chapter04solutions《现代逻辑设计》电子工业出版社答案 第4章
- 格式:pdf
- 大小:324.83 KB
- 文档页数:73
逻辑导论第四章答案国际法学院总负责人:刘宣含一、制作人:庞智嘉1. A 鸟卵生脊椎动物周延不周延2. A 月球上没有生物的周延,不周延3 .E 金属非导体周延周延4. A 这个困难可以克服周延不周延5. O金属固体不周延周延6. A商品劳动产品周延不周延7. E无罪的人适用免予起诉周延周延8. O中毒死亡者自服中毒不周延周延9. I 我们当中有人不赞成方案不周延不周延10. A 困难可以克服周延不周延二、制作人:庞智嘉1.SIP2.SEP3.SOP4.SAP5.SOP6.POS三、制作人:庞智嘉1.SAP→SIP 有犯罪行为是违法行为2.¬SAP→SOP 有违法行为不是犯罪行为3.SEP→SOP 有侵略战争不是正义的4.¬SEP→SIP 有战争是正义的5.SIP→¬SEP 并非所有律师都不是政法大学的毕业生6.¬SIP→S EP 诈骗罪都不是过失犯罪7.SOP→¬SAP 并非凡被告都是罪犯8.¬SOP→SAP 凡贪污罪都是故意犯罪四、制作人:左敏1.题干:¬SAP(1)真¬SA P→SOP 对当关系推理(矛盾)(2)真假不定¬SA对当关系推理(反对)(3)假¬SA P→SOP→SI P→P IS→P O S→¬P A S对当关系推理(矛盾),换质,换位,换质,对当关系推理(矛盾)(4)真¬SA P→SOP→SI P对当关系推理(矛盾),换质2题干:SIP真(1) 真假不定对当关系推理(下反对)(2)真假不定对当关系推理(差等)(3)假SI P→¬SEP 对当关系推理(矛盾)(4) 真假不定 SIP→PIS→PO S→¬PA S→S IP换位,换质,对当关系推理(矛盾),对当关系推理(差等),换位3题干: SI P SOP为假(1) 假¬SOP→¬SEP 对当关系推理(差等)(2) 真¬SOP→SIP 对当关系推理(下反对)(3) 真 SO P→SIP, ¬SOP→SIP换质,对当关系推理(下反对)(4)真¬SOP →SAP 对当关系推理(矛盾)4题干:SAˉP→SEP(1) 真假不定 SEP →PES→PA S→S S AP换位,换质,对当关系推理(差等),对当关系推理(差等)(2)假SEP→¬SAP→¬S E P对当关系推理(反对),换质(3)假SEP→¬SIP→¬SO P对当关系推理(矛盾),换质(4)真SE P→SOP 对当关系推理(差等)五、制作人:刘人豪1. SAP →﹁ SEP 反对关系推理。
第4章搜索策略部分参考答案4.5 有一农夫带一条狼,一只羊和一框青菜与从河的左岸乘船倒右岸,但受到下列条件的限制:(1) 船太小,农夫每次只能带一样东西过河;(2)如果没有农夫看管,则狼要吃羊,羊要吃菜。
请设计一个过河方案,使得农夫、浪、羊都能不受损失的过河,画出相应的状态空间图。
题示:(1) 用四元组(农夫,狼,羊,菜)表示状态,其中每个元素都为0或1,用0表示在左岸,用1表示在右岸。
(2) 把每次过河的一种安排作为一种操作,每次过河都必须有农夫,因为只有他可以划船。
解:第一步,定义问题的描述形式用四元组S=(f,w,s,v)表示问题状态,其中,f,w,s和v分别表示农夫,狼,羊和青菜是否在左岸,它们都可以取1或0,取1表示在左岸,取0表示在右岸。
第二步,用所定义的问题状态表示方式,把所有可能的问题状态表示出来,包括问题的初始状态和目标状态。
由于状态变量有4个,每个状态变量都有2种取值,因此有以下16种可能的状态:S0=(1,1,1,1),S1=(1,1,1,0),S2=(1,1,0,1),S3=(1,1,0,0)S4=(1,0,1,1),S5=(1,0,1,0),S6=(1,0,0,1),S7=(1,0,0,0)S8=(0,1,1,1),S9=(0,1,1,0),S10=(0,1,0,1),S11=(0,1,0,0)S12=(0,0,1,1),S13=(0,0,1,0),S14=(0,0,0,1),S15=(0,0,0,0)其中,状态S3,S6,S7,S8,S9,S12是不合法状态,S0和S15分别是初始状态和目标状态。
第三步,定义操作,即用于状态变换的算符组F由于每次过河船上都必须有农夫,且除农夫外船上只能载狼,羊和菜中的一种,故算符定义如下:L(i)表示农夫从左岸将第i样东西送到右岸(i=1表示狼,i=2表示羊,i=3表示菜,i=0表示船上除农夫外不载任何东西)。
由于农夫必须在船上,故对农夫的表示省略。
第四章组合逻辑电路1. 解: (a)(b)是相同的电路,均为同或电路。
2. 解:分析结果表明图(a)、(b)是相同的电路,均为同或电路。
同或电路的功能:输入相同输出为“1”;输入相异输出为“0”。
因此,输出为“0”(低电平)时,输入状态为AB=01或103. 由真值表可看出,该电路是一位二进制数的全加电路,A为被加数,B为加数,C为低位向本位的进位,F1为本位向高位的进位,F2为本位的和位。
4. 解:函数关系如下:SF++⊕=+ABSABS BABS将具体的S值代入,求得F 312值,填入表中。
A A FB A B A B A A F B A B A A F A A F AB AB F B B A AB F AB B A B A B A AB F B A A AB F B A B A B A F B A AB AB B A B A F B B A B A B A B A B A B A F AB BA A A B A A B A F F B A B A F B A B A F A A F S S S S =⊕==+==+⊕===+⊕===⊕===⊕===+⊕===+=+⊕===⊕==+==⊕==Θ=+=+⊕===+++=+⊕===+=⊕===⊕==+=+⊕==+=+⊕===⊕==01111111011010110001011101010011000001110110)(01010100101001110010100011000001235. (1)用异或门实现,电路图如图(a)所示。
(2) 用与或门实现,电路图如图(b)所示。
6. 解因为一天24小时,所以需要5个变量。
P变量表示上午或下午,P=0为上午,P=1为下午;ABCD表示时间数值。
真值表如表所示。
利用卡诺图化简如图(a)所示。
化简后的函数表达式为D C A P D B A P C B A P A P DC A PD B A P C B A P A P F =+++=用与非门实现的逻辑图如图(b )所示。
第4章 习题与参考答案【题4-1】 写出图题4-1的输出逻辑函数式。
图题4-1解:(1)C A A AC B A Y +=++=1(2)D B C B A CD B A CD B A D BD CD A B A Y ++=++=+=++=)(2 【题4-2】 使用与门、或门实现如下的逻辑函数式。
(1)1Y ABC D =+ (2)2Y A CD B =+() (3)3Y AB C =+ 解:&1≥AB C DY11≥&&A B C DY2&A B 1≥Y3C....【题4-3】 使用与门、或门和非门,或者与门、或门和非门的组合实现如下的逻辑函数式。
(1)1Y AB BC =+(2)2Y A C B =+() (3)3Y ABC B EF G =++()ABC.Y2A B C .E F G...【题4-4】试写出图题4-4所示电路的逻辑函数式,列出真值表,并分析该电路的逻辑功能。
图题4-4解:=1+ACBCABY+此电路是三人表决电路,只要有两个人输入1,输出就是1。
Y+CDABCDBA++⋅=⋅⋅=2BCDABCDCDDABCABBDCAABCDA该电路在4个输入中有3个为1时,输出Y2为1。
【题4-5】 逻辑电路与其输入端的波形如图题4-5所示,试画出逻辑电路输出端Y 的波形。
图题4-5解:B A Y +=BA.Y..【题4-6】 图题4-6所示的逻辑电路中,与非门为74LS00,或非门是74LS02,非门是74LS04。
试分析该电路的最大传输延迟时间。
图题4-6解:74LS00、74LS02和74LS04的最大t PHL 和t PLH 都是15ns ,因为A 信号经过4级门达到输出端X ,因此最大传输延迟时间为4×15ns=60ns 。
【题4-7】 图题4-7所示的是家用报警器装置,该装置具有6个开关,各开关动作如下:ALARM....图题4-7人工报警开关M ,该开关闭合时,报警信号ALARM=1,开始报警。
第一章1.4(1)10101=1∗104+1∗102+1∗100(2)0.10101=1∗10−1+1∗10−3+1∗10−5(3)1010.101=1∗103+1∗101+1∗10−1+1∗10−31.5(1)(163)10=(10100011)2(2)(0.525)10=(0.100001)2(3)(41.41)10=(101001.01101000111)21.6(123)8=(1∗82+2∗8+3)10=(83)10 1.76n<(0.3)3⇒n log6<3(log3−1)⇒n<3(log3−1)log6=−2.016⇒n≤−3(8.705)10≈(12.412)61.8A(B+C+D)+BC(A̅+D̅)+D̅⇒A+A BC+D̅1.9A̅+BA+C+DA⇒A̅+B+C+D 1.10(1)F(A,B,C)|B=1&C=1=(AB+A̅C)|B=1&C=1=1(2)F(A,B,C)|A̅=1&B=1&C=1=A̅BC|A̅=1&B=1&C=1=11.11(1)1.12A̅+C ̅̅̅̅̅̅̅+D ∙(A +C ̅)(A +B )(B ̅+C )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅= 1.13(1)F =A (B̅+C +D )(B +D ̅)=ABC +A (B⨀D ) (2)F =A̅⋅B ̅+(AB +AB ̅+A ̅B )C =A ̅⋅B ̅+C (3)F =A +A ⋅B̅⋅C ̅+AC ̅D +(C ̅+D ̅)E =A +C ̅E +D ̅E (4)F =AB̅(C +D )+BC ̅+A ̅∙B ̅+A ̅C +BC +B ̅⋅C ̅⋅D ̅=A ̅+B ̅ (5)F =(A +B )(A +C )(A +C̅)=A (6)F =(A +BC̅)(A ̅+D ̅B)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=B ̅+A ̅C +AD (7)F =A (A +B̅+C ̅)(A ̅+C +D )(E +C ̅⋅D ̅)=ACE +ADE 1.14(1)F (A,B,C )=∑m(2,3,6,7)=A BC +A BC +ABC +ABC =B(2)F (A,B,C,D,E )=∏M (0,4,8,12,16,20,24,28)=A ⋅B̅⋅C ⋅D ̅⋅E ̅+A ⋅B ̅⋅C ⋅D ̅⋅E ̅+A ⋅B ⋅C ⋅D ̅⋅E ̅+A ⋅B ⋅C ⋅D ̅⋅E ̅+A ⋅B ̅⋅C ⋅D ̅⋅E ̅+A ⋅B̅⋅C ⋅D ̅⋅E ̅+A ⋅B ⋅C ⋅D ̅⋅E ̅+A ⋅B ⋅C ⋅D ̅⋅E ̅=D ̅E ̅ 1.15(1)F (A,B,C )=∑m (1,3,7)=∏M (0,2,4,5,6)(2)F (A,B,C,D )=∑m(0,2,6,12,13,14)=∏M(1,3,4,5,7,8,9,10,11,15)1.16(1)F (A,B,C )=∏M(0,3,6,7)=∑m(1,2,4,5)(2)F (A,B,C,D )=∏M(0,1,2,3,4,6,12)∑m(5,7,8,9,10,11,13,14,15)1.17(1)F (A,B,C,D )=AB +A̅B ̅+CD ̅=ABC D ̅+ABC D +ABCD ̅+ABCD +A B ̅C D ̅+A B ̅C D +A B̅CD ̅+A B ̅CD +AB ̅CD ̅+A BCD ̅=∑m(0,1,2,3,6,10,12,13,14,15) (2)F (A,B,C )=(A +B )(B̅+C )=∏M(6,7,5,1)=∑m(0,2,3,4) 1.18(1)F (A,B,C )=A ⊕B +AC̅=A B +AB ̅+A C =A BC +A BC +AB ̅C +AB ̅C +A B ̅C +A BC =∑m (2,3,4,5,1)=∏M(0,6,7)(2)F (A,B,C,D )=(A +B̅+C )(A +B ̅)(A +C ̅+D ̅)(B +C ̅+D ̅)=∏M(10,11,8,9,12,4) 1.19(1)F =(AB +A B̅)(C +D )(E +C D ̅)⇒F ̅=A ⊕B +C D ̅+E ̅ (2)F =A +B +C ̅+D +E ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⇒F ̅=A(B +C ̅+D +E ̅̅̅̅̅̅̅̅)=AB +AC +AD̅E 1.20(1)F =AB +CD +A̅C ⇒F ∗=(A +B )(C +D )(A +C )=A BC +AC +A BD (2)F =A (B̅C +BC ̅)+AC ̅⇒F ∗=(A +(B ̅+C )(B +C ))(A +C )=A +B ̅C (3)F =(A ̅+B)(B +A ̅C)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⇒F ∗=A B +B(A +C)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=B̅+AC 1.21(1)A ̅⊕B =A ⊕B ̅=A ⊕B ̅̅̅̅̅̅̅̅A̅⊕B =A ̅B ̅+AB =A⨀B A ⊕B̅=AB +A ̅B ̅=A⨀B A ⊕B ̅̅̅̅̅̅̅̅=A⨀B(2)A̅B ̅C +A ̅BC ̅+AB ̅C ̅+ABC =A ⊕B ⊕C A ⊕B ⊕C =(A ̅B +AB ̅)⊕C =(A ̅B +AB ̅)C +(A ̅B +AB̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅C =A BC +AB ̅C +A B ̅C +ABC (3)AB +BC +CA =(A +B)(B +C)(C +A)(A+B)(B+C)(C+A)=(B+AC)(C+A)=AB+BC+CA (4)AB̅+BC̅+CA̅=A̅B+B̅C+C̅A令:AB̅+BC̅+CA̅=K,K=1或0{A⟶A̅B⟶B̅C⟶C⇒A̅B+B̅C+C̅A=KAB̅+BC̅+CA̅=K=A̅B+B̅C+C̅A1.22(2)1.23(1)F(A,B,C,D)=∏M(1,3,5,7,13,15)=∑m(0,2,4,6,8,9,10,11,12,14)(2)F(A,B,C,D,E)=∏M(0,1,2,3,4,6,8,10,12,13,14)1.24(1)F(A,B,C,D)=∑m(3,5,6,9,12,13,14,15)+∑ϕ(0,1,7)()∑∑(4)F(A,B,C,D,E)=A̅̅̅̅̅̅(5)F(A,B,C,D)=A̅̅̅1.25̅̅12(2)F̅̅12(3)F1(A,B,C,D)=∑m(1,3,4,5,6,7,15)F2(A,B,C,D)=∑m(1,3,10,14,15)12第二章2.1关门电平V off=1.3V:保持电路输出高电平状态所允许的输入低电平的最大值开门电平V on=1.5V:保持电路输出低电平状态所允许的输入高电平的最小值≈1.4V:V off至V on这一段狭窄转折的中值阈值电压VT输入高电平时的抗干扰容限VNH=VOHmin−V on=2.4−1.5=0.9V输入低电平时的抗干扰容限VNL=V off−VOLmax=1.3−0.7=0.6V高电平:V OH(2.4~5.0V),标称值3.6V 低电平:V OL(0~0.7V),标称值0.3V2.2TTL与非门:高电平:V OH(2.4~5.0V),标称值3.6V 低电平:V OL(0~0.7V),标称值0.3V 关门电平V off=1.3V开门电平V on=1.5V阈值电压VT≈1.4V输入高电平时的抗干扰容限VNH=VOHmin−V on=2.4−1.5=0.9V输入低电平时的抗干扰容限VNL=V off−VOLmax=1.3−0.7=0.6V输出低电平的工作状态:N0L=I OLmax(驱动门)I IL(负载门)输出高电平的工作状态:N0H=I OH(驱动门)I IH(负载门)N I≤5V1:输入信号,V0:反相输出信号;V0下降到V m/2相对应于V1上升到V m/2之间的延迟时间称为导通延迟t PLHV0上升到V m/2相对应于V1下降到V m/2之间的延迟时间称为截止延时t PHLt PLH>t PHLt pd=(t PLH+t PHL)/2平均功耗小,速度快不能并联OC门方便线与逻辑,可并联,主要应用(1)实现与或非逻辑(2)电平转换(3)实现数据采集三态与非门(TSL)具有一个使能状态CMOS与非门抗干扰容限低,负载高,速度接近TTL,可并联2.3将与门、与非门的闲置端接1电平,而将或门、或非门闲置端接接0电平。
第四章习题及解答4.1 数字电路设计的基本步骤有哪些?每一步完成的目标任务是什么?见书P48。
4.2 组合逻辑电路的设计为什么可以从卡诺图直接进入?因为逻辑函数可以有多种有表达形式,卡诺图就是其中的一种,因此,直接从卡诺图直接进入设计就是最直接、最有效的一种方式,它简化了设计,更便于化简。
4.3 某车间有A 、B 、C 、D 四台电动机,今要求:(1)A 必须开机;(2)其他三台电动机中至少有两台开机,如不满足上述要求,则指示灯熄灭。
设指示灯亮为“1”,熄灭为“0”,电机开机为“1”,停机为“0”,试用与非门组成指示灯控制电路。
根据题意,用卡诺图表示电机运行的状态,求出输出表达式:F= ABC+ABD+ACD用与非门实现逻辑:4.4 试设计一个供4组使用的智力抢答器电路。
设4组变量分别为:A 、B 、C 、D 。
输出用4个发光二极管,表示抢答结果,灯亮答表达式: F ABCD ABCD ABCD =+++4.5 电话室需对4种电话编码控制,按紧急次序排列优先权由高到底依次为火警电话、急救电话、工作电话、生活电话,其编码为11,10,01,00,试设计该编码电路。
设火警电话、急救电话、工作电话、生活电话为变量A 、B 、C 、D ,编码输出量为X 、Y 。
AB CD01001110000000000001111000 01 11 10 F ABC ABD ACDABC ABD ACD =++=AB C D题4.3图列出编码真值表:4.6 试用3线-8线译码器和门电路实现以下函数:4.7 试用四选一多路选择器实现函数Y ABC AC BC =++。
1. 求出最小项、及最小项反函数非表达式:2. 对比四选一多路选择器表达式:0123Y ABD ABD ABD ABD =+++我们发现用原函数无法用一个四选一选择器实现,但反函数只有三个最小项,因为实际的数据选择器,它们都有两个互补的变量输出,因此从反变量输出端(~W)就可以达到要求了。
现代设计方法作业第五章相似设计与模块化设计一、就某机电、家具、家电产品,谈谈如何进行模块化设计?答:模块化设计是近年来发达国家普遍采用的一种先进设计方法,它的核心思想是将系统按功能分解为若干模块,通过模块的不同组合,可以得到不同品种、不同规格的产品。
而数控机床结构的特点也决定了模块化设计方法对于数控机床设计的适用性:1)同一类型的数控机床均可划分为基本相同的若干部分;2)同一类型的数控机床通过一个或若干个基本参数的变化形成不同规格的;3)同一类的数控机床尽管有着各种不同的结构布局和用途范围,但其基本控制、运动功能和工作原理是相同的;4)数控机床中有不少独立的功能单元,如导轨副、丝杠副、冷却系统、润滑系统、液压系统、气动系统、电气控制系统等。
这一特点使其适应于模块化设计方法;5)数控机床的加工要求向高速、高精度方向发展,要求机床结构具有高刚度、高可靠性,机床基础大件 (床身、工作台、主轴箱、滑鞍、立柱等 ) 的结构动、静态特性和传动系统的高刚性成为设计的主要矛盾;6)数控机床采用计算机控制技术,使机床的机械传动机构大为简化;7)市场竞争和市场需求的多变,要求数控机床产品规格和功能多样化、性能好、成本低、制造周期短;8) 随着技术的进步和市场的发展,许多数控机床功能部件已实现专业化生产和商品化。
对于数控机床而言,模块化设计是指将机床上同一功能的单元,设计成具有不同用途或性能的、可以互换选用的模块,用以更好地满足用户需要的一种设计方法。
数控机床的整体结构可以分解为单个部件的有机组合。
通过功能分析,使得功能相同或相似,联接接口相同,而性能、用途不同的各种功能单元,经过选择、优化、简化和统一,形成各种具有独立功能的单元模块。
通过对机床单元模块选择、使模块间有机地匹配与连接,进而组合成各种通用机床、变型机床和专用机床。
模块化设计的一般过程:模块化设计分为两个不同层次,第一个层次为系列模块化产品研制过程,需要根据市场调研结果对整个系列进行模块化设计,本质上是系列产品研制过程,如图2.1所示。
Exercise 4.1In this particular case using a K-map to simplify the problem will not be very useful since adjacent cells in a K-map vary by only one bit, and because this is a parity function every adjacent cell will be opposites.Starting with the truth table for the function:Input Output0000 10001 00010 00011 10100 00101 10110 10111 01000 01001 11010 11011 01100 11101 01110 01111 1Using Boolean algebra the function can be expressed as follows:f = A’B’C’D’ + A’B’CD + A’BC’D + AB’C’D + A’BCD’ + AB’CD’ +ABC’D’ + ABCD= A’B’ ( C’D’ + CD ) + A’B ( C’D + CD’ ) + AB’ ( C’D + CD’ ) + AB ( C’D’ + CD ) = ( A’B’ + AB ) ( C’D’ + CD ) + ( A’B + AB’ ) ( C’D + CD’ )= [ ( A’B’ + AB ) ( C’D’ + CD ) + ( A’B + AB’ ) ( C’D + CD’ ) ]””= [ [ ( A’B’ + AB ) ( C’D’ + CD ) ]’ [ ( A’B + AB’ ) ( C’D + CD’ ) ]’ ]’”= [ [ ( A’B’ + AB ) ( C’D’ + CD ) ]’ [ ( A’B + AB’ ) ( C’D + CD’ ) ]’ ]’”= [ [ ( A’B’ + AB )’ + ( C’D’ + CD )’ ] [ ( A’B + AB’ )’ + ( C’D + CD’ )’ ] ]’”= [ [ ( A’B’ )’ ( AB )’ + ( C’D’ )’ ( CD )’ ] [ ( A’B )’ ( AB’ )’ + ( C’D )’ ( CD’ )’ ] ]’” = [ [ ( A’B’ )’ ( AB )’ + ( C’D’ )’ ( CD )’ ]’ + [ ( A’B )’ ( AB’ )’ + ( C’D )’ ( CD’ )’ ]’]”= [[( A’B’ )’ ( AB )’]’ [( C’D’ )’ ( CD )’]’ + [( A’B )’ ( AB’ )’]’ [( C’D )’ ( CD’ )’]’ ]”= [[( A’B’ )’ ( AB )’]’ [( C’D’ )’ ( CD )’]’’ [( A’B )’ ( AB’ )’]’ [( C’D )’ ( CD’ )’]’’ ]’Assuming that both inputs and their complements are available, the diagram below shows how many NAND gates are required:Since there are four to a package, this will take 3 packages to implement. Going back to the Boolean simplification, and then simplifying to XOR gates gives the following result:f = ( A’B’ + AB ) ( C’D’ + CD ) + ( A’B + AB’ ) ( C’D + CD’ )= ( A ⊕ B )’ ( C ⊕ D )’ + ( A ⊕ B ) ( C ⊕ D )= ( A’ ⊕ B ) ( C ⊕ D )’ + ( A’ ⊕ B )’ ( C ⊕ D )= ( A’ ⊕ B ) ⊕ ( C ⊕ D )Which can be implemented using a single package of XOR gates.Exercise 4.2In each of the parts below the prob4_2 blocks can be assumed to implement the function Z = ( AB + CD )’.(a)(b)(c)(d)The table below matches inputs and outputs to the corresponding pin numbers:PIN Signal2 A3 B4 C5 D13 C614 C515 C416 C317 C218 C119 C0As is shown with the multilevel functions given in the chapter, it is incredibly difficult to even factor the equations into a multilevel functions that have a total of 8 outputs from the PLA, and only two outputs that use 4 AND gates. Thus, you cannot fit the solution entirely in a P14H8 PAL.The main difference between solutions 4.3 and 4.4 is that in 4.3 you have fully programmable OR plane, whereas in 4.4 you have a fully programmable AND plan. The advantage of the OR plane is that you can utilize common product terms for each function; however, this leads to OR gates with 2 # of inputs fan in. In the case of the PAL, the advantage is being able to have smaller fan-in OR gates, and only 2*(# of inputs) fan-in on the AND gates.The advantage of the PLA implementation is that both of these strategies can be combined in order to reduce the number of AND gates and the number of OR gates. However, a PLA is generally slower because the programmable planes tend to slow the circuit down a bit.(a)(b)(c)(d)(a)A multiplexer with n control bits takes 2n inputs, and based on the binary value of thecontrol bits outputs, suppose this number is i, the i-th input is connected to the output bit. A demultiplexer takes a single input and has 2n outputs. Based on the binary value of the n control bits, it will pass the input value into the i-th output bit. Adecoder is the same as a demultiplexer except that in general the input bit is viewed more as an enable signal in this case.(b)The function below implements a 2:4 demultiplexer.(a)(b)(c)(d)AB CD XYZ00 00 00000 01 00100 10 01000 11 01101 00 00101 01 01001 10 01101 11 10010 00 01010 01 01110 10 10010 11 10111 00 01111 01 10011 10 10111 11 110X = A’BCD + AB’CD’ + AB’CD + ABC’D + ABCD’ + ABCDY = A’B’CD’ + A’B’CD + A’BC’D + A’BCD’ + AB’C’D’ + AB’C’D + ABC’D’ +ABCDZ = A’B’C’D + A’B’CD + A’BC’D’ + A’BCD’ + AB’C’D + AB’CD + ABC’D’ +ABCD’Assuming F’ is also available:(a)To implement this function, this would take 5 packages, 4 of which would be 8:1multiplexers and the last one would be a 4:1 multiplexer.(b)The component below implements a 4:1 multiplexer. Since each control signal onlyneeds to be inverted once for the entire chip, only one package of inverters is needed.A 32:1 multiplexer can be implemented using 10 of this component, and 2:1multiplexer (where the 2:1 multiplexer uses three 2-input NAND gates).The table below demonstrates how many of each type of gate is required, and how many packages for each.Gate Type Number of Gates Number of PackagesInverters 6 1 2-input NAND 3 13-input NAND 40 144-input NAND 10 5TOTAL 59 21Exercise 4.13 (a)(b)(c)Only five 2:1 multiplexers are needed to implement the function:(d)Yes it is possible as shown in part (c).Exercise 4.14 (a)(b)(c)(d)Note: in order to simplify the diagram a single or gate is used. In this case the dotsconnecting output wires should be interpreted as separate connections to the OR gate since the drawing tool used does not have an or gate with sufficient fan-in. When a 23-input OR gate is not available, using a hierarchy of smaller OR gates willaccomplish the same thing.This implementation uses a 2:4 decoder to enable a set of 4:16 decoders. Thus the first 16 outputs will be enabled when A’B’ is asserted, the second 16 outputs when A’B and so on.(a)Note: Due to the limitations of the software being used, the dots connecting wiresshould be considered separate inputs to the OR gate. In this case the OR-gate is an 8-input OR gate.(b)Using the naïve implementation in discrete gates, this function takes four 3-inputAND gates and one 4-input OR gate. Which compared to the single package for the decoder and single package for the 8-input OR gate seems pretty bad in terms of number of gates and wires required. However, by simplifying the function first:f = A’B’D + A’BD + AC’D’ + ACD’= A’ ( B’ + B ) D + A ( C’ + C ) D’= A’D + AD’= A ⊕ DThis can be implemented using a single discrete gate which has significantly less fan-in than the 8-input OR gate, and this is accomplished with only one level of logic instead of two.(a)By simplifying the function, it is realized that AB’C is already covered by AC, so B isnot needed as an input to the multiplexer.(b)(c)(d)(e)Program the CLB such that the output function F corresponds to the function of fourvariables passed in to the block.(f)Exercise 4.19 (a)(b)(c)Note: The Hint in the book appears to be incorrect for this problem, putting A and Bon the control inputs requires more than just a single OR gate to implement the input functions. Putting C and D on the inputs was found to only require a single XOR gate to implement the function.(d)Exercise 4.20(a)f( A, B, C, D ) = ∏ M( 3, 4, 5, 6, 7, 13 ) + ∏ D( 0, 2, 9, 10 )(b)f( A, B, C, D ) = ∑ m( 1, 8, 11, 12, 14, 15 ) + ∑ d( 0, 2, 9, 10 )(c)f( A, B, C, D ) = AC + B’C + AD’(d)The solution below assumes that each input and its complement is available.Utilizing DeMorgan’s laws, the AND-OR-INVERT gate is the same as doing a product-of-sums solution, except each of the inputs into the AND gates must be inverted.(e)(f)Exercise 4.21(a) The following K-maps show the minimum sum-of-products form for each of the 3 equations. This solution has 6 distinct product terms.X = D + A’B’CY = AD + A’B’C’D A0 0 1 1 1 1 1 0 1 10 0C 0 01 1D A1 0 1 0 0 0 0 0 1 10 0C 0 01 1Z = A’D + A’B’(b) The following solution only has 4 distinct product terms:X = A’D + AD + A’B’CY = AD + A’B’C’Z = A’D + A’B’C’ + A’B’CD A1 0 1 1 1 1 1 0 0 00 0 C0 00 0(c)Exercise 4.22(a)To simplify the diagram, output bits from the 2764 chips have not been shown.Dealing with the output would involve applying the OR function for each bit of the 2764 outputs with all the other 2764 chips. Note that the thicker wires are busses and are being used to reduce the number of wires in the diagram.(b)The trick is to use the Enable signal on the decoder as another address bit. Byinverting the enable on half of the 2764 chips, it will enable when the address bit is low and be disabled when that address bit is high.Exercise 4.23 (a)(b)(c)Exercise 4.24(a)Input0 Input1 Input2 Input3 Output0 Output10 0 0 0 X X0 0 0 1 1 10 0 1 0 1 00 0 1 1 1 10 1 0 0 0 10 1 0 1 1 10 1 1 0 1 00 1 1 1 1 11 0 0 0 0 01 0 0 1 1 11 0 1 0 1 01 0 1 1 1 11 1 0 0 0 11 1 0 1 1 11 1 1 0 1 01 1 1 1 1 1(b)Output 0 = Input 3 + Input 2Output 1 = Input 1 Input 2’ + Input 3Input 3 Input 0Input 1X 0 1 1 1 1 1 1 1 11 1Input 2 0 01 1Input 3 Input 0Input 1 X 1 1 1 1 1 0 0 1 10 0Input 2 1 01 1(c)Exercise 4.25(a)A B C D W X Y Z0 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 0 1 1 0 0 0 00 1 0 0 0 0 0 00 1 0 1 0 0 0 10 1 1 0 0 0 1 00 1 1 1 0 0 1 11 0 0 0 0 0 0 01 0 0 1 0 0 1 01 0 1 0 0 1 0 01 0 1 1 0 1 1 01 1 0 0 0 0 0 01 1 0 1 0 0 1 11 1 1 0 0 1 1 01 1 1 1 1 0 0 1(b)W = ABCDX = ACD’ + AB’CD A0 0 0 0 0 0 0 0 1 00 0C 0 00 0D A0 0 0 0 0 0 0 0 0 11 1C 0 00 0Y = AB’D + AC’D + A’BC + BCD’Z = BDD AB0 0 0 0 0 1 0 1 0 11 0C 0 01 1D A0 0 0 1 0 1 0 0 1 00 0C 0 01 0(c)The terms are mapped to the following pins:Term Pin #A 2B 3C 4D 5W 18X 17Y 16Z 15 This solution requires only one P16H8 PAL.。