螺杆钻具结构
- 格式:doc
- 大小:2.38 MB
- 文档页数:9
浅谈螺杆钻具的正确使用方法及故障解决摘要:螺杆钻具是一种井下动力钻具,它是由高压泥浆驱动的容积式井下动力钻具。
具有结构简单、过载性能好、在小尺寸时能得到大的扭矩和功率的特性已广泛应用在定向井和直井中。
关键词:螺杆钻具故障判断解决措施一、螺杆钻具的结构和工作原理(一)螺杆钻具的结构螺杆钻具主要由旁通阀、马达、万向轴和传动轴等四大部件组成。
(二)工作原理螺杆钻具是以钻井液为动力的一种井下动力钻具。
泥浆泵泵出的钻井液流经旁通阀进入马达,在马达的进、出口形成一定的压力差,推动马达的转子绕定子的轴线旋转,并将扭矩和转速通过万向轴和传动轴传递给钻头。
其性能主要取决于马达的性能参数。
二、螺杆钻具使用时的注意事项(一)现场使用注意事项:1.根据井眼尺寸和地层硬度合理选择螺杆动力钻具。
2.考虑反扭角时,要注意上部钻具的刚性及装置角与高边的关系。
3.钻进排量要符合生产厂家推荐的数值范围,以免造成螺杆钻具的先期损坏。
4.控制好钻井液的含砂量。
钻井液的含砂量高,会加速动力钻具的定子、转子、轴承及万向轴节的磨损,造成钻具提前大修或报废。
5.注意钻井液中不要有铁屑。
6.考虑井下温度不要超过动力钻具允许使用的温度极限(普通定子额定温度为95℃-120℃;耐高温定子额定温度135℃-150℃)。
7.钻头压降要求控制在钻具性能规范的范围以内,以免造成钻具的轴承严重磨损或烧毁。
8.加钻压时要考虑井斜产生的摩阻力的影响。
(1)可以通过上下活动钻具求出摩擦阻力的大小,指重表显示的钻压再减去摩擦阻力就是实际钻压。
(2)可以通过控制动力钻具压差(压力降)的形式进行钻进。
(二)下钻时注意事项:1.检查旁通阀活塞是否上下活动灵活。
2.检查轴向间隙是否超过标准。
3.接方钻杆试运转。
4.下钻过程中严禁猛冲猛砸,在通过防喷器、套管鞋和裸眼井段时,注意下钻速度防止突然迂阻而损坏钻具。
5.下钻至到底1~2m时,开泵记录钻具空转泵压。
6.上下大幅度(7~9m)活动钻具数次,消除钻具扭矩,确保定向准确。
螺杆钻具是油水井修井中常用的一种钻铣工具,它是以液体压力为动力,驱动井下钻具旋转的工具,可以用来进行钻进、磨铣、侧钻等作业。
由于它一方面对洗井液的要求比较高,另一方面我们在现场施工时,由于操作不当很容易造成螺杆钻具的损坏,这样既影响施工进度,又增加作业费用。
为了提高螺杆钻具的使用率,就其原理、操作方法及故障分析做一简单阐述。
一、螺杆钻具的结构螺杆钻主要由上接头、旁通阀、定子、转子、过水接头、轴承总成及下接头组成。
1、旁通阀的结构与作用(1)结构:旁通阀主要由本体、阀套、阀芯、弹簧、弹簧挡圈、丝堵、筛板等组成。
(2)作用:a、防止下钻或接单根时因环形空间液体密度较大,液体倒流到钻具内,造成转子倒转及松扣现象。
b、防止含钻屑的洗井液进入定子腔内卡死钻具。
c、防止钻具内的意外井喷。
d、起钻时可泄出钻柱内的洗井液。
2、马达总成的结构与作用(1)结构:马达总成由定子和转子组成。
定子是经过精加工的钢筒内硫化一层具有双头或多头螺旋腔的刚体橡胶套。
转子是一根单头或多头螺旋钢轴,用合金钢加工成形后,表面镀一层有利于防腐和耐磨的硬铬,并通过镀铬来控制定子和转子的配合间隙。
(2)作用:以泥浆泵泵入的修井液的液压能驱动转子转动,为钻头破碎岩石提供旋转机械能。
马达总成是螺杆钻具的动力源。
3、传动轴总成传动轴总成是螺杆钻具的重要部件之一,它的寿命决定了螺杆钻具总体寿命。
传动轴总成用于传递钻压、扭矩和修井液。
二、螺杆钻具的工作原理螺杆钻具通过转子和定子将高压液体的能量转变成机械能。
当高压液体通过钻具内孔进入钻具后,阀球被推动下移,关闭旁通阀,从而进入转子与定子形成的各个密封腔。
液体在各腔中的压力差推动转子沿定子的螺旋通道滚动。
转子在沿自身的轴线转动的同时,还绕与转子轴线平行,并与之有一偏差心距e的定子中心线公转。
这就是所谓的螺杆钻具的行星传动原理。
由于转子和定子都采用螺旋线,因而转子绕定子轴线作逆时针转动,并以自身轴线作顺时针转动去带动钻具旋转。
螺杆钻具简介螺杆钻具是将液体压力能转换为机械能的一种容积式井下动力钻具,当泥浆泵产生的高压泥浆流经旁通阀进入马达时,转子在压力泥浆的驱动下绕定子的轴线旋转,马达产生的扭矩和转速,通过万向轴和传动轴传递给钻头,与牙轮钻头、金刚石钻头以及其他特殊钻头配合使用,从而实现钻井作业。
一、常规螺杆钻具的主要结构与工作原理螺杆钻具主要由旁通阀、马达、万向轴和传动轴等四个部件组成。
1、旁通阀总成旁通阀总成由阀芯、阀套、弹簧、阀口等零件组成。
阀芯有两个位置:开启位置和关闭位置。
旁通阀的开启与关闭由钻井液的流量控制。
在起下钻作业过程中,泥浆泵停泵或流量较小,旁通阀自动开启,将钻柱内孔与环空连通。
起钻时钻柱内的泥浆经阀口流入环空。
下钻时环空内的泥浆经阀口进入钻柱,减少钻柱内外的压力差。
正常钻进时,旁通阀关闭。
此时泥浆流经马达,把压力能转换为机械能。
2、马达总成螺杆钻具的马达由定子和转子两个零件组成。
定子是在钢管内壁上压注并粘结牢固的橡胶衬套。
橡胶内孔具有螺旋面的几何形状。
转子是一根经过机械加工并经高硬度表面处理的螺杆。
转子和定子具有特殊的啮合关系。
这些啮合点沿轴向形成螺旋密封线,形成一个一个的密封空腔(一个密封腔,也称为一级,每级所能承受的工作压力降应小于等于 0.8mMpa。
如四级马达,压降应为 3.2Mpa。
压降超过此值就要泄漏,转速很快下降,严重时会完全停止转动,级数越多、功率越大)。
当具有一定能量的压力液进入这些密封腔,并从马达的一端流到另一端时,推动转子在定子中转动,将液压能转换为机械能,这就是螺杆马达的基本工作原理。
螺杆钻具马达的转子具有不同的头数。
头数越多,马达转速越低、功率越大。
转子的转速与马达的输入流量成正比,控制输入流量,就可以控制螺杆钻具的输出转速。
为了增加马达的流量而又避免转速的升高,有的螺杆钻具的转子被做成中空形式,并在转子上安装喷嘴,使马达具有中空分流。
这种结构的优点是可以增加螺杆钻具的流量,缺点是会使马达特性变软,即钻头的转速将随钻压的增加而减小(非线性),用户在选用和操作时,应当注意。
浅谈螺杆钻具的正确使用方法及故障解决摘要:螺杆钻具是一种井下动力钻具,它是由高压泥浆驱动的容积式井下动力钻具。
具有结构简单、过载性能好、在小尺寸时能得到大的扭矩和功率的特性已广泛应用在定向井和直井中。
关键词:螺杆钻具故障判断解决措施一、螺杆钻具的结构和工作原理(一)螺杆钻具的结构螺杆钻具主要由旁通阀、马达、万向轴和传动轴等四大部件组成。
(二)工作原理螺杆钻具是以钻井液为动力的一种井下动力钻具。
泥浆泵泵出的钻井液流经旁通阀进入马达,在马达的进、出口形成一定的压力差,推动马达的转子绕定子的轴线旋转,并将扭矩和转速通过万向轴和传动轴传递给钻头。
其性能主要取决于马达的性能参数。
二、螺杆钻具使用时的注意事项(一)现场使用注意事项:1.根据井眼尺寸和地层硬度合理选择螺杆动力钻具。
2.考虑反扭角时,要注意上部钻具的刚性及装置角与高边的关系。
3.钻进排量要符合生产厂家推荐的数值范围,以免造成螺杆钻具的先期损坏。
4.控制好钻井液的含砂量。
钻井液的含砂量高,会加速动力钻具的定子、转子、轴承及万向轴节的磨损,造成钻具提前大修或报废。
5.注意钻井液中不要有铁屑。
6.考虑井下温度不要超过动力钻具允许使用的温度极限(普通定子额定温度为95℃-120℃;耐高温定子额定温度135℃-150℃)。
7.钻头压降要求控制在钻具性能规范的范围以内,以免造成钻具的轴承严重磨损或烧毁。
8.加钻压时要考虑井斜产生的摩阻力的影响。
(1)可以通过上下活动钻具求出摩擦阻力的大小,指重表显示的钻压再减去摩擦阻力就是实际钻压。
(2)可以通过控制动力钻具压差(压力降)的形式进行钻进。
(二)下钻时注意事项:1.检查旁通阀活塞是否上下活动灵活。
2.检查轴向间隙是否超过标准。
3.接方钻杆试运转。
4.下钻过程中严禁猛冲猛砸,在通过防喷器、套管鞋和裸眼井段时,注意下钻速度防止突然迂阻而损坏钻具。
5.下钻至到底1~2m时,开泵记录钻具空转泵压。
6.上下大幅度(7~9m)活动钻具数次,消除钻具扭矩,确保定向准确。
螺杆的结构与工作原理螺杆的结构与工作原理一、工作原理:螺杆钻具是一种容积式马达,高压钻井液经钻具进入螺杆马达后,液体压力迫使转子旋转,将钻井液的水力能转化为机械能,通过传动轴把扭矩传递到钻头上。
二、结构:从上到下依次是旁通阀总成、马达总成、万向轴总成、传动轴总成、导向总成(弯螺杆)。
新型螺杆具有防掉装置。
三、工作特性(1)螺杆钻具的转速只与排量和结构有关而与工况(钻压、扭矩)无关。
(2)工作扭矩与压降和结构有关与转速无关。
(3)转速和力矩是各自独立的两个参数。
(4)具有硬转速特性和良好的过载能力。
(5)泵压表可以作为井底工况的监视器,由△P变化来判断和显示井下工况(钻压和扭矩)(6)转速随排量的变化而线性变化。
(7)工作扭矩和转速均与结构有关。
增大马达的每转排量可获得低速大扭矩的特性。
(8)由于密封漏失和摩擦阻力,存在机械效率和水力效率。
四、影响螺杆钻具使用因素(使用要求)1钻井液:满足井下需要的前提下,比重和粘度尽可能的低,比重不大于1,5;固相含量小于5%;PH值在4--10之间,过高或过低都会对螺杆钻具零件产生破坏作用;钻进液中含有芳香烃类物质或其它对定子橡胶有害的化学处理剂,会损伤定子橡胶,减少使用寿命。
2排量:每种规格的螺杆都有最适应的排量范围,要符合推荐的使用范围;排量太大会使转速过高,降低使用时间,甚至损坏马达;排量太低会降低转速,功率低,甚至打不开旁通阀进而刺坏。
3钻压:施工中通过逐渐增加钻压,使螺杆钻具的马达压降尽量达到规定值的中上限,以保证螺杆钻具的马达最大限度地输出功率;同时,把钻压控制在推荐的最大钻压以内,过大的钻压会损坏传动轴推力轴承,还会使马达压降过高而发生之滞动现象,如果制动时间过长会使马达严重损坏。
4钻头:钻头水眼压降最大值不超过螺杆额定值。
水眼过大使轴承得不到良好润滑及降低螺杆承受钻压的能力;过小,泵压达到额定值时排量小,不能发挥螺杆最大功率,系统压力高会影响推力轴承寿命。
第二节第节螺杆钻具(中国石油大学谭春飞主讲)目录一、概述1.井下动力钻具简介2.井下动力钻具发展概述3.井下动力钻具分类3井下动力钻具分类二、螺杆钻具简介、结构及分类1.螺杆钻具简介1螺杆钻具简介2.螺杆钻具结构3螺杆钻具分类3.螺杆钻具分类三、螺杆钻具各部分的工作原理1.旁通阀总成1旁通阀总成2.螺杆钻具马达部分万向轴总成3.万向轴总成4.传动轴总成一、概述1.井下动力钻具简介将动力发动机置于井底直接与钻头相联驱动钻头破碎岩石进行钻井的井下动力装置,称为井下动力钻具。
这种钻井方式称为井下动力钻具钻井。
特点:1)井下动力钻具钻井时,钻杆不转,只承受钻头的反扭矩,这样可1)井下动力钻具钻井时钻杆不转只承受钻头的反扭矩这样可改善钻柱的受力状况,减少钻柱与套管之间的磨损;2)井下动力钻具与转盘钻井相比,转速快,有利于提高机械钻速;3)可实现井身轨迹的定向控制。
4)可与转盘复合,实现复合钻井。
不仅可以实现旋转或滑动钻井,还可提高钻头转速,提高钻井速度。
还可提高钻头转速提高钻井速度2.井下动力钻具发展概况井下动力钻具发展概况世界上第个井下动力钻具的专利于1873年注册于美国,比转盘钻世界上第一个比转盘钻井的提出还早11年;但其真正应用是在20世纪20、30年代的前苏联。
前苏联作为全球主要应用涡轮钻具钻井的国家,在20世纪50年代中期以前,作为全球主应涡轮钻钻井的家在纪年代中期前前苏联80%以上的油井是用涡轮钻具钻成的。
20世纪30年代,法国工程师根据对阿基米德螺旋泵的研究成果设计了单螺杆泵。
1955年,美国戴纳公司(Dyna)在单螺杆泵的基础上研制开发单螺杆钻具,于1958年起开始出售商品,一时占领世界市场。
1966年,前苏联的苏井科学技研究院开始研制多头螺具全苏钻井科学技术研究院VNIIBT开始研制多头螺杆钻具。
井下动力钻具发展概况2.井下动力钻具发展概况随着定向井数目的增加,20世纪70年代,人们对螺杆钻具的兴趣与日俱增。
螺杆钻具一、概述螺杆钻具是一种井下动力钻具,它是由高压泥浆驱动的容积式井下动力钻具。
具有结构简单、过载性能好、在小尺寸时能得到大的扭矩和功率的特性已广泛应用在定向井和直井中。
螺杆钻具根据需要可做成直壳体和弯壳体,弯壳体螺杆钻具具将在《定向井和水平井工具》一章中介绍。
直壳体螺杆钻具加上弯接头也常用于定向井和水平井的钻进。
本节介绍的是直壳体螺杆钻具。
二、型号表示方法三、结构、工作原理。
1、工作原理螺杆钻具是以钻井液为动力的一种井下动力钻具。
泥浆泵泵出的钻井液流经旁通阀进入马达,在马达的进、出口形成一定的压力差,推动马达的转子旋转,并将扭矩和转速通过方向轴和传动轴传递给钻头。
其性能主要取决于马达的性能参数。
2、螺杆钻具的结构螺杆钻具主要由旁通阀、马达、万向轴和传动轴等四大部件组成。
(1)旁通阀它是为了使钻井液绕过马达,从而起下钻时可让钻井液不溢于井台上。
当无循环或低泵量循环时,弹簧使阀芯处于上部位置,此时旁通阀处于开启位(见图1)。
当流经活塞的钻井液流量达到一定值时,阀芯处于下部,旁通阀被关闭,此时钻井液流过马达。
(2)马达它是由具有螺旋形内腔的硫化橡胶定子和螺旋形的转子组成(见图2)。
转子和定子的形状和尺寸沿轴向形成螺旋密封线,构成马达的密封容腔。
随着转子在定子中的转动,容腔沿着轴向移动,不断生成和消失,完成其能量转换,这就是螺杆马达的基本工作原理。
(3)中空转子马达为了增加钻头的水马力和泥浆的上返速度及保护马达的使用寿命,将转子加工成为带喷嘴的中空转子。
此时马达的总流量应等于流经马达密封腔流量和流经转子喷嘴流量的总和。
为了达到理想的钻井参数,用户可以按以下计算方法选用中空转子的喷嘴:1)根据泥浆上返流速的要求,确定泥浆泵的输出流量Q。
2)流量Q进人马达时分两路,通过马达螺旋容腔的流量为Q m,通过中空转子喷嘴的流量Q P。
即 Q=Q m+Q p所以 Q m=Q-Q m设定马达转速n值计算Q m值Q m=nq/(60﹠) (L/S)或 n=60Qm﹠/q (r/min)容积效率小﹠取0.90。
螺杆钻具结构、工作原理1、螺杆钻具的结构螺杆钻具主要由旁通阀、马达、万向轴和传动轴等四大部件组成。
(1)旁通阀它是为了使钻井液绕过马达,从而起下钻时可让钻井液不溢于井台上。
当无循环或低泵量循环时,弹簧使阀心处于上部位置,此时旁通阀处于开启位(见图3—11)。
当流经阀心的钻井液流量达到一定值时,阀心处于下部,旁通阀被关闭,此时钻井液流过马达。
(2)马达它由具有螺旋形内腔的硫化橡胶定子和螺旋形的转子组成(见图3—12)。
转子和定子的形状和尺寸沿轴向形成螺旋密封线,构成马达的密封容腔。
随着转子在定子中的转动,容腔沿着轴向移动,不断生成和消失,完成其能量转换,这就是螺杆马达的基本工作原理。
图3 — 11旁通阀图3 —13 万向轴图3 — 14传动轴(3)中空转子马达为了增加钻头的水马力和泥浆的上返速度及保护马达的使用寿命,将转子加工成为带喷嘴的中空转子。
此时马达的总流量应等于流经马达密封腔流量和流经转子喷嘴流量的总和。
为了达到理想的钻井参数,可以按以下计算方法选用中空转子的喷嘴:D根据泥浆上返流速的要求,确定泥浆泵的输出流量Q。
2)流量Q进入马达时分两路,通过马达螺旋容腔的流量为Qe,通过中空转子喷嘴的流量QsQ=Qn+Qp所以Qp=Q- Qm设定马达转速n值计算Qm 值Q m =nq∕(6011v)(L/S)或n=60QπηJq(r∕min)容积效率ηV取0.90。
q为中空转子马达螺旋容腔的每转排量(L∕r),按下表取值3—15:3)喷嘴直径d=^898.p.β^∕ΔP(mm)ΔP=ΔP V+ΔPΛP式中:&\一马达起动压降(MPa)△P叩一马达工作压降(MPa)P—泥浆比重(Kg∕L)按以上推荐计算公式,用户可以依据使用需要随时更换不同直径的喷嘴,达到理想的要求。
(4)万向轴它的作用是将马达转子的行星运动转化为传动轴的定轴转动,将马达输出的扭矩及转速传递给传动轴及钻头(见图3-13)0(5)传动轴它的作用是将马达的旋动力传递给钻头,同时承受钻压所产生的轴向和径向负载。
第三节螺杆钻具工作原理及结构螺杆钻具的工作原理螺杆钻具是一种把液体的压力能转换为机械能的能量转换装置。
当高压液体进入钻具时,迫使转子在定子中滚动,马达产生的扭矩和转速通过万向轴传递到传动轴和钻头上,达到钻井的目的。
螺杆钻具作为井底动力钻具,有许多突出的优点:1.增加了钻头扭矩和功率,因而提高了进尺率。
2.减少了钻杆和套管的磨损和损坏。
3.可准确地进行定向、造斜、纠偏。
4.在水平井、丛式井及修井作业中,可显著提高钻井经济效益。
5.由于结构的先进,提高了钻具的寿命,可用于延深钻井或直井钻进。
螺杆钻具的结构及其作用DT螺杆钻具主要由以下几部分组成:※旁通阀总成※马达总成※万向轴总成※传动轴总成※导向总成(导向钻具专有部件)1.旁通阀总成(见图1)旁通阀设置在马达的上部,它由阀体、阀芯、阀座、弹簧、滤套等组成,其功用如下:a.下钻时,井眼中的钻井液由旁通阀引入钻杆柱内,减小下钻过程的阻力,平衡钻杆内外液柱压力。
b.起钻时,钻井液由钻杆柱内经旁通阀侧孔流入环空,不致使钻井液溢于井台。
c.钻具工作时,高压钻井液流经旁通阀,推动阀芯,压缩弹簧,关闭旁通阀侧孔,所有钻井液流经马达,把压力能转换为机械能。
正常情况下,旁通阀的开关由钻井液流量及压力大小来控制。
2.马达总成(见图2、图3)马达是由转子和定子两部分组成的,图3为钻具马达截面轮廓。
转子是一根经过特殊加工和处理,具有抗腐蚀、耐磨损的左旋螺杆。
定子是一根内衬橡胶的钢管,定子内孔也呈螺旋形,转子与定子组装好后沿着它们的接触点形成一系列连续的、共轭的、啮合密封腔,在具有压力能的液体作用下,随着密封腔的形成、变化和消失,迫使转子在定子中作连续运动。
每套螺杆钻具的马达为多级,马达中的一个定子导程组成的密封腔为一级,每一级的许用压降一般不超过0.8MPa,否则,马达就要产生漏损,降低转速。
为保证马达密封腔的密封,以承受一定的压降,转、定子都需经过选配测试以确保为轻微过盈配合,同时,由于井温对定子橡胶的影响,用户可根据实际的井温向厂家反映,以达到合适的马达配合要求,从而使马达发挥最大的功率和效率。
1、螺杆钻具结构螺杆钻具是一种把液体的压力能转换为机械能的能量转换装置,由旁通阀、马达、TC轴承、推力轴承、万向轴、传动轴和防掉装置等组成(如图1所示)。
当高压液体进入钻具时,迫使转子在定子中转动(定子和转子组成了马达),马达产生的扭矩和转速通过万向轴传递到传动轴和钻头上,达到钻井的目的。
螺杆钻具作为井底动力装置,具有低转速、大扭矩、大排量等许多优点:1.增加了钻头扭矩和功率,提高了进尺率。
2.减少了钻杆和套管的磨损和损坏。
3.可准确地进行定向、造斜、纠偏。
4.广泛应用于直井、水平井、丛式井和修井作业。
1.1旁通阀总成旁通阀由阀体、阀套、阀芯及弹簧等部件组成(如图2所示)。
在压力作用下阀芯在阀套中滑动,阀芯的运动改变了液体的流向,使得旁通阀有旁通和关闭两个状态:在起、下钻作业过程中,阀套与阀体通孔未闭和,旁通阀处于旁通状态,使钻柱中泥浆绕过马达进入环空;当泥浆流量和压力达到标准设定值时,阀芯下移,关闭旁通阀孔,此时泥浆流经马达,把压力能转变成机械能。
当泥浆流量值过小或停泵时,弹簧把阀芯顶起,旁通阀孔处于开启位置--处于旁通状态。
1.2马达总成马达由定子、转子组成。
定子是在钢管内壁上压注橡胶衬套而成,其内孔是具有一定几何参数的螺旋;转子是一根有硬层的螺杆 (如图3所示) 。
转子与定子相互啮合,用两者的导程差而形成螺旋密封腔,以完成能量转换。
马达转子的螺旋线有单头和多头之分。
转子的头数越少,转速越高,扭矩越小;头数越多,转速越低,扭矩越大。
仅以转子与定子啮合头数为5:6和9:10的截面参考。
(如图4、图5所示)。
马达中一个定子导程组成一个密封腔(一级)。
每级额定工作压降约0.8MPa ~1.1MPa 。
压降超过最大压降值,马达就会产生泄漏,转速很快下降,对马达也会造成损坏。
为了确保密封效果,转子与定子之间的配合尺寸与不同井深、井温有关。
在选择钻具时应按不同井况选用不同型号马达。
现场使用的泥浆流量应在推荐的范围之内,否则将影响马达效率,甚至加快马达磨损。
1、螺杆钻具结构螺杆钻具是一种把液体的压力能转换为机械能的能量转换装置,由旁通阀、马达、TC轴承、推力轴承、万向轴、传动轴和防掉装置等组成(如图1所示)。
当高压液体进入钻具时,迫使转子在定子中转动(定子和转子组成了马达),马达产生的扭矩和转速通过万向轴传递到传动轴和钻头上,达到钻井的目的。
螺杆钻具作为井底动力装置,具有低转速、大扭矩、大排量等许多优点:1.增加了钻头扭矩和功率,提高了进尺率。
2.减少了钻杆和套管的磨损和损坏。
3.可准确地进行定向、造斜、纠偏。
4.广泛应用于直井、水平井、丛式井和修井作业。
1.1旁通阀总成旁通阀由阀体、阀套、阀芯及弹簧等部件组成(如图2所示)。
在压力作用下阀芯在阀套中滑动,阀芯的运动改变了液体的流向,使得旁通阀有旁通和关闭两个状态:在起、下钻作业过程中,阀套与阀体通孔未闭和,旁通阀处于旁通状态,使钻柱中泥浆绕过马达进入环空;当泥浆流量和压力达到标准设定值时,阀芯下移,关闭旁通阀孔,此时泥浆流经马达,把压力能转变成机械能。
当泥浆流量值过小或停泵时,弹簧把阀芯顶起,旁通阀孔处于开启位置--处于旁通状态。
1.2马达总成马达由定子、转子组成。
定子是在钢管内壁上压注橡胶衬套而成,其内孔是具有一定几何参数的螺旋;转子是一根有硬层的螺杆 (如图3所示) 。
转子与定子相互啮合,用两者的导程差而形成螺旋密封腔,以完成能量转换。
马达转子的螺旋线有单头和多头之分。
转子的头数越少,转速越高,扭矩越小;头数越多,转速越低,扭矩越大。
仅以转子与定子啮合头数为5:6和9:10的截面参考。
(如图4、图5所示)。
马达中一个定子导程组成一个密封腔(一级)。
每级额定工作压降约0.8MPa~1.1MPa。
压降超过最大压降值,马达就会产生泄漏,转速很快下降,对马达也会造成损坏。
为了确保密封效果,转子与定子之间的配合尺寸与不同井深、井温有关。
在选择钻具时应按不同井况选用不同型号马达。
现场使用的泥浆流量应在推荐的范围之内,否则将影响马达效率,甚至加快马达磨损。
马达的输出扭矩与马达的压降成正比,输出转速与输入泥浆量成正比,负载的增加,钻具的转速有所降低。
1.2.1中空转子马达中空转子可增加钻头液压动力和泥浆上返速度,马达的总流量等于流经马达及转子喷嘴的总和,流经该马达的液体流量过大,马达将停止转动。
因此选择中空转子马达时,应确保马达密封腔流量在正常工况。
1.2.2喷嘴直径选取在泥浆密度、喷嘴尺寸和马达流量一定时,起钻时马达负载近似为零,流经转子喷嘴流量最小,而流经马达密封腔的流量最大。
相反,钻头钻进,马达压差不断增加,流经转子喷嘴流量增加,同时,流经马达密封腔流量减少。
流经马达密封腔的流量为Q1,通过马达喷嘴的流量Q2,Q总=Q1+Q2。
用户可依据使用需要随时更换不同直径喷嘴,从而达到理想的效果。
表1:表2:中空转子所配喷嘴尺寸1.3 万向轴总成万向轴的作用是将马达的行星运动转变为传动轴的定轴转动,将马达产生的扭矩及转速传递给传动轴至钻头。
万向轴多采用挠轴式(如图6所示)。
1.4传动轴总成传动轴的作用是将马达的旋转动力传递给钻头,同时承受钻压所产生的轴向和径向负荷。
我公司制造的钻具传动轴结构(如图7所示)已申请国家专利,具有寿命更长、承载能力更高等诸多优点。
1.5防掉装置我公司采用的防掉装置已经申请国家专利。
当定子下部各个外壳螺纹松脱后,防掉装置通过转子防止下部壳体落入井眼中,并且φ120以上规格的钻具都能够防止传动轴轴头落入井中,具有极大的安全性。
2、螺杆钻具型号说明同SY/t5383-1999中有关说明一致。
3、使用须知3.1井场钻井技术人员和司钻首先要了解钻具的结构原理和使用参数,再按使用手册的要求合理使用钻具。
3.2根据整个井眼的钻井作业计划,由钻井工程师根据任务结合不同地层结构、井眼孔径、深度、机械转速选定所用钻头与钻具型号,决定水眼直径和钻具组合。
现场施工必须严格按照制定的钻井作业计划执行。
3.3对钻井液的要求螺杆钻具的马达为容积式,马达的输入流量和作用于两端的压力降差决定了钻具的基本性能。
钻井液的物理、化学性能除个别有损钻具寿命外,一般不影响钻具性能,但钻井液所含的各种硬颗粒必须予以限制,因为它会加速轴承、马达的磨损而降低钻具的使用寿命,建议固相含砂量不超过1%(若含砂量达到5%,钻具寿命会降低50%)。
同时注意钻井液中不要混有各种气体,因为混有气体的钻井液在钻具中压力的变化下容易产生“气蚀作用”,加速钻具的损坏,尤其是定子橡胶更容易被气蚀坏,对于欠平衡钻进中强碱、高温泥浆,要提前说明。
3.4使用钻头的选择钻头与钻具是否匹配是螺杆钻具能否成功发挥作用的因素之一,选择时应注意以下问题:(1)钻井方案及计划;(2)针对地层需要的刃部结构;(3)钻井液流通通道的结构;(4)预先计划的机械钻速;(5)使用该钻头,钻具运转的时间估算:(6)钻头水眼压降的设计。
除了钻头水眼造成的压降外,要使钻井液流经钻头底部时不再形成其他较大的压力损失,尤其是钻头水眼压降已达到该型号钻具规定的压降值时更应注意,应选择合适的钻头。
A:PDC钻头其冠部液体通道的设计,须考虑通道过流面积是否可能造成额外过多的压力损失问题,同时并能保证岩屑及时排出及钻头冷却需要。
PDC钻头不仅适用于定向造斜,更适用于钻井周期较长的作业,如打直井等。
B:牙轮钻头适用于钻井周期不长的作业,如定向造斜、侧钻等。
C:改善传动轴的稳定性,对提高钻具寿命发挥钻头性能有帮助。
另外,考虑钻头金刚石的几何尺寸、布置方位、钻压负荷等诸多因素是否影响钻具转速及寿命。
3.5对井底环境温度的要求温度过高对钻具马达性能有影响。
使用油基泥浆液,井底温度低于95℃,钻具工作状态最佳。
当温度超过150 ℃时,钻具定子寿命受到影响较大。
为使钻具在较高的油基钻井液下正常工作,可以采用分段下钻,间歇循环,使用带分流孔的空心转子,以加速循环或改善钻井液的散热性及其它性能的方法。
保证实际定子工作温度低于极限值。
有普通定子(额定温度为95℃-120℃)、耐高温定子(额定温度135℃-150℃)两种。
3.6对钻井液流量的要求螺杆钻具的输出转速与输入钻井液流量成正比。
建议按钻具推荐流量参数范围进行选择,否则会降低钻具效率及使用寿命。
3.7钻井液压力与钻压的特点钻具进行空运转时,若保持泥浆流量不变,钻具与钻头的压降为一常数,该值随钻具形式和规格的不同而有所不同。
钻具工作时,随着钻压逐步增加,钻井液循环压力逐渐上升,该压力的增量与钻压或钻进所需扭矩的增量成正比,当达到最大推荐值时,产生最佳扭矩。
继续增加钻压,当循环钻井液在马达两端产生的压降超过最大设计值时,钻具将发生泄漏。
正常工作时,如果泵压表突然增加了几兆帕,继续增加钻压,泵压不再增加,表明钻具发生了泄漏,此时钻具定子与转子间密封腔破坏,液体经密封腔从钻头水眼中流出。
因故障卡钻时,钻井液在钻具制动情况下仍可以继续循环流过钻具,应迅速将钻具提离井底降低钻压,因为钻井液长时间流过不转的马达会使钻具严重损坏。
另外,要使钻具获得最佳工作效率,应将钻具两端的压差控制在推荐参数范围内。
3.8预先进行必要的水力估算钻井作业时,由泥浆泵泵出的钻井液依次经立杆、水龙头、方钻杆而进入钻杆、钻铤、无磁钻铤、钻具(马达)、钻头水眼及环空而返回地面。
在钻井液不断循环过程中,由于钻井液本身的摩擦和钻井液与管壁、井壁的摩擦及各局部流动造成的损失,皆需消耗一定的能量。
这一能量损失以压力损失表现出来,按预计井深累加压力损失后,就可以作为确定泵压的一个参数。
对于现场操作者来说,只要将钻头稍稍提离井底,在额定排量下,主管压力表上的读数值就是上述总压力损失值。
4. 钻具使用的注意事项4.1钻具下井前的地面检查4.1.1钻具除提升短节与旁通阀连接外,其他部分的壳体连接均涂以锁紧剂。
4.1.2用钻头装卸器把钻头装上,只许用链钳转动钻具传动轴头,而且只能逆时针旋转(俯视旋向,下同),以防止内部螺纹松扣。
4.1.3吊起提升短节,把钻具放入转盘中,把旁通阀置于转盘中易于观察的位置。
用卡瓦把钻具卡牢,卸去提升短节。
4.1.4检查旁通阀:用锤柄或木棒向下压旁通阀芯,从上部向旁通阀注满水,此时旁通阀应不漏,水面无明显下降,然后挪走木棒,阀芯应被弹簧弹起复位,所注水应从侧面各孔均匀流出,即可认为正常。
4.1.5下放后,使旁通阀位于钻杆下方便于观察的地方,开动钻井泵,逐渐提高排量直到旁通阀关闭,上提钻具,看钻头是否转动,此时旁通阀处于“关闭”位置。
不应有钻井液从旁通孔流出。
停泵后注意观察旁通阀是否再次打开,使钻井液从旁通孔排出。
泵未完全停止之前,不要把旁通阀提到转盘以上,防止污染井台。
4.1.6按设计的钻具组合,分别把弯接头、无磁钻铤、稳定器等接好。
4.2把钻具下到井眼司钻下放钻具时,需控制下放速度,否则易被井眼中的沙桥、井眼台肩、套管鞋所损坏。
如遇到这样的井段,往往需开动钻井泵,慢慢地扩大井眼再通过。
如果用弯接头或弯壳体,钻头侧面就更易碰上井壁的硬岩层和套管鞋等,要周期性的转动钻具,以消除侧钻的影响。
对于深井和高温井,下放钻具时建议周期性地进行中途循环,这样可以防止钻头堵塞,或因高温造成钻具定子损坏。
在井内,钻井液若不能迅速通过旁通阀阀口,应减慢下井速度,或不时停下来充灌泥浆,下钻时,注意不可墩钻或将钻具直接放进井底。
4.3开动钻具:如果钻具处于井底,必须提起0.3-0.4m,开动钻井泵,此时记下立杆压力表读数,与计算的压力值对比一下,如果超过水力计算的压力数值也是正常的,这是钻头侧钻引起的。
清理井底:尤其是打斜井,井底必须足够“干净”,因为井底堆积或沉淀的岩屑影响转速或造斜。
最好用正常的钻井液循环清理,清理时也可慢慢转动钻具或钻具分次转动(每次转动30º-40º),依次地把堆在井底的物体清理干净。
清理干净后,再把钻具上提0.3-0.4m,校对压力值,记录下来。
重新下入井底并逐步加钻压,马达扭矩增加,立杆压力表压值升高,这个升高的压力值应符合各型号钻具规定的马达压降值,此压力表增大的数值反映了马达的负载是否正常,也反映钻压加的是否合适,因此保持马达转速基本稳定,钻压基本稳定,只要把立杆压力表读数限制在所选钻具推荐范围内就可以了。
它能使司钻及时了解钻具工作情况。
钻头不在井底时,如果循环压力高,则可能是钻头水眼被堵或传动轴被卡死。
4.4起钻:起钻时,旁通阀处于旁通状态,允许钻柱中的钻井液泻入环空,但是钻具本身不能排出钻井液,通常在起钻前在钻柱上部注入一段加重钻井液顺利排出。
4.4.1在钻具提出到旁通阀位置后,卸下旁通阀口上各部件,用清水从旁通阀顶部进行冲洗,然后使用木棒或锤柄等将阀芯按下、松开使其移动无阻。
清洗完毕,拧上提升短节,提出钻具。