九年级数学二次函数的图象与性质测试题
- 格式:doc
- 大小:498.50 KB
- 文档页数:12
21.2 二次函数的图象和性质同步测试一、选择题1.函数y=2x(x-3)中,二次项系数是()A. 2B. 2x2C. -6D. -6x【答案】A2.二次函数的顶点坐标是()A. (1,-2)B. (1,2)C. (0,-2)D. (0,2)【答案】D3.已知抛物线y=x2+bx+c的顶点坐标为(1,﹣3),则抛物线对应的函数解析式为()A. y=x2﹣2x+2B. y=x2﹣2x﹣2C. y=﹣x2﹣2x+1D. y=x2﹣2x+1【答案】B4.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A. 0 5B. 0 1C. ﹣4 5D. ﹣4 1【答案】D5. 如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】C6.已知A(-1,y1)、B(2,y2)、C(-3,y3)在函数y=-5(x+1)2+3的图像上,则y1、y2、y3的大小关系是()A. y1< y2< y3B. y1< y3 < y2C. y2 < y3 < y1D. y3< y2 < y1【答案】C7.如图,关于抛物线y=(x-1)2-2,下列说法错误的是()A. 顶点坐标为(1,-2)B. 对称轴是直线x=lC. 开口方向向上D. 当x>1时,Y随X的增大而减小【答案】D8.已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a-2b+c|+|a+b+c|-|2a+b|+|2a-b|,则()A. M>0B. M<0C. M=0D. M的符号不能确定【答案】B9.关于抛物线y=x2﹣(a+1)x+a﹣2,下列说法错误的是()A. 开口向上B. 当a=2时,经过坐标原点OC. a>0时,对称轴在y轴左侧D. 不论a为何值,都经过定点(1,﹣2)【答案】C10.在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是()A. y=3(x﹣3)2+3B. y=3(x﹣3)2﹣3C. y=3(x+3)2+3D. y=3(x+3)2﹣3【答案】D11. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2﹣4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C12.如图,将抛物线y=-x2平移后经过原点O和点A(6,0),平移后的抛物线的顶点为点B,对称轴与抛物线y=-x2相交于点C,则图中直线BC与两条抛物线围成的阴影部分的面积为( )A. B. 12 C. D. 15【答案】C二、填空题13.y=﹣2x2+8x﹣7的开口方向是________,对称轴是________.【答案】向下;直线x=214.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=________.【答案】315. 二次函数y=x2﹣2x+3图象的顶点坐标为________ .【答案】(1,2)16.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=________.【答案】(x﹣1)2+217.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是________.【答案】18.已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为________【答案】19.已知点A(-2,m)、B(2,n)都在抛物线上,则m与n的大小关系是m ________n.(填“>”、“<”或“=”)【答案】<20. 如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是________ .【答案】,(答案不唯一).三、解答题21.已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).求二次函数的解析式;【答案】解:∵二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0),∴,解得.∴二次函数的解析式为.22.在平面直角坐标系xOy中,抛物线y=mx2-8mx+16m-1(m>0)与x轴的交点分别为A(x1,0),B (x2,0).(1)求证:抛物线总与x轴有两个不同的交点;(2)若AB=2,求此抛物线的解析式.(3)已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2-8mx+16m-1(m>0)与线段CD有交点,请写出m的取值范围.【答案】(1)证明:△=64m2-4m•(16m-1)=4m,∵m>0,∴△>0,∴抛物线总与x轴有两个不同的交点(2)解:根据题意,x1、x2为方程mx2-8mx+16m-1=0的两根,∴x1+x2=- =8,x1•x2= ,∵|x1-x2|=2,∴(x1+x2)2-4x1•x2=4,∴82-4• =4,∴m=1,∴抛物线的解析式为y=x2-8x+15(3)解:抛物线的对称轴为直线x=- =4,∵抛物线开口向上,∴当x=2,y≥0时,抛物线与线段CD有交点,∴4m-16m+16m-1≥0,∴m≥23.如图,抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,其对称轴与x轴相交于点D,作直线BC.(1)求抛物线的解析式.(2)设点P为抛物线对称轴上的一个动点.①如图①,若点P为抛物线的顶点,求△PBC的面积.②是否存在点P使△PBC的面积为6?若存在,求出点P坐标;若不存在,请说明理由.【答案】(1)解:∵抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),∴,解得,∴抛物线解析式为y=x2﹣2x﹣3(2)解:①∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴P(1,4),且C(0,﹣3),设直线BC解析式为y=kx+m,则有,解得,∴直线BC解析式为y=x﹣3,设对称轴交BC于点E,如图1,则E(1,﹣2),∴PE=﹣2﹣(﹣4)=2,∴S△PBC= PE•OB= ×3×2=3;②设P(1,t),由①可知E(1,﹣2),∴PE=|t+2|,∴S△PBC= OB•PE= |t+2|,∴|t+2|=6,解得t=2或t=﹣6,∴P点坐标为(1,2)或(1,﹣6),即存在满足条件的点P,其坐标为(1,2)或(1,﹣6)24.如图,抛物线y= x2﹣2x﹣6 与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D 为顶点,点E在抛物线上,且横坐标为4 ,AE与y轴交F.(1)求抛物线的顶点D和F的坐标;(2)点M,N是抛物线对称轴上两点,且M(2 ,a),N(2 ,a+ ),是否存在a使F,C,M,N四点所围成的四边形周长最小,若存在,求出这个周长最小值,并求出a的值;(3)连接BC交对称轴于点P,点Q是线段BD上的一个动点,自点D以2 个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤ )秒,求使得△D′PQ与△PQB重叠部分的面积为△DPQ面积的时对应的t值.【答案】(1)解:∵y= x2﹣2x﹣6 = (x﹣2 )2﹣8 ,∴顶点D坐标(2 ,﹣8 ),由题意E(4 ,﹣8 ),A(﹣2 ,0),B(6 ,0),设直线AE解析式为y=kx+b,则有,解得,∴直线AE解析式为y=﹣x﹣2 ,∴点F坐标(0,﹣2 )(2)解:如图1中,作点F关于对称轴的对称点F′,连接FF′交对称轴于G,在CF上取一点C′,使得CC′= ,连接C′F′与对称轴交于点N,此时四边形CMNF周长最小.∵四边形CMNF的周长=CF+NM+CM+FN=5 +CM+NF,CM+NF=C′N+NF=C′N+NF′=C′F′(两点之间线段最短),∴此时四边形CMNF的周长最小.∵C′F=3∴GN= C′F= ,∴﹣(a+ )=2 + ,∴a=﹣,∵C′F′= =5 ,∴四边形CMNF的周长最小值=5 +5 =10(3)解:如图2中,作PF⊥BD于F,QH⊥对称轴于H.由题意可知BD= =4 ,DQ=2 t,∵S△PQG= S△DPQ= S△PD′Q,∴PG= PD′= PD=2 = BF,情形①PG∥FB时,∵PF=PD,∴BG=GD,∴PG= BF=2 ,在Rt△QHD中,sin∠HDQ= ,DQ=2 t,∴HQ=2 t,HD=4 t,∵∠QPD′=∠QPD=45°,∴PH=HQ=2 t,∴PH+HD=PD,∴6 t=4 ,∴t= .情形②如图3中,PG′=PG=2 ,作PM⊥BD于M,QK⊥PD于K,QJ⊥PD′于J.由sin∠PDG=sin∠GPM= = ,∴MG′=MG= ,∴G′D=BD﹣GG′= ,∵= = ,∵∠QPD=∠QPG′,QK⊥PD,QJ⊥PG′,∴QK=QJ,∴= =2,∴QD= × = ,∴t= = ,综上所述t= 或秒时,△D′PQ与△PQB重叠部分的面积为△DPQ面积的。
湘教版九年级数学下册测试题测试题湘教版初中数学1.2 二次函数的图象与性质第1课时二次函数)0y的图象和性质ax(2>=a1.填空:(1)y=x2的图像是;开口向;对称轴是;顶点坐标是;(2)在抛物线y=x2的对称轴左侧y随x的减小而;而在对称轴的右侧是y随着x的增大而;此时函数y=x2当x=时的值最是.2.若点A(-5,y1)、B(2,y2)都在y=2x2上,则y____2y(填“>”1或“<”)3.关于函数2y=的性质的叙述,错误的是( ).3xA.对称轴是y轴 B.顶点是原点C.当0x时,y随x的增大而增大 D.y有最大值>4.已知a≠0,在同一直角坐标系中,函数y=x与y=x2的图象有可能是()A.B.C.D.5.已知正方形的边长为ccm,面积为Scm2.(1)求S与c之间函数关系式;(2)画出图象;(3)根据图象,求出S=1cm2时,正方形的边长;(4)根据图象,求出c取何值时,S≥4cm2.6.已知直线y=-2x+3与抛物线y=ax2相交于A、B两点,且A点坐标为(-3,m).(1)求a、m的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;(4)求A、B两点及二次函数y=ax2的顶点构成的三角形的面积初中生提高做题效率的方法厚薄读书法:复习课本要厚薄结合著名数学家华罗庚先生说:“书要能从薄读到厚,还要能从厚读到薄。
”这就是厚薄读书法。
我们在复习功课时,也可以用这种方法,具体来说分为“由薄到厚”和“由厚读薄”两个部分由薄到厚第一步要“由薄到厚”地复习课本。
这就是说,我们在复习过程中对书本中的某些原理、定律、公式,不仅应该记住它的结论,而且还应该思考一下,这个定律是怎样发现的,这个公式是怎样推导的。
在阅读过程中对书中的每个概念、原理和观点要有自己的理解,对自己不懂的地方,还要查阅参考资料,通过充实书本的有关内容,使自己获得比书本上内容更为丰富、更为深刻的认识和见解,也就是把书“越读越厚”。
2022-2023学年九年级上数学:二次函数的图像和性质一.选择题(共5小题)
1.将二次函数y=x2的图象向下平移1个单位长度后,所得二次函数的表达式是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2 2.已知二次函数y=ax2+bx+c,当﹣1≤x≤1时,总有﹣1≤y≤1,有如下几个结论:
①当b=c=0时,|a|≤1;
②当a=1时,c的最大值为0;
③当x=2时,y可以取到的最大值为7.
上述结论中,所有正确结论的序号是()
A.①②B.①③C.②③D.①②③
3.二次函数y=3(x+1)2﹣2的图象的顶点坐标是()
A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)
4.下列函数中,二次函数是()
A.y=﹣3x+5B.y=x(4x﹣3)
C.y=2(x+4)2﹣2x2D.y =
5.某同学将如图所示的三条水平直线m1,m2,m3的其中一条记为x轴(向右为正方向),三条竖直直线m4,m5,m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了二次函数y=ax2﹣2ax+1(a<0)的图象,那么她所选择的x轴和y轴分别为直线()
A.m1,m4B.m2,m5C.m3,m6D.m2,m4
二.填空题(共5小题)
6.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
第1页(共18页)。
人教版九年级数学22.1 二次函数的图象和性质一、选择题(本大题共10道小题)1. 已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2 D.y2>y1>22. 抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的解析式为()A.y=x2+2x+3 B.y=x2-2x-3C.y=x2-2x+3 D.y=x2+2x-33. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.24. 2019·丹东如图,二次函数y=ax2+bx+c的图象过点(-2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x 轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4-x)=-2的两根为x1,x2,且x1<x2,则-2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个5. 矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数解析式为y=x2,再次平移这张透明纸,使这个点与点C重合,则此时抛物线的函数解析式变为()A.y=x2+8x+14 B.y=x2-8x+14C.y=x2+4x+3 D.y=x2-4x+36. 2019·资阳如图是函数y=x2-2x-3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1 B.m≤0C.0≤m≤1 D.m≥1或m≤07. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()8. 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.有下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中正确结论的个数为()A.1 B.2 C.3 D.49. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<110. 如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()二、填空题(本大题共8道小题)11. 若物体运动的路程s (m)与时间t (s)之间的关系式为s =5t 2+2t ,则当物体运动时间为4 s 时,该物体所经过的路程为________.12. 【2018·淮安】将二次函数y =x 2-1的图象向上平移3个单位长度,得到的图象所对应的函数解析式是__________.13. (2019•武汉)抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是__________.14. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.15. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)16. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42Ma b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)17. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)18. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.三、解答题(本大题共4道小题)19. 已知抛物线的顶点坐标是(2,3),并且经过点(0,-1),求它的解析式.20. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.21. 二次函数y=ax2+bx+c的图象如图所示,若关于x的方程|ax2+bx+c|=k(k≠0)有两个不相等的实数根,求k的取值范围.22. 如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0).(1)求此抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-b2a,4ac-b24a)人教版九年级数学22.1 二次函数的图象和性质-答案一、选择题(本大题共10道小题)1. 【答案】A[解析] 根据题意,可得抛物线开口向下,对称轴为直线x=-1,∴在对称轴的右侧,y随x的增大而减小.∵-1<1<2,∴2>y1>y2,故选A.2. 【答案】B[解析] 由抛物线与x轴交于点(-1,0)和(3,0),设此抛物线的解析式为y =a(x+1)(x-3).又因为抛物线与y轴交于点(0,-3),把x=0,y=-3代入y=a(x+1)(x-3),得-3=a(0+1)(0-3),即-3a=-3,解得a=1,故此抛物线的解析式为y=(x+1)(x-3)=x2-2x-3.故选B.3. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.4. 【答案】A5. 【答案】A[解析] 因为矩形ABCD的两条对称轴为坐标轴,所以矩形ABCD关于坐标原点成中心对称.因为A,C是矩形对角线上的两个点,所以点A,C关于原点对称,所以点C的坐标为(-2,-1),所以抛物线向左平移了4个单位长度,向下平移了2个单位长度,所以平移后抛物线的函数解析式为y=(x+4)2-2=x2+8x+14.故选A.6. 【答案】C7. 【答案】D[解析] 由一次函数y=ax+a可知,其图象与x轴交于点(-1,0),排除A,B;当a>0时,二次函数y=ax2的图象开口向上,一次函数y=ax+a的图象经过第一、二、三象限;当a<0时,二次函数y=ax2的图象开口向下,一次函数y=ax+a的图象经过第二、三、四象限.排除C.8. 【答案】C[解析] ①∵抛物线开口向上,∴a>0. ∵抛物线的对称轴在y轴右侧,∴b<0.∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,所以①错误.②当x=-1时,y>0,∴a-b+c>0.∵-b2a=1,∴b=-2a.把b=-2a代入a-b+c>0中,得3a+c>0,所以②正确.③当x=1时,y<0,∴a+b+c<0.当x=-1时,y>0,∴a-b+c>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,所以③正确.④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+bm+c(m为实数),即a+b≤m(am+b),所以④正确.故选C.9. 【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc->⎧⎨++<⎩,解得c<-2,故选B.10. 【答案】B【解析】由题意知:在△A′B′C′移动的过程中,阴影部分总为等边三角形.当0<x≤1时,边长为x,此时y=12x×32x=34x2;当1<x≤2时,重合部分为边长为1的等边三角形,此时y=12×1×32=34;当2<x≤3时,边长为3-x,此时y=12(3-x)×32(3-x).综上,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线的一部分,右边为开口向上抛物线的一部分,且最高点为34.故选B.二、填空题(本大题共8道小题)11. 【答案】88 m[解析] 把t=4代入函数解析式,得s=5×16+2×4=88.故填88 m.12. 【答案】y=x2+2[解析] 二次函数y=x2-1的图象向上平移3个单位长度,平移后的纵坐标增加3,即y=x2-1+3=x2+2.13. 【答案】12x =-,25x =【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩, 解得:12b a c a=-⎧⎨=-⎩, 所以,关于x 的一元二次方程a(x-1)2+c=b-bx 为:2(1)12a x a a ax --=-+, 即:2(1)121x x --=-+,化为:23100x x --=,解得:12x =-,25x =,故答案为:12x =-,25x =.14. 【答案】3 215. 【答案】8a [解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B , ∴BD =BC =2,∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a ,∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.16. 【答案】<【解析】当1x =-时,0y a b c =-+>,当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<,即M N <,故答案为:<.17. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b <a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误;(2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n(x -m)2+n =0. ∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.18. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)b b=3- 3. 三、解答题(本大题共4道小题)19. 【答案】解:根据题意,设抛物线的解析式为y =a(x -2)2+3.∵抛物线经过点(0,-1),∴-1=a(0-2)2+3,解得a =-1,∴y =-(x -2)2+3.20. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点,∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去),∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b ,∵抛物线解析式y =x 2+2x +1=(x +1)2,∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图,∵OC ⊥x 轴,∴OC ∥BD ,∵C 是AB 中点,∴O 是AD 中点,∴AO =OD =1,(6分)∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4,∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b ,得⎩⎨⎧0=-k +b 4=k +b ,解得⎩⎨⎧k =2b =2, ∴直线AB 的解析式为: y =2x +2.(8分)21. 【答案】[解析] 先根据题意画出y =|ax 2+bx +c|的图象,即可得出|ax 2+bx +c|=k(k≠0)有两个不相等的实数根时k 的取值范围.解:根据题意,得y =|ax 2+bx +c|的图象如图所示.由图象易知,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k >3. 22. 【答案】解:(1)由抛物线经过点A(-1,0),且对称轴为直线x =2,得⎩⎪⎨⎪⎧-b 2=21-b +c =0,(2分) 解得⎩⎨⎧b =-4c =-5,(3分)解图∴抛物线的解析式为y =x 2-4x -5.(4分)(利用抛物线对称性先求出点B 的坐标,再求出解析式也可)(2)B(5,0),C(0,-5).(6分)(3)如解图,连接BC ,易知△OBC 是直角三角形,∴过O ,B ,C 三点的圆的直径是线段BC 的长度,(8分) 由勾股定理得BC =52+52=52,∴所以所求圆的面积是π×(522)2=252π.(10分)。
二次函数的图像和性质基础知识测试题九年级数学下册《二次函数的图像和性质》基础知识测验班级:_________姓名:___________得分:__________一、选择题(每小题3分,共45分):1、下列函数是二次函数的有()A、1个;B、2个;C、3个;D、4个2.y=(x-1)2+2的对称轴是直线()A.x=-1B.x=1C.y=-1D.y=13.抛物线y x221的顶点坐标是()A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)4.函数y=-x-4x+3图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)5.已知二次函数y mx2x m(m2)的图象经过原点,则m的值为()A.或2.B.0.C.2.D.无法确定6.函数y=2x-3x+4经过的象限是()A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限7.已知二次函数y ax2bx c(a)的图象如图5所示,有下列结论:①abc;②a+b+c>0③a-b+c<0.其中正确的结论有()A.1个D.4个8、已知二次函数y13x2、y2x2、y3x2,它们的图像开口由小到大的顺序是A、y1y2y3B、y3y2y1C、y1y3y2D、y2y3y19、与抛物线y=-1x2+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A。
y = x2+3x-5 B。
y=-x2+2x C。
y =x2+3x-5 D。
y=x210.正比例函数y=kx的图象经过二、四象限,则抛物线y=kx2-2x+k2的大致图象是()删除了明显有问题的段落。
改写后的文章:九年级数学下册《二次函数的图像和性质》基础知识测验班级:_________姓名:___________得分:__________一、选择题(每小题3分,共45分):1、下列函数是二次函数的有()A、1个;B、2个;C、3个;D、4个2.抛物线y=(x-1)²+2的对称轴是直线()A.x=-1 B.x=1 C.y=-1 D.y=13.抛物线y=(x+2)²+1的顶点坐标是()A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)4.函数y=-x²-4x+3图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)5.已知二次函数y=mx²+x+m(m-2)的图象经过原点,则m的值为()A.2或-2 B.0 C.2 D.无法确定6.函数y=2x-3x²+4经过的象限是()A.一、二、四象限B.一、二象限C.三、四象限D.一、三、四象限7.已知二次函数y=ax²+bx+c(a≠0)的图象如图5所示,有下列结论:①abc>0;②a+b+c>0③a-b+c<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个8、已知二次函数y1=-3x²、y2=-x²、y3=x²,它们的图像开口由小到大的顺序是A、y1<y2<y3B、y3<y2<y1C、y1<y3<y2D、y2<y3<y19、与抛物线y=-x²+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A。
《二次函数的图象和性质》综合检测题附参照答案一.选择题(每题 4 分,共 40 分)1、抛物线 y=x2-2x+1 的对称轴是()A.直线 x=1B.直线 x=-1C.直线 x=2D.直线 x=-22、(2008 年武汉市)以下命题:①若 a b c0 ,则b24ac 0 ;②若 b a c ,则一元二次方程ax2bx c0 有两个不相等的实数根;③若 b2a3c ,则一元二次方程ax2bx c 0 有两个不相等的实数根;④若 b24ac0 ,则二次函数的图像与坐标轴的公共点的个数是2或3.此中正确的选项是().A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④.3、对于y2(x 3)2 2 的图象以下表达正确的选项是()A.极点坐标为 (-3, 2)B.对称轴为 y=3C.当 x 3 时y随x增大而增大D.当 x 3 时y随x增大而减小4、(2008 年湖北省仙桃市潜江市江汉油田)如图,抛物线y ax 2bx c(a 0)的对称轴是直线 x 1,且经过点P( 3,0),则 a b c 的值为()A.0B.- 1C.1D.2y3P–1O 13 x5、函数 y=ax2(a≠ 0)的图象经过点 (a,8),则 a 的值为()A.±2B.-2C.2D.36、自由落体公式 h= 1gt2(g 为常量 ), h 与 t 之间的关系是()2A.正比率函数B.一次函数C.二次函数D.以上答案都不对7、以下结论正确的选项是()A. y=ax2是二次函数B.二次函数自变量的取值范围是全部实数C.二次方程是二次函数的特例D.二次函数的取值范围是非零实数8、以下函数关系中,能够看作二次函数2( a0 )模型的是()y ax bx cA.在必定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增加率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系9、对于随意实数 m,以下函数必定是二次函数的是()A.y (m 1)2x2B.y (m 1)2x2C.y (m21)x 2D.y (m21) x 210、二次函数y=x2图象向右平移 3 个单位,获取新图象的函数表达式是()A. y=x2+3B.y=x 2-3C. y=(x+3)2D.y=(x-3)2第Ⅱ卷(非选择题,共80 分)二、填空题(每题 4 分,共 40 分)11、某工厂第一年的利润是20 万元,第三年的利润是y 万元,与均匀年增加率x之间的函数关系式是。
二次函数的图像和性质测试题时间:90分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.若二次函数y=x2−6x+9的图象经过A(−1,y1),B(1,y2),C(3+√3,y3)三点.则关于y1,y2,y3大小关系正确的是()A. y1>y2>y3B. y1>y3>y2C. y2>y1>y3D. y3>y1>y22.如图是二次函数y=ax2+bx+c的图象,有下面四个结论:①abc>0;②a−b+c>0;③2a+3b>0;④c−4b>0其中,正确的结论是()A. ①②B. ①②③C. ①②④D. ①③④3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a−b+c<0,其中正确的个数是()A. 4个B. 3个C. 2个D. 1个4.在同一平面直角坐标系中,函数y=ax+b与y=ax2−bx的图象可能是()A. B.C. D.5.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是()A. 先向左平移1个单位,再向上平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,下列结论:①b2−4ac<0;②abc>0;③a−b+c<0;④m>−2,其中,正确的个数有()A. 1B. 2C. 3D. 47.若抛物线y=x2−2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A. y=(x−2)2+3B. y=(x−2)2+5C. y=x2−1D. y=x2+48.二次函数y=2x2−3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点9.在二次函数y=−x2+2x+1的图象中,若y随x的增大而减少,则x的取值范围是()A. x<1B. x>1C. x<−1D. x>−110.直线y=52x−2与抛物线y=x2−12x的交点个数是()A. 0个B. 1个C. 2个D. 互相重合的两个二、填空题(本大题共10小题,共30.0分)11.已知抛物线y=x2−(k+2)x+9的顶点在坐标轴上,则k的值为______.12.二次函数y=−x2+2x+2图象的顶点坐标是______.13.函数y=x2+mx−4,当x<2时,y随x的增大而减小,则m的取值范围是______ .14.抛物线y=ax2+bx+c经过点A(−5,4),且对称轴是直线x=−2,则a+b+c=______ .15.二次函数y=−2(x−1)2+5的图象的对称轴为______ ,顶点坐标为______ .16.如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为______ .17.如图,抛物线C1:y=12x2经过平移得到抛物线C2:y=12x2+2x,抛物线C2的对称轴与两段抛物线所围成的阴影部分的面积是______ .18.已知(−3,y1),(4,y2),(−1,y3)是二次函数y=x2−4x上的点,则y1,y2,y3从小到大用“<”排列是______.19.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=−1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2−4ac>0;③ab<0;④a−b+c<0,其中正确的结论是______ (填写序号).20.如图,抛物线y=ax2+bx+c过点(−1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(−3,y2),则y1>y2;④无论a,b,c取,0);⑤am2+bm+何值,抛物线都经过同一个点(−caa≥0,其中所有正确的结论是______ .三、计算题(本大题共4小题,共24.0分)21.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.22.已知二次函数y=(m−2)x2+(m+3)x+m+2的图象过点(0,5).(1)求m的值,并写出二次函数的解析式;(2)求出二次函数图象的顶点坐标和对称轴.23.已知函数y=−x2+(m−1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是______.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当−2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.24.如图,已知二次函数y=ax2+bx+c的图象过点A(−1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,解答下列问题:①当−1<x<2时,求函数y的取值范围.②当y<3时,求x的取值范围.四、解答题(本大题共2小题,共16.0分)25.如图,已知抛物线y=−x2+bx+c与x轴交于点A(−1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−b2a ,4ac−b24a)(m2+1)=0有实数根.26.已知关于x的一元二次方程x2−(m+1)x+12(1)求m的值;(m2+1)的图象关于x轴的对称图形,然后将所作图(2)先作y=x2−(m+1)x+12形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2−4n的最大值和最小值.答案和解析【答案】 1. A 2. C 3. B 4. C 5. D6. B7. C8. D 9. B 10. C11. 4,−8,−2 12. (1,3) 13. m ≤−4 14. 415. x =1;(1,5) 16. (−2,0) 17. 418. y 2<y 3<y 1 19. ①②④ 20. ②④⑤21. 解:(1)设抛物线的解析式为y =a(x −3)2+5, 将A(1,3)代入上式得3=a(1−3)2+5,解得a =−12, ∴抛物线的解析式为y =−12(x −3)2+5, (2)∵A(1,3)抛物线对称轴为:直线x =3 ∴B(5,3),令x =0,y =−12(x −3)2+5=12,则C(0,12), △ABC 的面积=12×(5−1)×(3−12)=5.22. 解:(1)把(0,5)代入y =(m −2)x 2+(m +3)x +m +2得m +2=5, 解得m =3所以二次函数解析式为y =x 2+6x +5; (2)因为y =x 2+6x +5=(x +3)2−4,所以此二次函数图象的顶点坐标为(−3,−4),对称轴为直线x =−3. 23. D24. 解:(1)根据题意得{a −b +c =0c =3−b2a =1,解得{a =−1b =2c =3, 所以二次函数关系式为y =−x 2+2x +3,因为y =−(x −1)2+4,所以抛物线的顶点坐标为(1,4);(2)①当x =−1时,y =0;x =2时,y =3; 而抛物线的顶点坐标为(1,4),且开口向下, 所以当−1<x <2时,0<y ≤4;②当y =3时,−x 2+2x +3=3,解得x =0或2, 所以当y <3时,x <0或x >2.25. 解:(1)由点A(−1,0)和点B(3,0)得{−9+3b +c =0−1−b+c=0,解得:{b=2,(2)令x =0,则y =3, ∴C(0,3),∵y =−x 2+2x +3=−(x −1)2+4, ∴D(1,4);(3)设P(x,y)(x >0,y >0),S △COE =12×1×3=32,S △ABP =12×4y =2y ,∵S △ABP =4S △COE ,∴2y =4×32, ∴y =3,∴−x 2+2x +3=3,解得:x 1=0(不合题意,舍去),x 2=2, ∴P(2,3).26. 解:(1)对于一元二次方程x 2−(m +1)x +12(m 2+1)=0,△=(m +1)2−2(m 2+1)=−m 2+2m −1=−(m −1)2, ∵方程有实数根, ∴−(m −1)2≥0, ∴m =1.(2)由(1)可知y =x 2−2x +1=(x −1)2, 图象如图所示:平移后的解析式为y =−(x +2)2+2=−x 2−4x −2.(3)由{y =2x +n y =−x 2−4x −2消去y 得到x 2+6x +n +2=0, 由题意∆≥0,∴36−4n −8≥0, ∴n ≤7,∵n ≥m ,m =1, ∴1≤n ≤7, 令,∴n =2时,y′的值最小,最小值为−4, n =7时,y′的值最大,最大值为21, ∴n 2−4n 的最大值为21,最小值为−4.1. 解:二次函数对称轴为直线x=−−62×1=3,3−(−1)=4,3−1=2,3+√3−3=√3,∵4>2>√3,∴y1>y2>y3.故选A.先求出二次函数的对称轴,再求出点A、B、C到对称轴的距离,然后根据二次函数增减性判断即可.本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性以及增减性,确定出各点到对称轴的距离的大小是解题的关键.2. 解:∵抛物线开口向上,∴a>0;∵抛物线的对称轴在y轴的右侧,∴x=−b2a>0,∴b<0;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵x=−1时,y>0,∴a−b+c>0,所以②正确;∵x=−b2a =13,∴2a+3b=0,所以③错误;∵x=2时,y>0,∴4a+2b+c>0,把2a=−3b代入得−6b+2b+c>0,∴c−4b>0,所以④正确.故选:C.根据抛物线开口方向得到a>0;根据对称轴得到x=−b2a>0,则b<0;根据抛物线与y轴的交点在x轴下方得到c<0,则abc>0,可判断①正确;当自变量为−1时对应的函数图象在x轴上方,则a−b+c>0,可判断②正确;根据抛物线对称轴方程得到x=−b2a =13,则2a+3b=0,可判断③错误;当自变量为2时对应的函数图象在x轴上方,则4a+2b+c>0,把2a=−3b代入可对④进行判断.本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=--b2a;抛物线与y轴的交点坐标为(0,c).3. 解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;>0,即x1+x2>0,故③正确;由对称轴x>0,可知x1+x22由可知抛物线与x轴的左侧交点的横坐标的取值范围为:−1<x<0,∴当x=−1时,y=a−b+c<0,故④正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查二次函数图象与系数的关系,熟练掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、与x轴、y轴的交点是关键.4. 解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线>0,应在y轴的右侧,故不合题意,图形错误;y=ax2−bx来说,对称轴x=b2aB、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2−bx<0,应在y轴的左侧,故不合题意,图形错误;来说,对称轴x=b2aC、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx>0,应在y轴的右侧,故符合题意;来说,图象开口向上,对称轴x=b2aD、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx 来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.5. 解:∵y=−3x2的顶点坐标为(0,0),y=−3(x−1)2−2的顶点坐标为(1,−2),∴将抛物线y=−3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=−3(x−1)2−2.故选:D.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.6. 解:如图所示:图象与x轴有两个交点,则b2−4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=−1时,a−b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:−2,故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c−m与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,故④正确.故选:B.直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.此题主要考查了二次函数图象与系数的关系,正确把握二次函数与方程之间的关系是解题关键.7. 解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x−1)2+2,∴原抛物线图象的解析式应变为y=(x−1+1)2+2−3=x2−1,故答案为C.思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.8. 解:A、a=2,则抛物线y=2x2−3的开口向上,所以A选项错误;B、当x=2时,y=2×4−3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2−3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2−3=0解的情况对D进行判断.本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(−b2a ,4ac−b24a),对称轴为直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a时,y随x的增大而增大;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小.9. 解:y=−x2+2x+1=−(x−1)2+2,抛物线的对称轴为直线x=1,∵a=−1<0,∴当x>1时,y随x的增大而减少.故选B.先配方得到抛物线的对称轴为直线x=1,然后根据二次函数的性质求解.本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(−b2a ,4ac−b24a),对称轴直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a 时,y随x的增大而增大;x=−b2a时,y取得最小值4ac−b24a,对称即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小;x=−b2a时,y取得最大值4ac−b24a,即顶点是抛物线的最高点.10. 解:直线y=52x−2与抛物线y=x2−12x的交点求法是:令52x−2=x2−12x,∴x2−3x+2=0,∴x1=1,x2=2,∴直线y=52x−2与抛物线y=x2−12x的个数是2个.故选C.根据直线与二次函数交点的求法得出一元二次方程的解,即可得出交点个数.此题主要考查了一元二次方程的性质,根据题意得出一元二次方程的解的个数是解决问题的关键.11. 解:当抛物线y=x2−(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2−4×9=0,解得k=4或k=−8;当抛物线y=x2−(k+2)x+9的顶点在y轴上时,x=−b2a =k+22=0,解得k=−2.故答案为:4,−8,−2.由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.12. 解:∵y=−x2+2x+2=−(x2−2x+1)+3=−(x−1)2+3,故顶点的坐标是(1,3).故填空答案:(1,3).此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.求抛物线的顶点坐标、对称轴的方法.13. 解:∵x<2时,y随x的增大而减小,∴−m2×1≥2,∴m≤−4.故答案为:m≤−4.根据二次函数的性质,二次函数的顶点的横坐标不小于2列式计算即可得解.本题考查了二次函数的性质,熟记性质,根据顶点的横坐标列出不等式是解题的关键.14. 解:∵对称轴方程为x=−2,∴−b2a=−2,整理可得b=4a,∵抛物线y=ax2+bx+c经过点A(−5,4),∴4=25a−5b+c,把b=4a代入可得,4=25a−20a+c,解得c=4−5a,∴抛物线解析式为y=ax2+4ax+4−5a,当x=1时,则有a+b+c=a+4a+4−5a=4,故答案为:4.把A点坐标代入抛物线解析式结合对称轴方程可用a分别表示出b和c,则可用a表示出抛物线解析式,再令x=1代入可求得y的值,即a+b+c的值.本题主要考查二次函数的解析式,分别用a表示出b和c,得出抛物线解析式是解题的关键.15. 解:∵y=−2(x−1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1,故答案为:x=1,(1,5).由抛物线解析式可求得其顶点坐标及对称轴.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).16. 解:∵抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,∴P,Q两点到对称轴x=1的距离相等,∴Q点的坐标为:(−2,0).故答案为:(−2,0).直接利用二次函数的对称性得出Q点坐标即可.此题主要考查了二次函数的性质,正确利用函数对称性得出答案是解题关键.17. 解:抛物线C1:y=12x2的顶点坐标为(0,0),∵y=12x2+2x=12(x+2)2−2,∴平移后抛物线的顶点坐标为(−2,2),对称轴为直线x=−2,当x=−2时,y=12×(−2)2=2,∴平移后阴影部分的面积等于如图三角形的面积为:12×(2+2)×2=4,故答案为:4.确定出抛物线y=12x2+2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.18. 解:y1=(−3)2+4×3=21,y2=42−4×4=0,y3=(−1)2+4×1=5,∴y2<y3<y1,故答案为:y2<y3<y1,可分别求出y1、y2、y3的值后,再进行比较大小.本题考查二次函数图象上的点的特征,解题的关键是求出各点的函数值,本题属于基础题型.19. 解:∵抛物线对称轴是直线x=−1,点B的坐标为(1,0),∴A(−3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴b2−4ac>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=−1时,y=a−b+c此时最小,为负数,故选项④正确;故答案为:①②④.利用二次函数对称性以及结合b2−4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断a−b+c的符号是解题关键.20. 解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(−1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=c2−bc+aca=c(a−b+c)a,∵当x=−1时,y=a−b+c=0,∴当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(−ca,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=−2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=c(a−b+c)a且a−b+c=0可判断④;由x=1时函数y取得最小值及b=−2a可判断⑤.本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.21. (1)设顶点式y=a(x−3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.22. (1)把已知点的坐标代入y =(m −2)x 2+(m +3)x +m +2可求出m 的值,从而得到抛物线解析式;(2)把(1)中的解析式配成顶点式,从而得到二次函数图象的顶点坐标和对称轴.本题考查了在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.23. 解:(1)∵函数y =−x 2+(m −1)x +m(m 为常数),∴△=(m −1)2+4m =(m +1)2≥0,则该函数图象与x 轴的公共点的个数是1或2,故选D ;(2)y =−x 2+(m −1)x +m =−(x −m−12)2+(m+1)24, 把x =m−12代入y =(x +1)2得:y =(m−12+1)2=(m+1)24, 则不论m 为何值,该函数的图象的顶点都在函数y =(x +1)2的图象上;(3)设函数z =(m+1)24,当m =−1时,z 有最小值为0;当m <−1时,z 随m 的增大而减小;当m >−1时,z 随m 的增大而增大,当m =−2时,z =14;当m =3时,z =4,则当−2≤m ≤3时,该函数图象的顶点坐标的取值范围是0≤z ≤4.(1)表示出根的判别式,判断其正负即可得到结果;(2)将二次函数解析式配方变形后,判断其顶点坐标是否在已知函数图象即可;(3)根据m 的范围确定出顶点纵坐标范围即可.此题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的图象与性质是解本题的关键.24. (1)把A 点和C 点坐标代入y =ax 2+bx +c 得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出a 、b 、c 即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;(2)①先分别计算出x 为−1和2时的函数值,然后根据二次函数的性质写出对应的函数值的范围;②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y <3时,x 的取值范围.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.25. (1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数b 、c 的值,进而可得到抛物线的对称轴方程;(2)令x =0,可得C 点坐标,将函数解析式配方即得抛物线的顶点C 的坐标;(3)设P(x,y)(x >0,y >0),根据题意列出方程即可求得y ,即得D 点坐标.此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S△ABP=4S△COE列出方程是解决问题的关键.26. (1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;本题考查抛物线与x轴的交点、待定系数法、翻折变换、平移变换、二次函数的最值问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.。
《二次函数的图象和性质》同步练习题一、选择题(共10小题)1.下列函数中是二次函数的为 ()A .B .C .D .31y x =-231y x =-22(1)y x x =+-323y x x =+-2.二次函数与一次函数,它们在同一直角坐标系中的图象大致是2y ax bx c =++y ax c =+ ()A .B .C .D .3.已知一次函数的图象经过一、二、四象限,则二次函数的顶点y kx b =+2y kx bx k =+-在第 象限.()A .一B .二C .三D .四4.抛物线的顶点坐标是 22(3)2y x =-+()A .B .C .D .(3,2)-(3,2)(3,2)--(3,2)-5.已知,二次函数满足以下三个条件:①,②,③2y ax bx c =++24b c a >0a b c -+<,则它的图象可能是 b c <()A .B .C .D .6.把抛物线向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是2(2)y x =+ ()A .B .C .D .2(2)2y x =++2(1)2y x =+-22y x =+22y x =-7.将抛物线平移得到抛物线,则这个平移过程正确的是 2y x =2(3)y x =+()A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位8.二次函数的图象可能是 22y x x =-+()A .B .C .D .9.若点,,都在抛物线上,则下1(1,)M y -2(1,)N y 37(,)2P y 2241(0)y mx mx m m =-+++>列结论正确的是 ()A .B .C .D .123y y y <<132y y y <<312y y y <<213y y y <<10.二次函数与轴交点坐标为 23(2)5y x =--y ()A .B .C .D .(0,2)(0,5)-(0,7)(0,3)二、填空题(共4小题)11.请写出一个开口向上且与轴交点坐标为的抛物线的表达式: .y (0,1)12.若二次函数,当时,随的增大而减小,则的取值范围是 22()1y x k =-++2x - y x k .13.抛物线的对称轴是 .22247y x x =+-14.已知抛物线经过,,对于任意,点均不在抛2y ax bx c =++(0,2)A (4,2)B 0a >(,)P m n 物线上.若,则的取值范围是 .2n >m 三、解答题(共6小题)15.已知抛物线.2246y x x =--(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿轴向左平移个单位后经过原点,求的值.x (0)m m >m 16.如图,在中,,,,动点从点开始沿边ABC ∆90B ∠=︒12AB mm =24BC mm =P A向以的速度移动(不与点重合),动点从点开始沿边向以AB B 2/mm s B Q B BC C 的速度移动(不与点重合).如果、分别从、同时出发,那么经过多少4/mm s C P Q A B 秒,四边形的面积最小.APQC17.已知二次函数.243(0)y ax ax b a =-++≠(1)求出二次函数图象的对称轴;(2)若该二次函数的图象经过点,且整数,满足,求二次函数的表(1,3)a b 4||9a b <+<达式;(3)对于该二次函数图象上的两点,,,,设,当时,1(A x 1)y 2(B x 2)y 11t x t + 25x 均有,请结合图象,直接写出的取值范围.12y y t 18.在平面直角坐标系中,抛物线经过点和.xOy 2(0)y ax bx c a =++>(0,3)A -(3,0)B (1)求的值及、满足的关系式;c a b(2)若抛物线在、两点间从左到右上升,求的取值范围;A B a (3)结合函数图象判断,抛物线能否同时经过点、?若能,写出(1,)M m n -+(4,)N m n -一个符合要求的抛物线的表达式和的值,若不能,请说明理由.n 19.小明利用函数与不等式的关系,对形如12()()()0n x x x x x x --⋯->为正整数)的不等式的解法进行了探究.(n (1)下面是小明的探究过程,请补充完整:①对于不等式,观察函数的图象可以得到如表格:30x ->3y x =-的范围x 3x >3x <的符号y +-由表格可知不等式的解集为.30x ->3x >②对于不等式,观察函数的图象可以得到如表表格:(3)(1)0x x -->(3)(1)y x x =--的范围x 3x >13x <<1x <的符号y +-+由表格可知不等式的解集为 .(3)(1)0x x -->③对于不等式,请根据已描出的点画出函数的(3)(1)(1)0x x x --+>(3)(1)(1)y x x x =--+图象;观察函数的图象补全下面的表格:(3)(1)(1)y x x x =--+的范围x 3x >13x <<11x -<<1x <-的符号y +- 由表格可知不等式的解集为 .(3)(1)(1)0x x x --+>⋯⋯小明将上述探究过程总结如下:对于解形如为正整数)的12()()()0(n x x x x x x n --⋯⋯->不等式,先将,,按从大到小的顺序排列,再划分的范围,然后通过列表格的1x 2x ⋯n x x 办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解y 集.(2)请你参考小明的方法,解决下列问题:①不等式的解集为 .(6)(4)(2)(2)0x x x x ---+>②不等式的解集为 .2(9)(8)(7)0x x x --->20.函数是二次函数.223y mx mx m =--(1)如果该二次函数的图象与轴的交点为,那么 ;y(0,3)m(2)在给定的坐标系中画出(1)中二次函数的图象.答案一、选择题(共10小题)1.解:、是一次函数,故错误;A 31y x =-A 、是二次函数,故正确;B 231y x =-B 、不含二次项,故错误;C 22(1)y x x =+-C 、是三次函数,故错误;D 323y x x =+-D 故选:.B 2.解:一次函数和二次函数都经过轴上的,y (0,)c 两个函数图象交于轴上的同一点,排除、;∴y B C 当时,二次函数开口向上,一次函数经过一、三象限,排除;0a >D 当时,二次函数开口向下,一次函数经过二、四象限,正确;0a <A 故选:.A 3.解:一次函数的图象经过一、二、四象限,y kx b =+,,0k ∴<0b >△,2224()40b k k b k =--=+>抛物线与轴有两个交点,∴x、异号,k b 抛物线的对称轴在轴右侧,∴y 二次函数的顶点在第一象限.∴2y kx bx k =+-故选:.A 4.解:抛物线的顶点坐标是,22(3)2y x =-+(3,2)故选:.B 5.解:二次函数满足以下三个条件:①,②,③, 2y ax bx c =++24b c a >0a b c -+<b c <由①可知当时,则抛物线与轴有两个交点,当时,∴0a >240b ac ->x 0a <240b ac -<则抛物线与轴无交点;x 由②可知:当时,,1x =-0y <由③可知:,0b c -+>,必须,0a b c -+< ∴0a <符合条件的有、,∴C D 由的图象可知,对称轴直线,,,抛物线交的负半轴,C 02b x a=->0a <0b ∴>y ,则,0c <b c >由的图象可知,对称轴直线,,,抛物线交的负半轴,D 02b x a=-<0a <0b ∴<y ,则有可能,0c <b c <故满足条件的图象可能是,D 故选:.D 6.解:抛物线的顶点坐标是,向下平移2个单位长度,再向右平移1个单2(2)y x =+(2,0)-位长度后抛物线的顶点坐标是,(1,2)--所以平移后抛物线的解析式为:2(1)2y x =+-故选:.B 7.解:抛物线的顶点坐标为,抛物线的顶点坐标为,2y x =(0,0)2(3)y x =+(3,0)-点向左平移3个单位可得到,(0,0)(3,0)-将抛物线向左平移3个单位得到抛物线.∴2y x =2(3)y x =+故选:.A 8.解:,,22y x x =-+ 0a <抛物线开口向下,、不正确,∴A C 又对称轴,而的对称轴是直线, 212x =-=-D 0x =只有符合要求.∴B 故选:.B 9.解:观察二次函数的图象可知:.132y y y <<故选:.B 10.解:23(2)5y x =-- 当时,,∴0x =7y =即二次函数与轴交点坐标为,23(2)5y x =--y (0,7)故选:.C 二、填空题(共4小题)11.解:抛物线开口方向向上,且与轴的交点坐标为,y (0,1)抛物线的解析式为.∴21y x =+故答案为.21y x =+12.解:,22()1y x k =-++对称轴为,∴x k =-,20a =-< 抛物线开口向下,∴在对称轴右侧随的增大而减小,∴y x 当时,随的增大而减小,2x - y x ,解得,2k ∴-- 2k 故.2k 13.解:抛物线的对称轴是:,22247y x x =+-24622x =-=-⨯故.6x =-14.解:依照题意,画出图形,如图所示.当时,或,2n >0m <4m >当时,若点均不在抛物线上,则.∴2n >(,)P m n 04m 故.04m三、解答题(共6小题)15.解:(1)2246y x x =--22(2)6x x =--,22(1)8x =--故该函数的顶点坐标为:;(1,8)-(2)当时,,0y =202(1)8x =--解得:,,11x =-23x =即图象与轴的交点坐标为:,,x (1,0)-(3,0)故该抛物线沿轴向左平移3个单位后经过原点,x 即.3m =16.解:设经过秒,四边形的面积最小x APQC 由题意得,,,2AP x =4BQ x =则,122PB x =-的面积PBQ ∆12BQ PB =⨯⨯1(122)42x x =⨯-⨯,24(3)36x =--+当时,的面积的最大值是,3x s =PBQ ∆236mm此时四边形的面积最小.APQC 17.解:(1)二次函数图象的对称轴是;422a x a-=-=(2)该二次函数的图象经过点,(1,3),433a a b ∴-++=,3b a ∴=把代入,3b a =4||9a b <+<得.43||9a a <+<当时,,则.0a >449a <<914a <<而为整数,a ,则,2a ∴=6b =二次函数的表达式为;∴2289y x x =-+当时,,则.0a <429a <-<922a -<<-而为整数,a 或,3a ∴=-4-则对应的或,9b =-12-二次函数的表达式为或;∴23126y x x =-+-24169y x x =-+-(3)当时,均有,25x 12y y 二次函数的对称轴是直线,243(0)y ax ax b a =-++≠2x =,12y y ①当时,有,即∴0a >12|2||2|x x -- 12|2|2x x -- ,212222x x x ∴--- ,2124x x x ∴- ,25x ,241x ∴-- 该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y ∴115t t -⎧⎨+⎩ .14t ∴- ②当时,,即0a <12|2||2|x x -- 12|2|2x x -- ,或,1222x x ∴-- 1222x x -- ,或12x x ∴ 124x x - ,25x ,241x ∴--该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y 比的最大值还大,或比的最小值还小,这是不存在的,t ∴2x 1t + 24x -故时,的值不存在,0a <t 综上,当时,.0a >14t - 18.解:(1)抛物线经过点和. 2(0)y ax bx c a =++>(0,3)A -(3,0)B ,∴3093c a b c-=⎧⎨=++⎩,.3c ∴=-310a b +-=(2)由1可得:,2(13)3y ax a x =+--对称轴为直线,132a x a -=-抛物线在、两点间从左到右上升,当时,对称轴在点左侧,如图: A B 0a >A即:,解得:,1302a a -- 13a.、两点间从左到右上升,103a ∴< A B 当时,抛物线在、两点间从左到右上升,∴103a < A B (3)抛物线不能同时经过点、.(1,)M m n -+(4,)N m n -理由如下:若抛物线同时经过点、.则对称轴为:,(1,)M m n -+(4,)N m n -(1)(4)322m m x -++-==由抛物线经过点可知抛物线经过,与抛物线经过相矛盾,A (3,3)-(3,0)B 故:抛物线不能同时经过点、(1,)M m n -+(4,)N m n -19.解:(1)②由表格可知不等式的解集为或,(3)(1)0x x -->3x >1x <故或;3x >1x <③图象如右图所示,当时,,当时,,11x -<<(3)(1)(1)0x x x --+>1x <-(3)(1)(1)0x x x --+<由表格可知不等式的解集为或,(3)(1)(1)0x x x --+>3x >11x -<<故,,或;+-3x >11x -<<(2)①不等式的解集为或或,(6)(4)(2)(2)0x x x x ---+>6x >24x <<2x <-故或或;6x >24x <<2x <-②不等式的解集为或且,2(9)(8)(7)0x x x --->9x >8x <7x ≠故或且9x >8x <7x ≠20.解:(1)该函数的图象与轴交于点, y (0,3)把,代入解析式得:,∴0x =3y =33m -=解得,1m =-故答案为;1-(2)由(1)可知函数的解析式为,223y x x =-++,2223(1)4y x x x =-++=--+ 顶点坐标为;∴(1,4)列表如下:x 2-1-01234y5-034305-描点;画图如下:。
专题2.8 二次函数y=ax2+k(a≠0)的图像与性质(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.8 二次函y=ax2+k(a≠0)的图像与性质(基础篇) (专项练习) 一、单选题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值1.抛物线y =x 2﹣3的顶点坐标、对称轴是( ) A .(0,3),x =3B .(0,﹣3),x =0C .(3,0),x =3D .(3,0),x =02.下列各点中,在抛物线24y x =-上的是( ) A .()1,3B .()1,3--C .()1,5-D .()1,5--3.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ). A .向下,(0,-4) B .向下,(0,4) C .向上,(0,4)D .向上,(0,-4)4.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上 B .它的图象顶点坐标为(0,4) C .它的图象对称轴是y 轴D .当0x =时,y 有最大值45.若在同一直角坐标系中,作23y x =,22y x =-,221y x =-+的图像,则它们( ) A .都关于y 轴对称 B .开口方向相同C .都经过原点D .互相可以通过平移得到知识点二、二次函数()20y ax k a =+≠图象的增减性6.在平面直角坐标系xOy 中,抛物线y =﹣x 2+2x .点D (n ,y 1),E (3,y 2)在抛物线上,若y 1<y 2,则n 的取值范围是( ) A .n >3或n <﹣1B .n >3C .n <1D .n >3或n <17.已知函数y=x 2﹣2,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <2B .x >0C .x >﹣2D .x <08.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y x 1=-+ B .2y x 1=-C .1y x=D .2y x 1=-+9.点11(0.5,)P y -,22(2.5,)Py ,33(5,)P y -均在二次函数22y x x =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.已知点()()()25,,521A m B m C m n --++,,,在同一个函数的图象上,这个函数可能是( ) A .2y x =+B .25y x =--C .25y x =+D .2y x=-知识点三、二次函数()20y ax k a =+≠的图象11.2y ax k =+的图象可能是( )A .B .C .D .12.已知函数21(1)2(1)x x y x x⎧+≥-⎪=⎨<-⎪⎩则下列图像正确的是( )A .B .C.D.13.在平面直角坐标系中,二次函数y=x2+2的大致图象可能是()A.B.C.D.14.二次函数y=-x2-1的图象大致是()A.B.C.D.15.二次函数22=--的图象大致是()y xA.B.C.D.知识点四、二次函数()20y ax k a =+≠的性质综合16.下列关于抛物线y =2x 2﹣3的说法,正确的是( ) A .抛物线的开口向下B .抛物线的对称轴是直线x =1C .抛物线与x 轴有两个交点D .抛物线y =2x 2﹣3向左平移两个单位长度可得抛物线y =2(x ﹣2)2﹣317.二次函数22y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .当0x =时,函数的最大值是2-C .抛物线的对称轴是直线2x =D .抛物线与x 轴有两个交点18.关于二次函数y =﹣2x 2+1,以下说法正确的是( ) A .开口方向向上B .顶点坐标是(﹣2,1)C .当x <0时,y 随x 的增大而增大D .当x =0时,y 有最大值﹣1219.二次函数221y x =-的图象是一条抛物线,下列说法中正确的是( ) A .抛物线开口向下B .抛物线经过点1,1C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点20.关于二次函数221y x =-+,则下列说法正确的是( ) A .开口方向向上 B .当x <0时,y 随x 的增大而增大 C .顶点坐标是(-2,1)D .当x =0时,y 有最小值1知识点五、二次函数()20y ax k a =+≠图形与其他函数图象的判定21.直线y=ax+c 与抛物线y=ax 2+c 的图象画在同一个直角坐标系中,可能是下面的( )A .B .C .D .22.函数ay x=与20()y ax a a =--≠在同一直角坐标系中的大致图象可能是( )A .B .C .D .23.用min{a ,b }表示a ,b 两数中的最小数,若函数{}22min 1,1y x x =+-,则y 的图象为( )A .B .C .D .24.二次函数y =x 2+1的图象大致是( )A .B .C .D .25.二次函数y =x 2+1的图象大致是( )A .B .C .D .26.在同一直角坐标系中2y ax b =+与()y ax b a 0,b 0=+≠≠图象大致为( )A .B .C .D .27.点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >二、填空题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值28.抛物线223y x =--的开口方向_______,对称轴是_____,顶点坐标是_______. 29.通过_______法画出221y x =+和221y x =-的图像:通过图像可知:221y x =+的开口方向________,对称轴_______,顶点坐标___________.221y x =-的开口方向________,对称轴_______,顶点坐标___________.30.写出顶点坐标为(0,-3),开口方向与抛物线2y x =-的方向相反,形状相同的抛物线解析式_________________________.31.抛物线2y ax k =+的图象相当于把抛物线2y ax =的图象______(k >0)或______(k <0)平移______个单位.32.一抛物线的形状,开口方向与23312y x x =-+相同,顶点在(-2,3),则此抛物线的解析式为_______.知识点二、二次函数()20y ax k a =+≠图象的增减性33.已知点P (﹣2,y 1)和点Q (﹣1,y 2)都在二次函数2y x c =-+的图象上,那么1y 与2y 的大小关系是_____.34.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是-5,最大值是_________. 35.当m=______时抛物线22(1)9m m y m x +=++开口向下,对称轴是________,在对称轴左侧部分是________的(填“上升”或“下降”).36.已知二次函数y =2x 2+bx ,当x >1时,y 随x 增大而增大,则b 的取值范围为______. 37.设点(﹣1,y 1),(2,y2),(3,y3)是抛物线y=﹣x 2+a 上的三点,则y 1、y2、y3的从小到大排列为__________. 三、解答题38.在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点. 39.如图,已知抛物线24y x =-+.(1)该抛物线顶点坐标为________;(2)在坐标系中画出此抛物线y 的大致图像(不要求列表);(3)该抛物线24y x =-+可由抛物线2y x =-向________平移________个单位得到;(4)当0y >时,求x 的取值范围. 40.已知二次函数2y x 4x =-+.()1求函数图象的对称轴和顶点坐标;()2求这个函数图象与x 轴的交点坐标.参考答案:1.B【分析】按照二次函数y =ax 2+k 顶点坐标(0,k ),对称轴y 轴即可求解. 【详解】解:∵y =x 2﹣3,∵抛物线的顶点坐标为(0,﹣3),对称轴为y 轴; 故选:B .【点睛】本题考查了二次函数的图像和性质,以及顶点坐标和对称轴,掌握二次函数的图像和性质是解题的关键. 2.B【分析】分别把x=±1代入抛物线解析式,计算对应的函数值,然后进行判断. 【详解】解:∵当x=-1时,y=x 2-4=-3; 当x=1时,y=x 2-4=-3;∵点(-1,-3)在抛物线上,点(1,3)、(1,-5)、(-1,-5)都不在抛物线上. 故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式. 3.B【分析】根据二次函数的性质分析,即可得到答案. 【详解】抛物线y =-3x 2+4 ∵30-<∵抛物线y =-3x 2+4开口向下当0x =时,y =-3x 2+4取最大值,即y =4 ∵顶点坐标为()0,4 故选:B .【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解. 4.D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断. 【详解】∵224y x =+,∵抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4, 故A 、B 、C 正确,D 错误; 故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ). 5.A【分析】根据二次函数的图像和性质逐项分析即可.【详解】A.因为23y x =,22y x =-,221y x =-+这三个二次函数的图像对称轴为0x =,所以都关于y 轴对称,故选项A 正确,符合题意;B.抛物线23y x =,22y x =-的图象开口向上,抛物线221y x =-+的图象开口向下,故选项B 错误,不符合题意;C.抛物线22y x =-,221y x =-+的图象不经过原点,故选项C 错误,不符合题意;D.因为抛物线23y x =,22y x =-,221y x =-+的二次项系数不相等,故不能通过平移其它二次函数的图象,故D 选项错误,不符合题意; 故选A .【点睛】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键. 6.A【分析】由抛物线的对称轴找到E 点的对称点,抛物线开口向下,y 1<y 2时结合图象求解; 【详解】解:∵抛物线y =﹣x 2+2x 的对称轴为x =1, E (3,y 2)关于对称轴对称的点(﹣1,y 2), ∵抛物线开口向下,∵y 1<y 2时,n >3或n <﹣1, 故选A .【点睛】本题考查二次函数图象的性质;找到E 点关于对称轴的对称点是解题的关键. 7.D【详解】解:∵y =x 2-2,∵抛物线开口向上,对称轴为y 轴,∵当x <0时,y 随x 的增大而减小,故选D .【点睛】本题主要考查二次函数的性质,掌握y =ax 2+c 的图象的开口方向、对称轴及增减性是解题的关键.8.B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图像在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k =1>0,分别在一、三象限里,每个象限内y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图像在对称轴右侧,y 随着x 的增大而减小,错误. 故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想是解答本题的关键.9.D【分析】求出二次函数的对称轴,再根据二次函数的对称性和增减性判断即可.【详解】解:∵()22211y x x x =-+=--+,∵抛物线对称轴为直线1x =,∵10a =-<,∵1x <时,y 随x 的增大而增大,∵()222.5,P y 的对称点为()20.5,y -,且50.51-<-<,∵123y y y =>.故选:D .【点睛】本题考查的是二次函数图像上点的坐标特征、二次函数的性质等知识点的理解和掌握,熟练运用二次函数的性质进行推理是解决本题的关键.10.B【分析】由点A (-5,m ),B (5,m )的坐标特点,于是排除选项A 、B ;再根据A (-5,m ),C (-2,m +n 2+1)的特点和二次函数的性质,可知抛物线的开口向下,即a <0,可得结果.【详解】解:∵A (-5,m ),B (5,m ),∵点A 与点B 关于y 轴对称;由于y =x +2不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、D 错误; ∵n 2>0,∵m +n 2+1>m ;由A (-5,m ),C (-2,m +n 2+1)可知,在对称轴的左侧,y 随x 的增大而增大, 对于二次函数只有a <0时,满足条件,∵B 选项正确,故选:B .【点睛】本题考查了反比例函数、一次函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.11.D【分析】根据二次函数的对称轴进行判断即可.【详解】二次函数2y ax k =+的对称轴为0x =观察四个选项可知,只有选项D 的图象符合故选:D .【点睛】本题考查了二次函数的图象与性质(对称性),掌握二次函数的图象与性质是解题关键.12.C【分析】根据所给解析式判断出正确函数图象,注意自变量的取值范围.【详解】A 选项错误,两个函数图象都不符合自变量的取值范围;B 选项错误,反比例函数的图象不符合自变量的取值范围;C 选项正确;D 选项错误,当=1x -时,图象不应该是一条直线.故选:C .【点睛】本题考查二次函数和反比例函数的图象,解题的关键是掌握二次函数和反比例函数的图象.13.C【分析】根据函数解析式,二次项系数交点判别式小于0,所以排除A 、B 、D ,故选C .【详解】解:A选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,A=48b ac错误;B选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,B错误;=48b acC选项,由函数解析式,2=48-=-<0,所以函数图像与x轴无交点,C正确;b acD选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,D错误.=48b ac【点睛】本题考考察的是二次函数图像的基本性质,根据解析式,判断开口方向及交点个数,判断图像的形状.14.C【分析】根据二次函数的图像与性质即可求解.【详解】二次函数y=-x2-1的图象开口向下,且顶点坐标为(0,-1),故选项C符合题意.【点睛】此题主要考查二次函数的图像判断,解题的关键是熟知二次函数的图像与性质.15.D【分析】根据二次函数的图象的性质,开口方向,顶点坐标,对称轴即可判断.【详解】由题意可知:a=-1,所以开口向下,顶点坐标为(0,-2),故答案选D.【点睛】本题主要考查了二次函数的解析式来判断该函数的图象,解本题的要点在于熟知二次函数图象的基本性质.16.C【分析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∵抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∵对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∵抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.17.D【分析】根据二次函数22y x =-的图象和性质,逐一判断选项,即可.【详解】∵a=1>0,∵抛物线开口向上,故A 错误,∵当0x =时,函数的最小值是2-,∵B 错误,∵抛物线的对称轴是y 轴,∵C 错误,∵∆=224041(2)80b ac -=-⨯⨯-=>,∵抛物线与x 轴有两个交点,∵D 正确,故选D.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的系数的几何意义,是解题的关键.18.C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣2x 2+1,∵该函数图象开口向下,故选项A 错误;顶点坐标为(0,1),故选项B 错误;当x <0时,y 随x 的增大而增大,故选项C 正确;当x =0时,y 有最大值1,故选项D 错误;故选:C .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.19.D【分析】根据二次函数的性质对A 、C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x 2-1=0解的情况对D 进行判断.【详解】A. a =2,则抛物线y =2x 2−1的开口向上,所以A 选项错误;B. 当x =1时,y =2×1−1=1,则抛物线不经过点(1,-1),所以B 选项错误;C. 抛物线的对称轴为直线x =0,所以C 选项错误;D. 当y =0时,2x 2−1=0,此方程有两个不相等的实数解,所以D 选项正确.故选D.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.20.B【分析】根据二次函数的图像与性质逐项进行判断即可.【详解】因为20a =-<,所以二次函数图像开口向下,故A 选项错误;因为抛物线开口向下,对称轴为y 轴,所以当x <0时,y 随x 的增大而增大,故B 选项正确;二次函数221y x =-+的顶点为(0,1),故C 选项错误;因为二次函数开口向下,对称轴为y 轴,所以当x =0时,y 有最大值1,故D 选项错误. 故选B.【点睛】本题考查二次函数的图像与性质,熟练掌握图像与性质是解题的关键.21.A【详解】两图象与y 轴的交点相同,故排除了B 、D,若a>0,选A,C 中两个函数中的a 符号相反.22.B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o 时,函数a y x=的图象位于一、三象限,20()y ax a a =--≠的开口向下,交y 轴的负半轴,选项B 符合;当a<o 时,函数a y x=的图象位于二、四象限,20()y ax a a =--≠的开口向上,交y 轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.23.C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x 2+1,1-x 2}表示x 2+1与1-x 2中的最小数,不论x 取何值,都有x 2+1≥1-x 2,所以y=1-x 2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x 轴的交点坐标为(1,0),(-1,0);与y 轴的交点坐标为(0,1). 故选C .【点睛】本题考查了二次函数的性质,熟练掌握二次函数图像的性质是解决此题的关键.24.C【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是C.故选C.25.B【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是B .故选B .【点睛】此题考查二次函数的图象,掌握二次函数的性质,图象的开口方向和顶点坐标是解决问题的关键.26.A【分析】本题由一次函数y ax b =+图象得到字母系数的正负,再与二次函数2y ax b =+的图象相比较看是否一致.【详解】解:A 、由抛物线可知,a 0<,b 0<,由直线可知,a 0<,b 0<,故本选项正确; B 、由抛物线可知,a 0<,b 0>,由直线可知,a 0>,b 0>,故本选项错误; C 、由抛物线可知,a 0>,b 0<,由直线可知,a 0>,b 0>,故本选项错误; D 、由抛物线可知,a 0>,b 0>,由直线可知,a 0<,b 0>,故本选项错误. 故选A .【点睛】本题考查了一次函数和二次函数的图象.解答该题时,一定要熟记一次函数、二次函数的图象的性质.27.D【详解】解:由图象,根据二次函数的性质,有A .若12y y =,则12x x =±,原说法错误;B .若12x x =-,则12y y =,原说法错误;C .若120x x <<,则12y y <,原说法错误;D .若120x x <<,则12y y >,原说法正确.故选D .【点睛】本题考查二次函数的图象和性质.28. 下 y 轴 (0,-3)【解析】略29. 描点 向上 y 轴 ()0,1 向上 y 轴 ()0,1-【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标即可.【详解】解:通过描点法画出221y x =+和221y x =-的图像,通过图像可知:221y x =+的开口方向向上,对称轴为y 轴,顶点坐标为(0,1),221y x =-的开口方向向上,对称轴y 轴,顶点坐标(0,1)-,故答案为:描点;向上;y 轴;()0,1;向上;y 轴;()0,1-.【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键.30.23y x =-【分析】根据开口方向与抛物线2y x =-的方向相反,形状相同可得1a =,再利用顶点坐标即可写出解析式.【详解】∵抛物线与2y x =-的方向相反,形状相同,且顶点坐标(0,-3)∵设抛物线解析式为:2y x k =+,代入顶点坐标(0,-3)得:3k =-∵解析式为23y x =-故答案为23y x =-.【点睛】本题考查求抛物线解析式,熟记抛物线顶点式是解题的关键.31. 向上 向下 |k |【解析】略32.23(2)32y x =++ 【分析】根据二次函数的图象与性质即可得. 【详解】抛物线的顶点为(2,3)-∴可设此抛物线的解析式为2(2)3y a x =++ 又此抛物线的形状,开口方向与23312y x x =-+相同 32a ∴= 则此抛物线的解析式为23(2)32y x =++ 故答案为:23(2)32y x =++. 【点睛】本题考查了二次函数的图象与性质,熟记二次函数的图象与性质是解题关键. 33.12y y <.【分析】先判断抛物线的开口方向和对称轴,再根据二次函数的性质解答即可.【详解】∵二次函数2y x c =-+的开口向下,对称轴为y 轴,∵当0x <时,y 随x 的增大而增大,∵21-<-,∵12y y <,故答案为:12y y <.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,熟练掌握抛物线的性质是解题的关键.34.4.【分析】根据所给二次函数的解析式结合“自变量的取值范围”进行分析解答即可.【详解】∵在24y x =-+中:23x -≤≤,∵其图象开口向下,顶点坐标为(0,4),∵其最大值为4.故答案为:4.【点睛】熟记“二次函数2(0)y ax k a =+≠的图象的顶点坐标为(0)k ,”是解答本题的关键.35. 1- y 轴 上升【分析】根据二次函数的指数是2列出方程求出m 的值,再根据抛物线开口方向向下可得10+<m ,然后求解即可.【详解】解:由题意得,222m m +=且10+<m , 解得113m ,213m 且1m <-,∵1m =-对称轴是y 轴, ∵113130m∵在对称轴左侧部分是上升;故答案是:1-y 轴,上升.【点睛】本题考查了二次函数的性质,二次函数的定义,熟记性质和概念是解题的关键.36.b ≥﹣4【分析】先表示出二次函数的对称轴,再根据二次函数的增减性列出不等式求解即可.【详解】解:二次函数y =2x 2+bx 对称轴为直线x =﹣22⨯b =﹣4b , ∵a =2>0,x >1时,y 随x 增大而增大,∵﹣4b ≤1, 解得b ≥﹣4.故答案为:b ≥﹣4.【点睛】本题主要考查了二次函数图像的性质与二次函数的对称轴,解题的关键在于能够熟练掌握二次函数的增减性.37.y1>y2>y3【分析】由题意可得对称轴为y 轴,则(-1,y 1)关于y 轴的对称点为(1,y 1),根据二次函数的增减性可得函数值的大小关系.【详解】∵抛物线y=-x 2+a ,∵对称轴为y 轴,∵(-1,y 1)关于对称轴y 轴对称点为(1,y 1),∵a=-1<0,∵当x >0时,y 随x 的增大而减小,∵1<2<3,∵y 1>y 2>y 3,故答案为y 1>y 2>y 3.【点睛】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键.38.(1)见解析;(2)见解析.【分析】(1)根据二次函数的图象解答即可;(2)从开口大小和增减性两个方面作答即可.【详解】(1)解:如图:,2113=+y x 与2113=--y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴, 2113=+y x 与2113=--y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=--y x 开口向下,顶点坐标是(0,﹣1); (2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样;不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=--y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键.39.解:(1)(0,4);(2)见解析;(3)上,4;(4)22x -<<..【分析】(1)求出对称轴得到抛物线的顶点坐标;(2)先确定抛物线与y 轴的交点为(0,4),与x 轴交点为(-2,0)和(2,0),然后利用描点法画函数图像;(3)根据二次函数的平移规律“上加下减,左加右减”即可求解;(4)结合函数图像,写出函数图像上x 轴上方所对应的自变量的范围即可.【详解】(1)抛物线的对称轴为:x =-2b a=0 令x =0,y =4则顶点坐标为(0,4);(2)由(1)得,抛物线与y 轴的交点为(0,4),令y =0,x =±2,则抛物线与x 轴交点为(-2,0)和(2,0),画图得:(3)由上加下减的原则可得,y =-x 2向上平移4个单位可得出y =-x 2+4;(4)根据图像得,当y >0时,x 的取值范围为:-2<x <2.【点睛】本题考查抛物线与坐标轴的交点、二次函数的性质和抛物线的平移等知识,解题的关键是熟练掌握二次函数的性质.40.(1)对称轴为直线x=2,顶点坐标为(2,4)(2)图象与x轴的交点坐标是(0,0)和(4,0).【详解】试题分析:(1)可根据配方法的解题步骤,将一般式转化为顶点式,根据顶点式可确定对称轴及顶点坐标;(2)令y=0,解一元二次方程可求抛物线与x轴两交点的坐标.试题解析:(1)y=-(x2-4x)=-(x-2)2+4,对称轴为直线x=2,顶点坐标为(2,4)(2)当y=0时,-x2+4x=0,解得x=0或4,∵图象与x轴的交点坐标是(0,0)和(4,0).考点:1.二次函数的三种形式;2.二次函数的性质;3.抛物线与x轴的交点.。
新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题10分,共30分)1. 将抛物线2x y =向右平移2个单位,再向上平移1个单位,所得新抛物线对应的函数表达式为 【 】 (A )()122++=x y (B )()122-+=x y(C )()122+-=x y (D )()122--=x y2. 将抛物线()312+-=x y 向左平移1个单位,得到的抛物线与y 轴的交点坐标是 【 】(A )(0 , 2) (B )(0 , 3) (C )(0 , 4) (D )(0 , 7)3. 抛物线321532-⎪⎭⎫⎝⎛+-=x y 的顶点坐标是 【 】(A )⎪⎭⎫ ⎝⎛-3,21 (B )⎪⎭⎫ ⎝⎛--3,21 (C )⎪⎭⎫ ⎝⎛3,21 (D )⎪⎭⎫⎝⎛-3,214. 抛物线322++=x x y 的对称轴是 【 】 (A )直线1=x (B )直线1-=x (C )直线2-=x (D )直线2=x5. 在平面直角坐标系中,将抛物线221x y -=先向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式为 【 】(A )23212---=x x y (B )21212-+-=x x y (C )23212-+-=x x y (D )21212---=x x y6. 关于抛物线()212--=x y ,下列说法错误的是 【 】(A )顶点坐标为()2,1- (B )对称轴是直线1=x(C )开口向上 (D )当1>x 时,y 随x 的增大而减小7. 如图所示,把抛物线2x y =沿直线x y =向右平移2个单位后,其顶点在直线上的A 处,平移后的抛物线解析式是 【 】(A )()112-+=x y (B )()112++=x y(C )()112+-=x y (D )()112--=x y第 7 题图8. 关于二次函数1422-+=x x y ,下列说法正确的是 【 】 (A )图象与y 轴的交点坐标为(0 , 1) (B )图象的对称轴在y 轴的右侧 (C )当0<x 时,y 的值随x 值的增大而减小 (D )y 的最小值为3-9. 抛物线1822-+-=x x y 的顶点坐标为 【 】 (A )(7,2-) (B )(2 , 7) (C )(2 ,25-) (D )(2 ,9-)10. 已知二次函数()12+-=h x y ,在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 【 】 (A )1或5- (B )1-或5 (C )1或3- (D )1或3 二、填空题(每小题3分,共30分)11. 抛物线()5232+-=x y 的顶点坐标为_________.12. 将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为________________.13. 用配方法将二次函数982--=x x y 化为()k h x a y +-=2的形式为________________.14. 抛物线132+-=x x y 的顶点坐标为_________. 15. 抛物线x x y 92+-=的最大值为_________.16. 将抛物线()2432+-=x y 向右平移1个单位,再向下平移3个单位,平移后抛物线的解析式是________________. 17. 已知点()1,4y A ,()2,2y B,()3,2y C -都在二次函数()122--=x y 的图象上,则321,,y y y 的大小关系是__________.18. 抛物线m x x y +-=22与x 轴只有一个交点,则m 的值为_________.19. 已知点()11,y x A ,()22,y x B 为函数()3122+--=x y 图象上的两点,若121>>x x ,则21,y y 的大小关系是__________.20. 如图,把抛物线221x y =平移得到抛物线m ,抛物线m 经过点()0,8-A 和原点O (0 , 0),它的顶点为P ,它的对称轴与抛物线221x y =交于点Q ,则图中阴影部分的面积为_________.三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式.22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标.23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.yxDC BA O25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标; (2)求出抛物线与x 轴、y 轴的交点坐标;(3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值.26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.新华师大版九年级下册数学第26章 二次函数的图象和性质练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. (2 , 5) 12. ()522-+=x y 13. ()2542--=x y 14. ⎪⎭⎫⎝⎛-45,2315.481 16. ()1532--=x y 17. 312y y y << 18. 1 19. 21y y < 20. 32三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴; (2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式. 解:(1)开口向上,对称轴为直线1=x ; ……………………………………………2分 (2)函数y 有最小值,最小值为3-=y ; ……………………………………………4分 (3)令0=x ,则()49310432-=--⨯=y ∴⎪⎭⎫ ⎝⎛-49,0P ……………………………5分令0=y ,则()031432=--x 解之得:3,121=-=x x∴()0,1-Q 或Q (3 , 0)……………………………………………6分 设直线PQ 的函数表达式为b kx y +=当⎪⎭⎫ ⎝⎛-49,0P ,()0,1-Q 时⎪⎩⎪⎨⎧=+--=049b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-=-=4949b k∴直线PQ 的函数表达式为4949--=x y ; ……………………………………………8分当⎪⎭⎫ ⎝⎛-49,0P , Q (3 , 0)时⎪⎩⎪⎨⎧=+-=0349b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-==4943b k∴直线PQ 的函数表达式为4943-=x y …………………………………………10分 综上所述,直线PQ 的函数表达式为4949--=x y 或4943-=x y . 22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标. 解:(1)由题意可设该函数的关系式为()k h x a y +-=2∵其顶点为()4,1-A ∴4,1-==k h……………………………………………2分 ∴()412--=x a y把()5,2-B 代入()412--=x a y 得:()54122-=--⨯a解之得:1-=a……………………………………………4分 ∴该函数的关系式为()412---=x y ;(2)令0=x ,则()54102-=---=y∴该函数的图象与y 轴的交点为()5,0-;……………………………………………7分 令0=y ,则()0412=---x∴()412-=-x∴方程无实数解∴该函数的图象与x 轴无交点.…………………………………………10分 23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.解:由题意可设该抛物线为()k h x a y +-=2∵其顶点坐标为()1,4- ∴1,4-==k h……………………………………………4分 ∴()142--=x a y把(0 , 3)代入()142--=x a y 得:()31402=--⨯a……………………………………………6分 解之得:41=a …………………………………………10分 ∴这条抛物线的函数表达式为()14412--=x y . 24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.解:(1)平移后,抛物线的解析式为()412-+=x y……………………………………………3分 ∴4,1-=-=k h ;……………………………………………5分 (2)令0=y ,则()0412=-+x解之得:1,321=-=x x ∵点A 在点B 的左边 ∴()0,3-A ,B (1 , 0)……………………………………………6分 ∴3=OA令0=x ,则()34102-=-+=y∴()3,0-C……………………………………………7分 ∴3=OC∴OC OA =∴△AOC 为等腰直角三角形∴︒=∠45ACO∵点D 为抛物线()412-+=x y 的顶点∴()4,1--D……………………………………………8分 过点D 作y DE ⊥轴 ∴4,1==OE DE∴134=-=-=OC OE CE ∴CE DE =∴△DCE 为等腰直角三角形∴︒=∠45DCE∴︒=︒-︒-︒=∠904545180ACD ∴△ACD 为直角三角形.…………………………………………10分 25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标;(2)求出抛物线与x 轴、y 轴的交点坐标; (3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值. 解:(1)()222212221--=-+-=x x x y ……………………………………………1分 开口向下,对称轴为直线2=x ,顶点坐标为(2 , 0);……………………………………………4分 (2)令0=y ,则()02212=--x 解之得:2=x∴抛物线与x 轴的交点为(2 , 0)……………………………………………5分 令0=x ,则()220212-=-⨯-=y ∴抛物线与y 轴的交点为()2,0-;……………………………………………6分 (3)由题意可设抛物线的解析式为k ax y +=2∵其顶点为A ()2,0- ∴2-=k……………………………………………7分 ∴22-=ax y把B (2 , 0)代入22-=ax y 得:024=-a 解之得:21=a……………………………………………8分∴2212-=x y开口向上,函数的最小值为2-.…………………………………………10分 26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.解:(1)()11222-++=++=m x m x x y∵其图象1C 与x 轴有且只有一个公共点 ∴01=-m ∴1=m……………………………………………3分∴()21+=x y∴1C 的顶点坐标为()0,1-;……………………………………………4分(2)设2C 的函数关系式为()k x y ++=21把()0,3-A 代入()k x y ++=21得:()0132=++-k解之得:4-=k∴2C 的函数关系式为()412-+=x y……………………………………………7分 令0=y ,则()0412=-+x解之得:1,321=-=x x∴2C 与x 轴的另一个交点坐标为(1 , 0); ……………………………………………8分 (3)2>n 或4-<n .…………………………………………10分。
2.2二次函数的图象与性质1.二次函数26y x x =+-的图象与x 轴交点的横坐标是( ) A .2和3- B .2-和3 C .2和3 D .2-和3- 答案:A2.已知y 关于x 的函数:()()22211y k x k x k =---++中满足3k ≤. (1)求证:此函数图象与x 轴总有交点. (2)当关于z 的方程2233z kz z -=+--有增根时,求上述函数图象与x 轴的交点坐标.答案:(1)当2k =时,函数为23y x =-+,图象与x 轴有交点.当2k ≠时,()()()241421412k k k k =---+=-+△当3k ≤时,0△≥,此时抛物线与x 轴有交点.因此,3k ≤时,y 关于x 的函数()()22211y k x k x k =---++的图象与x 轴总有交点.(2)关于z 的方程去分母得:226z k z -=+-,4k z =-. 由于原分式方程有增根,其根必为3z =.这时1k =(6分)这时函数为22y x =-+.它与x轴的交点是()和)3.抛物线2245y x x =++的对称轴是x =______. 答案:1-4.抛物线2(1)y x m x m =-+-+与y 轴交于(03),点.x(1)求出m 的值并画出这条抛物线; (2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小? 【解】答案:解:(1)由抛物线2(1)y x m x m =-+-+与y 轴交于(03),,得:3m =.∴抛物线为223y x x =-++.图象略.(2)由2230x x -++=,得1213x x =-=,.∴抛物线与x 轴的交点为(10)(30)-,,,. 2223(1)4y x x x =-++=--+ , ∴抛物线顶点坐标为(14),. (3)由图象可知:当13x -<<时,抛物线在x 轴上方. (4)由图象可知:当1x >时,y 的值随x 值的增大而减小.5.已知抛物线268y ax x =+-与直线3y x =-相交于点(1)A m ,. (1)求抛物线的解析式;(2)请问(1)中的抛物线经过怎样的平移就可以得到2y ax =的图象? (3)设抛物线2y ax =上依次有点1234P P P P ,,,,…,其中横坐标依次是2468,,,,…,纵坐标依次为1234n n n n ,,,,…,试求31003n n -的值.答案:解:(1) 点(1)A m ,在直线3y x =-上,313m ∴=-⨯=-.把13x y ==-,代入268y ax x =+-, 得683a +-=-.求得1a =-.∴抛物线的解析式是268y x x =-+-.(2)2268(3)1y x x x =-+-=--+ .∴顶点坐标为(31),. ∴把抛物线268y x x =-+-向左平移3个单位长度得到21y x =-+的图象,再把21y x =-+的图象向下平移1个单位长度得到2y x =-的图象. (3)由题意知,123P P P ,,,…的横坐标是连续偶数,所以n P 的横坐标是2n ,纵坐标为31003n n ,所对应的纵坐标依次是2262006--,.22310036(2006)n n ∴-=---(20066)(20066)4024000=+-=.6.观察下列四个函数的图象( )将它们的序号与下列函数的排列顺序:正比例函数、一次函数、二次①②③④函数、反比例函数,对应正确的是()A.①②③④B.②③①④C.③②④①D.④②①③答案:C7.抛物线()2361y x=-+-的对称轴是直线()A.6x=-B.1x=-C.1x=D.6x=答案:A8.请选择一组你喜欢的a b c,,的值,使二次函数2(0)y ax bx c a=++≠的图象同时满足下列条件:①开口向下,②当2x<时,y随x的增大而增大;当2x>时,y随x的增大而减小.这样的二次函数的解析式可以是.答案:答案不唯一,只要满足对称轴是2x=,0a<.9.已知22y x=的图象是抛物线,若抛物线不动,把x轴,y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是().A.22(2)2y x=-+B.22(2)2y x=+-C.22(2)2y x=--D.22(2)2y x=++答案:B10.已知二次函数2y ax bx c=++的图象如图所示,对称轴x是1x =,则下列结论中正确的是( ). A.0ac > B.0b < C.240b ac -< D.20a b += 答案:D11.已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .答案:1x =-12.如图,已知抛物线2(0)y ax bx c a =++≠经过(20)(04)A B --,,,,(24)C -,三点,且与x 轴的另一个交点为E . (1)求抛物线的解析式;(2)用配方法求抛物线的顶点D 的坐标和对称轴; (3)求四边形ABDE 的面积.ABCD O Exy答案:解:(1) 抛物线2y ax bx c =++经过(20)(04)(24)A B C ---,,,,,三点 4204424a b c c a b c -+=⎧⎪∴=-⎨⎪++=-⎩解得1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴抛物线解析式:2142y x x =--.(2)221194(1)222y x x x =--=--∴顶点坐标912D ⎛⎫- ⎪⎝⎭,,对称轴:1x =. (3)连结OD ,对于抛物线解析式2142y x x =--当0y =时,得2280x x --=,解得:12x =-,24x =(40)4E OE ∴=,,42915AOB BOD EOD ABDE S S S S ∴=++=++=△△△四边形.13.已知二次函数()2111y x bx b =-+-≤≤,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( )A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动 答案:CABC DO Exy14.二次函数223y x x =--的最小值是 . 答案:4-15.如图,P 为抛物线2331424y x x =-+上对称轴右侧的一点,且点P 在x 轴上方,过点P 作PA 垂直x 轴于点A ,PB 垂直y 轴于点B ,得到矩形PAOB .若1AP =,求矩形PAOB 的面积.答案:PA x ⊥ 轴,1AP =,∴点P 的纵坐标为1. 当1y =时,23311424x x -+=,即2210x x --=.解得1211x x ==.抛物线的对称轴为1x =,点P 在对称轴的右侧,1x ∴=∴矩形PAOB的面积为(1个平方单位.16.二次函数()20y ax bx c a =++≠的图象如图所示.有下列结论:①240b ac -<;②0ab >;③0a b c -+=;④40a b +=;⑤当2y =时,x 只能等于0.其中正确的是( ) A.①④ B.③④ C.②⑤ D.③⑤ 答案:B17.抛物线2=y ax bx c ++(0)a ≠过点(13)(33)(15)A B C ---,,,,,,顶点为M点.(1)求该抛物线的解析式.(2)试判断抛物线上是否存在一点P ,使∠POM =若不存在,说明理由;若存在,求出P (3)试判断抛物线上是否存在一点K ,使∠OMK =说明理由.答案:解:(1)根据题意,得33935a b c a b c a b c -=++⎧⎪-=++⎨⎪=-+⎩,,.解,得 140a b c =⎧⎪=-⎨⎪=⎩,,.∴ 抛物线的解析式为24y x x =-.(2)抛物线上存在一点P ,使∠POM =90˚.x =2242=--=-a b ,4416442-=-=-=a b ac y .∴ 顶点M 的坐标为(24)-,.设抛物线上存在一点P ,满足OP ⊥OM ,其坐标为2(4)a a a -,. 过P 点作PE ⊥y 轴,垂足为E ;过M 点作MF ⊥y 轴,垂足为F . 则 ∠POE +∠MOF =90˚,∠POE +∠EPO =90˚. ∴ ∠EPO =∠FOM . ∵ ∠OEP =∠MFO =90˚, ∴ Rt △OEP ∽Rt △MFO . ∴ OE ∶MF=EP ∶OF . 即2(4)24a a a -=::.解,得10a =(舍去),292a =.∴ P 点的坐标为9924⎛⎫ ⎪⎝⎭,. (3)过顶点M 作MN ⊥OM ,交y 轴于点N .则 ∠FMN +∠OMF =90˚. ∵ ∠MOF +∠OMF =90˚, ∴ ∠MOF =∠FMN . 又∵ ∠OFM =∠MFN =90˚, ∴ △OFM ∽△MFN .∴ OF ∶MF =MF ∶FN . 即 4∶2=2∶FN .∴ FN =1. ∴ 点N 的坐标为(0,-5). 设过点M ,N 的直线的解析式为y kx b =+.425k b b -=+⎧⎨-=⎩, 解,得125k b ⎧=⎪⎨⎪=-⎩,.直线的解析式为521-=x y . ∴ ⎪⎩⎪⎨⎧-=-=②①,.45212x x y x y 把①代入②,得 05292=+-x x .2981145200244⎛⎫∆=--⨯=-=> ⎪⎝⎭.∴ 直线MN 与抛物线有两个交点(其中一点为顶点M ). ∴ 抛物线上必存在一点K ,使∠OMK =90˚.18.已知函数222y x x =--的图象如图3所示,根据其中提供的信息,可求得使1y ≥成立的x 的取值范围是( ) A.13x -≤≤ B.31x -≤≤ C.3x -≥ D.1x -≤或3x ≥ 答案:D19.请你写出一个b 的值,使得函数22y x bx =+在第一象限内y 的值随着x 的值增大而增大,则b 可以是 . 答案:答案不唯一,如0;1;2等20.二次函数2y ax bx c =++中,2b ac =,且0x =时4y =-,则( ) A .4y =-最大 B .4y =-最小 C .3y =-最大 D .3y =-最小 答案:C21.下表给出了代数式2x bx c ++与x 的一些对应值:(1)请在表内的空格中填入适当的数; (2)设2y x bx c =++,则当x 取何值时,0y >?(3)请说明经过怎样平移函数2y x bx c =++的图象得到函数2y x =的图象.答案:(1)0,0;(2)当1x <或3x >时,0y >.(写出1x <或3x >中的一个得1分) (用1x <和3x >中的特殊值说明得1分,只用1x <或3x >中的特殊值说明不得分)(3)由(1)得243y x x =-+,即2(2)1y x =--,将抛物线243y x x =-+先向左平移2个单位(1分),再向上平移1个单位(1分)即得抛物线2y x =.(配方正确,并说明将抛物线243y x x =-+的顶点移到原点得2分;不配方,但说明将抛物线243y x x =-+的顶点(21)-,移到原点得2分;不配方,只说明将抛物线的顶点移到原点不得分)22.已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( )A.1 B.2 C.3 D.4 答案:D23.小明从右边的二次函数2y ax bx c =++图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >.你认为其中正确的个数为()A.2 B.3 C.4 D.5 答案:C。