题,每小题4分,共144分。
在每小题给出的四个选项中,只有一项最符合题目要求的。
图1示意我国某地循环农业生产模式。
读图完成1-2题。
1.该地的农业地域类型是A.季风水田农业B.乳畜业C.大牧场放牧业D.混合农业2.该生产模式的农产品深受消费者青睐是因为A.价格低廉B.减耗保鲜C.绿色优质D.品种丰富。
图2示意某区域气候要素的逐月变化。
读图完成3-4题。
3.造成4-6月蒸发量逐月上升的主要原因是①气温上升②降水量增多③风力增大④云量减少A. ①②B. ②③C. ①④D. ③④4.该区域当年水分累积亏损最为严重的月份是A.3月B.6月C.9月D.12月一个国家中某种商品出口的比较优势程度用R值表示,R值越大表示该商品出口的优势越强。
表1为2005-2012年中国、东南亚Y国出口商品比较优势前六位的R值。
读表完成5-6题。
5.中国,Y国商品出口的共同特点是A.工业品比较优势强B. 工业品所占比重小C. 农产品比较优势弱D. 农产品出口总量大6.决定Y国鞋子、服装出口优势的生产要素是A.科技B.资金C.劳动力D.原材料图2示意我国不同生育率方案预测的2050年人口结构。
读图完成7-8题。
7.c方案与a方案的人口结构比较,差异最大的是A.人口性别比B.老年人口比重C.青壮年人口比重D.少儿人口比重8.从我国可持续发展的角度判断,三种生育方案A.a方案较合理B.b方案较合理C.c方案较合理D.均不合理图4示意某地的等高线分布,从a河谷到b、c河谷的地层均由老到新。
2015 年普通高等学校招生全国统一考试(福建卷)数学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若 (1+i)+(2-3i)=a+bi(a 、 b∈ R,i 是虚数单位 ),则 a, b 的值分别等于A.3 ,-2B.3,2C. 3,-3D.-1 , 42.若集合 M={x ︱ -2≤x< 2} , N={0 , 1,2} ,则 M∩N等于A.{0}B. {1}C. {0,1,2}D. {0 ,1}3.下列函数为奇函数的是A. y xB. y e xC. y cos xD. y e x e x4.阅读如图所示的程序框图,运行相应的程序,若输入x 的值为 1,则输出y 的值为A.2B.7C.8D.128x y( a> 0,b> 0)过点( 1,1),则 a+b 的最小值等于5.若直线 1a bA.2B.3C.4D.56.若sin5,且α为第四象限角,则 tan α的值等于1312B. 12 5 5A.5 C. D.5 12 127.设 a=(1,2),b=(1,1),c=a+kb. 若 b⊥ c,则实数 k 的值等于3B. 5 5 3A.3 C. D.2 3 28.如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为( 1,0),且点 C 与点 D 在函数x 1, x 0f ( x)1 x 的图象上 .若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概1, x<02率等于1 1 3 1A. B. C. D.6 4 8 29.某几何体的三视图如图所示,则该几何体的表面积等于A. 8 2 2B. 11 2 2C. 14 2 2D.15x y 0,10.变量 x,y 满足约束条件x 2 y 2 0, 若z=2x-y的最大值为2,则实数 m 等于mx y 0.A.-2B.-1C.1D.2x 2 y2 ( a>b> 0)的右焦点为 F,短轴的一个端点为M ,直线 l:3x-4y=011.已知椭圆 E:b2 1a 2交椭圆 E 于 A,B 两点 .若AF BF 4 ,点M到直线l的距离不小于4,则椭圆 E 的离心5率的取值范围是3 B. 3 C. 3 , D. 3A. 0,0,2 1 ,12 4 412. “对任意x0,,k sin x cos x< x ”是“k<1”的2A. 充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第Ⅱ卷(非选择题共90分)二、填空题:本大题共 4 小题,每小题 4 分,共 16 分 .把答案填在答题卡的相应位置.13.某校高一年级有900 名学生,其中女生400 名 .按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45 的样本,则应抽取的男生人数是.14.若△ ABC 中, AC= 3 ,A=45°,C=75°,则BC= .15.若函数f ( x) 2x a ( a∈ R)满足 f(1+x)=f(1-x) ,且 f(x) 在[m,+ ∞)上单调递增,则实数 m 的最小值等于.16.若 a,b 是函数 f(x)=x 2-px+q(p > 0,q> 0)的两个不同的零点,且a,b,-2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于.三、解答题:本大题共 6 小题,共 74 分 .解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 12 分)等差数列 {a n} 中, a2=4,a4+a 7=15.(Ⅰ)求数列 {a n} 的通项公式;(Ⅱ)设 b n 2 a n 2 n ,求b1+b2+b3+ +b10的值.18.(本小题满分 12 分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播 2015 年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前 20 名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(I )现从融合指数在4,5 和 7,8 内的“省级卫视新闻台”中随机抽取 2 家进行调研,求至少有 1 家的融合指数在7,8 内的概率;19.(本小题满分 12 分)已知点 F 为抛物线 E: y 22 px ( p 0 )的焦点,点 2,m 在抛物线 E 上,且 F3 .(I )求抛物线 E 的方程;(Ⅱ)已知点 G(-1,0) ,延长 AF 交抛物线 E 于点 B ,证明:以点F 为圆心且与直线 GA相切的圆,必与直线GB 相切.20.(本小题满分 12 分)如图, AB 是圆 O 的直径,点C 是圆 O 上异于 A ,B 的点, PO 垂直于圆 O 所在的平面,且PO=OB=1 .( I )若 D 为线段 AC 的中点,求证: AC ⊥平面 PDO ;(Ⅱ)求三棱锥 P-ABC 体积的最大值;(Ⅲ)若 C 2 ,点 E 在线段 PB 上,求 CE+OE 的最小值.21.(本小题满分 12 分)已知函数 fx10 3 sin xcosx10cos 2x.222(I )求函数f x 的最小正周期;(Ⅱ)将函数f x 的图象向右平移个单位长度,再向下平移a ( a 0 )个单位长度后6得到函数 g x 的图象,且函数 g x 的最大值为 2.(ⅰ)求函数g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数x 0 ,使得 g x 00 .22.(本小题满分 14 分)2x 1已知函数f x ln x.2(I )求函数f x 的单调递增区间;(Ⅱ)证明:当x 1 时, f xx 1;(Ⅲ)确定实数 k 的所有可能取值, 使得存在 x 0 1 ,当 x 1, x 0 时,恒有 f xk x 1 .4。
第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( )A .y =B .x y e =C .cos y x =D .x x y e e -=-【答案】D 【解析】试题分析:函数y =x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则12cos 13α==,则s i n t a n c o s ααα=512=-,故选D . 考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A.8+ B.11+ C.14+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1.底面积为12332⨯⨯=,侧面积为则其表面积为11+B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C【解析】–1试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121mm m -=--,解得1m =,故选C . 考点:线性规划.11.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .(0,]2 B .3(0,]4C .2D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式.12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.考点:分层抽样.14.若ABC ∆中,AC =045A =,075C =,则BC =_______.【解析】试题分析:由题意得018060B A C =--=.由正弦定理得s i n s i nA CB CB A =,则sin sin AC ABC B=,所以BC ==.考点:正弦定理. 15.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 考点:函数的图象与性质.16.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和. 试题解析:(I )设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法. 18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05.解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.56.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=. (II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以m =±(A .由(A ,()F 1,0可得直线F A的方程为)1y x =-.由)214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,所以G k A ==()G 12k B ==--, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以m =±(A.由(A ,()F 1,0可得直线F A的方程为)1y x =-.由)214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,故直线G A的方程为30y -+=,从而r ==又直线G B的方程为30y ++=,所以点F 到直线G B的距离d r ===. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值.试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D OPO =O ,所以C A ⊥平面D P O . (II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以PB ==同理C P =C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点.从而C C ''O =OE +E =+=,亦即C E +OE 的最小值为2. 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,PB ==.同理C P =所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 所以在C '∆O P 中,由余弦定理得:()2C 1221cos 4560'O =+-⨯+131222222⎫=+--⎪⎪⎭2=+从而C 'O ==所以C E +OE 的最小值为2. 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分)已知函数()2cos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10s i n 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象. 又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由45<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得102x +<<.故()f x 的单调递增区间是10,2⎛+ ⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.。
2015年福建高考文科数学试题及答案解析
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若(1+i)+(2-3i)=a+bi(a 、b ∈R,i 是虚数单位),则a ,b 的值分别等于
A.3,-2
B.3,2
C. 3,-3
D.-1,4
2.若集合M={x ︱-2≤x <2},N={0,1,2},则M ∩N 等于
A.{0}
B. {1}
C. {0,1,2}
D. {0,1}
3.下列函数为奇函数的是 A.x y = B.x e y = C.x y cos = D.x x e e y --=
4.阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为
A.2
B.7
C.8
D.128
5.若直线1=+b
y a x (a >0,b >0)过点(1,1),则a+b 的最小值等于 A.2 B.3 C.4 D.5
6.若13
5sin -
=α,且α为第四象限角,则tan α的值等于 A.512 B.512- C.125 D. 125- 7.设a=(1,2),b=(1,1),c=a+kb.若b ⊥c ,则实数k 的值等于 A.2
3- B. 35- C. 35 D. 23 8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数
⎪⎩⎪⎨⎧+-≥+=0,12
10,1)(<x x x x x f 的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于
A.61
B. 41
C. 83
D.2
1 9.某几何体的三视图如图所示,则该几何体的表面积等于
A.228+
B. 2211+
C. 2214+
D.15
10.变量x,y 满足约束条件⎪⎩
⎪⎨⎧≤-≥+-≥+.0,022,0y mx y x y x 若z=2x-y 的最大值为2,则实数m 等于
A.-2
B.-1
C.1
D.2
11.已知椭圆E:122
22=+b
y a x (a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B 两点.若4=+BF AF ,点M 到直线l 的距离不小于
5
4,则椭圆E 的离心率的取值范围是 A.⎥⎥⎦
⎤ ⎝⎛230, B.⎥⎦⎤ ⎝⎛430, C.⎪⎪⎭⎫⎢⎢⎣⎡123, D.⎪⎭⎫⎢⎣⎡1,43 12.“对任意x x x k x <cos sin ,2,0⎪⎭
⎫ ⎝⎛∈π”是“k <1”的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.
13.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数是 .
14.若△ABC 中,AC=3,A=45°,C=75°,则BC= .
15.若函数a x x f -=2)((a ∈R )满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m 的最小值等于 .
16.若a,b 是函数f(x)=x 2
-px+q(p >0,q >0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 .
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
等差数列{a n }中,a 2=4,a 4+a 7=15.
(Ⅰ)求数列{a n }的通项公式;
(Ⅱ)设n b n a n +=-22,求b 1+b 2+b 3+…+b 10的值.
18.(本小题满分12分)
全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.
(I )现从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8内的概率;
(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.
19.(本小题满分12分)
已知点F 为抛物线E:22y px =(0p >)的焦点,点()2,m A 在抛物线E 上,且F 3A =.
(I )求抛物线E 的方程;
(Ⅱ)已知点G(-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.
20.(本小题满分12分)
如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO=OB=1. (I )若D 为线段AC 的中点,求证:AC ⊥平面PDO ;
(Ⅱ)求三棱锥P-ABC 体积的最大值;
(Ⅲ)若C B ,点E 在线段PB 上,求CE+OE 的最小值.
21.(本小题满分12分)
已知函数()2cos 10cos 222
x x x f x =+. (I )求函数()f x 的最小正周期;
(Ⅱ)将函数()f x 的图象向右平移6
π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.
(ⅰ)求函数()g x 的解析式;
(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.
22.(本小题满分14分)
已知函数()()21ln 2x f x x -=-.
(I )求函数()f x 的单调递增区间;
(Ⅱ)证明:当1x >时,()1f x x <-;
(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当()01,x x ∈时,恒有()()1f x k x >-.。