2007年四川巴中市高中阶段教育招生考试数学试卷
- 格式:doc
- 大小:344.50 KB
- 文档页数:8
巴中市二OO七年高中阶段教育招生考试语文试卷说明:1、本卷共三道大题,26小题,满分150分,120分钟完卷。
2、考生用蓝、黑墨水钢笔或圆珠笔答卷。
一、积累与运用(30分)1、根据拼音,把汉字依次写在题后的田字格内(4分)巴中物华天宝,人杰地灵。
通江的银耳名guàn华夏,平昌的美酒y满全国;晏阳初jī身“世í史册。
2、根据提示,用原文填空(10分)①学而不思则罔,。
《〈论语〉十则》②,恨别鸟惊心。
(杜甫《春望》)③千古兴亡多少事?悠悠。
(辛弃疾《南乡子。
登京口北固亭有怀》)④蒹葭苍苍,白露为霜。
,。
(《蒹葭》)⑤,燕然未勒归无计。
(范仲淹《渔家傲。
秋思》)⑥,各领风骚数百年。
(赵翼《论诗》)⑦《陋室铭》中,作者用“,”交代了自己的交友标准,表现了作者高洁傲岸的个性,从而说明了陋室不陋。
⑧在学过的古诗文中,有不少抒发人奋发进取,豪迈乐观情感的诗句,请写出相关联的两句:,。
⑨爱国诗人文天祥在《过零丁洋》中,用“,”两句抒发了大宋江山被元军入侵,个人兵败被俘,壮志难酬的沉痛之情。
⑩温家宝总理在接待中外记者时,曾饱含深情的引用了艾青《我爱这土地》中的“?”的句子,倾诉了他对中国、对中国人民的无限热爱。
炎黄子孙,无不动容。
3、综合性学习(10分)①文化知识(3分)在巴中南龛山的将帅碑林中,有人为中共一大代表、红军总政委张国焘撰写了一副对联。
上联如下所示,下联顺序已经打乱。
请根据你所学的对联常识,将下联重新排序后,写在横线上。
分道扬镳(biāo)涛惊浪骇是非成败论英雄将功难补过上联:国破家亡挺身立党有始却无终已辨忠奸留史册下联:②九年级二班的张帆同学在“微笑面对生活”的主题演讲活动中,写了一篇演讲稿。
请阅读摘录部分,按要求做题。
(7分)微笑面对生活(摘录)生活离不开微笑。
微笑是一种自信,微笑是一种胸怀,微笑是一种(行为、礼貌、境界)。
当你考试不理想时,你笑一笑,想想“失败是成功之母”的提醒,你就不会沮丧颓废;当你被同学捉弄时,你笑一笑,记住“量小非君子”的古训,你就不会脑羞成怒。
绵阳市2007年高级中等教育学校招生统一考试一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-31的相反数是( )A .3B .-3C .31 D .-312.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿米3,用科学记数法表示这个数为( )A .8.99×105亿米3B .0.899×106亿米3C .8.99×104亿米3D .89.9×103亿米33.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列说法错误的是( )A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .随机事件发生的概率大于0且小于1D .不确定事件发生的概率为05.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( )A .甲票10元∕张,乙票8元∕张B .甲票8元∕张,乙票10元∕张C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张 6.下列三视图所对应的直观图是( )A .B .C .D .7.若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )A .b 1<b 2B .b 1 = b 2C .b 1>b 2D .大小不确定8.初三·一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x ,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是( )A .12B .10C .9D .8 9.如图,在正方形ABCD 的外侧,作等边△ADE ,BE 、CE 分别交AD 于G 、H ,设 △CDH 、△GHE 的面积分别为S 1、S 2,则( )A .3S 1 = 2S 2B .2S 1 = 3S 2C .2S 1 =3S 2D .3S 1 = 2S 2 10.将一块弧长为π 的半圆形铁皮围成一个 圆锥(接头忽略不计),则围成的圆锥的高为( )A .3B .23 C .5 D .2511.当身边没有量角器时,怎样得到一些特定度 数的角呢?动手操作有时可以解“燃眉之急”.如图, 已知矩形ABCD ,我们按如下步骤操作可以得到一个 特定的角:(1)以点A 所在直线为折痕,折叠纸片, 使点B 落在AD 上,折痕与BC 交于E ;(2)将纸片 展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE =( )A .60︒B .67.5︒C .72︒D .75︒ 12.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是( )A .0B .1C .2D .3二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上.13.因式分解:2m 2-8n 2= .14.如图,梯形ABCD 中,AB ∥CD ,AD = CD ,E 、F 分别是AB 、BC 的中点,若∠1 = 35︒,则∠D = .15.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.16.如图,△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小,使变换后得到的△DEF 与△ABC 对应边的比为1∶2,则线段ABCDAC 的中点P 变换后对应的点的坐标为 .17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为 .18.若a 、b 、c 是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:① 以a 2,b 2,c 2的长为边的三条线段能组成一个三角形 ② 以a ,b ,c 的长为边的三条线段能组成一个三角形 ③ 以a + b ,c + h ,h 的长为边的三条线段能组成直角三角形 ④ 以a1,b1,c1的长为边的三条线段能组成直角三角形其中所有正确结论的序号为 .三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤.19.(本题共2小题,每小题8分,共16分) (1)计算:|345tan |32)31()21(10-︒-⨯+--.(2)化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围.20.(本题满分12分)小明对本班同学上学的交通方式进行了一次调查,他根据采集的数据,绘制了下面的统计图1和图2.请你根据图中提供的信息,解答下列问题:图1 图2(1)计算本班骑自行车上学的人数,补全图1的统计图;(2)在图2中,求出“乘公共汽车”部分所对应的圆心角的度数,补全图2的统计图(要求写出各部分所占的百分比);(3)观察图1和图2,你能得出哪些结论?(只要求写出一条).21.(本题满分12分)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?22.(本题满分12分)如图,AB是⊙O的直径,∠BAC= 60︒,P是OB上一点,过P 作AB的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连结OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP:PO的值.23.(本题满分12分)已知x1,x2 是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.(1)求x1,x2 的值;(2)若x1,x2 是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.24.(本题满分12分)如图,△ABC中,E、F分别是AB、AC上的点.①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②⇒③,①③⇒②,②③⇒①.(1)试判断上述三个命题是否正确(直接作答);(2)请证明你认为正确的命题.25.(本题满分14分)如图,已知抛物线y= ax2 + bx-3与x轴交于A、B两点,与y 轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC = α,∠CBE = β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.绵阳市2007年高级中等教育学校招生统一考试数学试题参考答案及评分意见说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准相应给分.2.对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确地做到这一步应得的累加分数.一、选择题:1.C 2.A 3.D 4.D 5.A 6.C 7.D 8.B 9.A 10.B 11.B 12.C二、填空题: 13.2(m + 2n )(m -2n ) 14.110︒ 15.616.(2,23)或(-2,-23) 17.277 18.②③④三、解答题:19.(1)32+(2)11+x ,x 的取值范围是x ≠-2且x ≠1的实数.20.(1)∵ 小明所在的全班学生人数为14÷28% = 50人,∴ 骑自行车上学的人数为50-14-12-8 = 16人;其统计图如图1.(2)乘公共汽车、骑自行车、步行、其它所占全班的比分别为14÷50,16÷50,12÷50,8÷50即28%,32%,24%,16%,它们所对应的圆心角分别是100.8︒,115.2︒,86.4︒,57.6︒,其统计图如图2.(3)小明所在的班的同学上学情况是:骑自行车的学生最多;通宿生占全班的绝大多数;住校或家长用车送的占少数.图1 图221.(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得 4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三 4辆 4辆(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元. 22.(1)由已知得∠ACB = 90︒,∠ABC = 30︒, ∴ ∠Q = 30︒,∠BCO = ∠ABC = 30︒. ∵ CD 是⊙O 的切线,CO 是半径, ∴ CD ⊥CO ,∴ ∠DCQ =∠BCO = 30︒,∴ ∠DCQ =∠Q ,故△CDQ 是等腰三角形.(2)设⊙O 的半径为1,则AB = 2,OC = 1,AC = AB ∕2 = 1,BC =3. ∵ 等腰三角形CDQ 与等腰三角形COB 全等,∴ CQ = BC =3. 于是 AQ = AC + CQ = 1 +3,进而 AP = AQ ∕2 =(1 +3)∕2, ∴ BP = AB -AP = 2-(1 +3)∕2 =(3-3)∕2, PO = AP -AO =(1 +3)∕2-1 =(3-1)∕2,∴ BP :PO =3. 23.(1) 原方程变为:x 2-(m + 2)x + 2m = p 2-(m + 2)p + 2m , ∴ x 2-p 2-(m + 2)x +(m + 2)p = 0, (x -p )(x + p )-(m + 2)(x -p )= 0, 即 (x -p )(x + p -m -2)= 0, ∴ x 1 = p , x 2 = m + 2-p . (2)∵ 直角三角形的面积为)2(212121p m p x x -+==p m p )2(21212++-=)]4)2(()22()2([21222+-+++--m m p m p =8)2()22(2122+++--m m p ,∴ 当22+=m p 且m >-2时,以x 1,x 2为两直角边长的直角三角形的面积最大,最大面积为8)2(2+m 或221p .24.(1)①② ⇒ ③,正确;①③ ⇒ ②,错误;②③ ⇒ ①,正确. (2)先证 ①② ⇒ ③.如图1.∵ AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,而AD = AD , ∴ Rt △ADE ≌Rt △ADF ,∴ DE =DF ,∠ADE =∠ADF .设AD 与EF 交于G ,则△DEG ≌△DFG , 因此∠DGE =∠DGF ,进而有∠DGE =∠DGF = 90︒,故AD ⊥EF . 再证 ②③ ⇒ ①.如图2,设AD 的中点为O ,连结OE ,OF .∵ DE ⊥AB ,DF ⊥AC ,∴ OE ,OF 分别是Rt △ADE ,Rt △ADF 斜边上的中线, ∴AD OE 21=,AD OF 21=,即点O 到A 、E 、D 、F的距离相等,因此四点A 、E 、D 、F 在以O 为圆心,AD 21为半径的圆上,AD 是直径.于是EF 是⊙O 的弦,而EF ⊥AD , ∴ AD 平分,即,故∠DAE =∠DAF ,即AD 平分∠BAC . 25.(1)由题意可知C (0,-3),12=-ab ,∴ 抛物线的解析式为y = ax 2-2ax -3(a >0),过M 作MN ⊥y 轴于N ,连结CM ,则MN = 1,5=CM , ∴ CN = 2,于是m =-1. 同理可求得B (3,0),∴ a ×32-2-2a ×3-3 = 0,得 a = 1,∴ 抛物线的解析式为y = x 2-2x -3. (2)由(1)得 A (-1,0),E (1,-4),D (0,1). ∴ 在Rt △BCE 中,23=BC ,2=CE ,∴313==ODOB ,3223==CEBC ,∴ CEBC ODOB =,即CEOD BCOB =,∴ Rt △BOD ∽Rt △BCE ,得 ∠CBE =∠OBD =β, 因此 sin (α-β)= sin (∠DBC -∠OBD )= sin ∠OBC =22=BCCO .(3)显然 Rt △COA ∽Rt △BCE ,此时点P 1(0,0).过A 作AP 2⊥AC 交y 正半轴于P 2,由Rt △CAP 2 ∽Rt △BCE ,得)31,0(2P .过C 作CP 3⊥AC 交x 正半轴于P 3,由Rt △P 3CA ∽Rt △BCE ,得P 3(9,0). 故在坐标轴上存在三个点P 1(0,0),)31,0(2P ,P 3(9,0),使得以P 、A 、C 为顶点的三角形与BCE 相似.。
巴中市二〇〇六年高中阶段教育招生考试数学试卷(课改) 第Ⅰ卷 选择题(共15分)注意事项:1.考生姓名、考号、考试科目,应在答题卡上“先填后涂”. 2.每小题选出的答案,必须用2B 铅笔在答题卡上“对应涂黑”. 3.答题卡上答案若需改动,应用橡皮擦擦干净后再涂.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填入题后的括号内.(本题共5个小题,每小题3分,共15分)1.巴广高速路的设计者准备在西华山再设计修建一个隧道,以缩短两地之间的里程,其主要依据是( ) A.垂线段最短 B.两点之间线段最短 C.两点确定一条直线 D.过直线外一点有且只有一条直线平行于已知直线2.下列图象能大概反映你上学从家到学校(假设路线唯一)行走速度与所用时间之间的函数关系的是( )3.下列事件是必然事件的是( ) A.巴中明天下雨;B.我在这次“中考”中数学考95分;C.将一粒种子埋在土里,给它阳光和水分,它会长出小苗; D.投掷一枚普通的质地均匀的正方体骰子,点数不超过6.4.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是( )A.圆柱 B.三棱锥 C.正立的圆锥 D.横放的圆锥5.a 表示一个一位数,b 表示一个两位数,把a 放到b 的左边组成一个三位数,则这个三位数可以表示为( ) A.ab B.10a b + C.100a b + D.a b +正视图 左视图 俯视图A. B. C. D. )第Ⅱ卷 非选择题(共85分)二、填空题(每小题2分,共把答案直接填写在横线上) 6.3-=__________,12的倒数是__________. 7.分解因式:321025a a a -+=__________.8.用计算器比较:的大小(用小于符号连接)____________________. 9.瑞士中学教师巴尔末成功地从光谱数据95,1612,2521__________,4945,8177中得到巴尔末公式,从而打开光谱奥妙的大门,请你按这种规律在括号中填上适当的数.10.温总理有句名言:“多么小的问题乘以13亿,都会变成很大,多么大的经济问题,除以13亿都会变得很小.”假设人均每天浪费0.01公斤粮食,那么一月(按30天计)全国将浪费粮食____________________公斤(用科学记数法表示).11.已知一组数据12,6,8,14,12,6,10,12,则这组数据的众数是__________,中位数是__________.12.根据图中提供的信息,求出每个篮球和足球的单价分别是__________元,__________元.13.请写出一组能够铺满地面的正多边形组合(至少用到两种正多边形)_________________. 14.不等式组47310x -<≤的整数解有_________________. 15.已知1O 和2O 的圆心距为7,两圆半径是方程27120x x -+=的两根,则1O 和2O 的位置关系是______________.三、解答题(16题12分,第17题-第5分,共32分) 16.解答下列各题(每小题4分,共12分) (1)12cos 45(2)化简:222x x x ---420元 480元(3)解方程:()()22353x x -=-17.如图,(1)若把图中小人平移,使点A 平移到点B ,请你在图中画出平移后的小人.(2)若图中小人是一名游泳者的位置,他要先游到岸边l 上点P 处喝水后,再游到B ,但要使游泳的路程最短,试在图中画出点P 的位置.18.已知:如图梯形ABCD 中,AD BC ∥,AB CD =,AC 与BD 相交于点O . (1)写出图中两对全等三角形和一个等腰三角形.(2)选择一对你所写的全等三角形证明.AD OBC19.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,(1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?(2)若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?(可用计算器计算)图,在所示的直角坐标系中,P 是第一象限的点,其坐标是()6y ,,且OP 与x 轴的正半轴的夹角α的正切值是43,求角α的正弦值.)y四、21小题5分,22小题6分,共11分.21.下面是德国世界杯12个球场所在地6,7月天气情况(预测)一览表.(1)在7月哪个城市的最高气温最高?是多少?(2)在6月哪个城市的最低气温最低?是多少?(3)7月汉诺威比赛当天不下雨的概率是多少?22.已知:如图,在梯形ABCD 中,AD BC ∥,24cm AD =,30cm BC =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm /s 的速度运动,到B 点即停止,直线PQ 截梯形为两个四边形.问当P ,Q 同时出发,几秒后其中一个四边形为平行四边形?五、每小题7分,共14分 23.已知1O 与2O 相交于A ,B ,且1O 的半径为3cm ,2O 的半径为5cm .(1)过点B 作CD AB ⊥分别交1O 和2O 于C ,D 两点,连结AC ,AD .如图(1)试求ACAD的值. (2)过点B 任画一条直线分别交1O 和2O 于E ,F ,连结AE 和AF ,如图(2)试求AEAF的值.(3)在解答本题的过程中用到的数学思想方法是____________________. 24.阅读函数图象,并根据你所获得的信息回答问题:(1)折线OACB 表示某个实际问题的函数图象,请你联系生活实际编写一个符合该图象的生活情境.(2)根据你给出的生活情境分别指出x 轴,y 轴所表示的意义,并写出A ,B ,C 三点的坐标.(注意符合实际情况)(3)在(2)的基础上求出函数的解析式,并注明自变量的取值范围.(1)E (2)x六、8分△的外接圆,以过点A的直径所在直线为x轴,以25.已知:P是边长为6的等边ABCBC所在直线为y轴建立平面直角坐标系,x轴与P交于点D.(1)求A,B,D三点坐标.(2)求过A,B,D三点的抛物线的解析式.(3)P的切线交x轴正半轴于点M,交y轴正半轴于点N,切点为点E,且∠,试判断直线MN是否过抛物线的顶点?并说明理由.NMO30。
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
全等图形:能够完全重合的两个图形就是全等图形. 全等多边形:能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边对应边、全等多边形的对应角相等.如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.A'B'C'D'E'EDCBA全等三角形:能够完全重合的三角形就是全等三角形.全等三角形的对应边相等,全等三角形的对应角相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边ASA AASSAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩ 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型由全等可得到的相关定理:⑴ 角的平分线上的点到这个角的两边的距离相等.⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上.它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,AB OPPOB A A B OP三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。
2007年四川巴中市高中阶段教育招生考试数学试卷(全卷满分150分,120分钟完卷)第I 卷 选择题(共30分)注意事项:1.考生姓名、考号、考试科目,应在答题卡上“先填后涂”。
2.每小题选出的答案,必须用2B 铅笔在答题卡上“对应涂黑”。
3.答题卡上答案项需改动,应用橡皮擦擦干净后再涂。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填入题后的括号内。
(本题共10个小题,每小题3分,共30分) 1.下列各式计算正确的是( ) A .224a a a +=B .22(3)6x x =C .236()x x =D .222()x y x y +=+2.2007年我市初中毕业生约为3.94万人,把3.94万用科学记数表示且保留两个有效数字为( ) A .44.010⨯B .43.910⨯C .43910⨯D .4.0万3.李明为好友制作一个(图1)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )4.下列说法正确的是( )A .要想了解NBA 各球队在2007赛季的比赛结果,应采用民意调查法B .某工厂质检人员检测灯泡的使用寿命采用普查法C .要了解某小组各学生某次数学测试成绩采用抽样调查法D .了解我市中学生的身体素质状况采用抽样调查法祝 中 考 成预 功 祝 成 考 功预中预 祝 中考 成 功祝 成预 图1预 祝 中 考成 功 A.B.C.D.A5.如图2,O 是ABC △的外接圆,已知50ABO ∠=,则ACB ∠的大小为( )A .40B .30C .45D .506.下列说法错误..的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为13B .不可能事件发生机会为0C .买一张彩票会中奖是可能事件D .一件事发生机会为0.1%,这件事就有可能发生 7.一元二次方程2210x x --=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根D .没有实数根8.函数(0)y kx k k =+≠在直角坐标系中的图象可能是( )9.巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为12米,在如图4所示的坐标系中,这支喷泉的函数关系式是( )A .2132y x ⎛⎫=--+ ⎪⎝⎭B .21312y x ⎛⎫=-+ ⎪⎝⎭C .21832y x ⎛⎫=--+ ⎪⎝⎭D .21832y x ⎛⎫=-++ ⎪⎝⎭10.“五一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x 元,男装部购买了原价为y 元服装各一套,优惠前需付700元,而他实际付款580图3yxOA. B.C. D.yxO yxOyxOOx13y图412元,则可列方程组为( )A .5800.80.85700x y x y +=⎧⎨+=⎩B .7000.850.8580x y x y +=⎧⎨+=⎩C .7000.80.85700580x y x y +=⎧⎨+=-⎩D .7000.80.85580x y x y +=⎧⎨+=⎩第II 卷 非选择题(共120分)二、填空题(每小题3分,共30分,把答案直接填写在题中横线上) 11.12-的相反数是 ,倒数是 ,平方等于 。
巴中市高中阶段学校招生考试数学试卷(全卷满分150 分, 120 分钟达成)第 I卷选择题(共30 分)注意事项:1.考生姓名、考号、考试科目,应在答题卡上“先填后涂”.2.每题选出的答案,一定用2B 铅笔在答题卡上“对应涂黑”.3.答题卡上答案若需变动,应用橡皮擦擦洁净后再涂.一、选择题:在每题给出的四个选项中,只有一项切合题目要求,请将正确选项的番号涂卡.(此题共10 个小题,每题 3 分,共 30 分)1.以下各数:·22, 0.30003,1- 2 中无理数个数为() ,0,9 ,0.23,cos60 ,°2 7A.2 个B.3 个C.4 个D.5 个2.某校师生在为青海玉树地震灾区举行的爱心捐钱活动中总计捐钱18.49 万元.把 18.49 万用科学记数法表示并保存两个有效数字为()A . 1.9 ×105 B. 19×104 C. 1.8 ×105 D. 18×1043.如图 1 所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家歇息,要使凉亭到草坪三条边的距离相等,凉亭的地点应选在()A . △ ABC 的三条中线的交点B . △ ABC 三边的中垂线的交点C. △ ABC 三条角均分线的交点D. △ ABC 三条高所在直线的交点AB C图 1A4.如图 2 所示, AB = AC ,要说明△ ADC≌△ AEB,需增添的条件D E不可以是()..A.∠B =∠C B.AD=AEFB 图 2 CC.∠ ADC=∠ AEB D. DC = BE5.如图 3 所示,以恒定的速度向此容器灌水,容器内水的高度(h)与灌水时间(t)之间的函数关系可用以下图像大概描绘的是()h h h h0tA图 36.以下命题是真命题的是(A .若a2 = b2,则a = b C.若x2 =2,则x =±20 t 0 t 0 tB C D)B.若x = y,则 2- 3 x﹥ 2-3 yD.若x3 =8,则x =±27.函数y = x 2的自变量 x 的取值范围是()x2 2A .x≥-2 且x≠ 2 B.x> -2 且x≠2 C.x =±2 D.全体实数8.本学期的五次数学测试中,甲、乙两同学的均匀成绩同样,方差分别为1.2、 0.5,则以下说法正确的选项是()A .乙同学的成绩更稳固B .甲同学的成绩更稳固C.甲、乙两位同学的成绩同样稳固 D .不可以确立9.图 4 是由大小同样的小正方块摆成的立体图形的三视图,它共用()个小正方块摆成。
三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.典型题精讲版块一 倍长中线【例1】 (通化市中考题)在△ABC 中,9,5==AC AB ,则BC 边上的中线AD 的长的取值范围是什么? 【解析】 中线倍长,72<<AD【点评】此题很好的运用中线倍长的方法,若运用其他的方法将会更加麻烦【补充】已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.AMDCB【解析】 如图所示,延长AM 到D ,使DM AM =,连结BD ,利用SAS 证得ACM ∆≌DBM ∆,∴BD AC =ABD ∆中,AD AB BD <+,∴2AM AB AC <+∴1()2AM AB AC <+【例2】 (巴中市高中阶段教育学校招生考试)已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.DFECBA【解析】 ∵点E 是DC 中点∴DE CE =又∵AD BC ∥,F 在AD 延长线上 ∴DFE CBE ∠=∠,FDE BCE ∠=∠ 在BCE ∆与FDE ∆中EBC EFDECB EDF CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BCE FDE AAS ∆∆≌【例3】 (初中毕业生学业考试(湖州市)数学试卷)如图,在ABC ∆中,D 是BC 边的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥.求证:BDE CDF ∆∆≌.FEDCBA【解析】 ∵CF BE ∥,∴EBD FCD ∠=∠.又∵BDE CDF ∠=∠,BD CD =, ∴BDE CDF ∆∆≌.【例4】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.F ED CBA GFEDCBA【解析】 延长AD 到G ,使DG AD =,连结BG∵BD CD =,BDG CDA ∠=∠,AD GD = ∴ADC GDB ∆∆≌ ∴AC GB =.G EAF ∠=∠ 又∵AF EF =,∴EAF AEF ∠=∠ ∴G BED ∠=∠∴BE BG =,∴BE AC =.【例5】 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.F GE DCBAHAF GBE DC【解析】 延长FE 到点H ,使HE FE =,连结BH .在CEF ∆和BEH ∆中 CE BE CEF BEH FE HE =⎧⎪∠=∠⎨⎪=⎩∴CEF BEH ∆∆≌∴EFC EHB ∠=∠,CF BH BG == ∴EHB BGE ∠=∠,而BGE AGF ∠=∠ ∴AFG AGF ∠=∠ 又∵EF AD ∥∴AFG CAD ∠=∠,AGF BAD ∠=∠ ∴CAD BAD ∠=∠∴AD 为ABC ∆的角平分线.【例6】 已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.FE AB D CFE NABDC【解析】 延长FD 到N ,使DN DF =,连结BN 、EN .(相当于构造等腰三角形此图很重要,一定要仔细体会)易证BND ∆≌CFD ∆,∴BN CF =,又∵ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F , ∴90EDF EDN ∠=∠=,利用SAS 证明EDN ∆≌EDF ∆,∴EN EF =, 在EBN ∆中,BE BN EN +>,∴BE CF EF +>.【例7】 在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?F EDCBAGAE BDCF【解析】 延长FD 到点G ,使FD GD =,连结EG 、BG .在CDF ∆和BDG ∆中 CD BDCDF BDG FD GD =⎧⎪∠=∠⎨⎪=⎩∴CDF BDG ∆∆≌∴BG CF =,FCD GBD ∠=∠ ∵90A ∠=︒∴90ABC ACB ∠+∠=︒ ∴90ABC GBD ∠+∠=︒ 在EDF ∆和EDG ∆中 90ED ED EDF EDG FD GD =⎧⎪∠=∠=︒⎨⎪=⎩∴EDF EDG ∆∆≌ ∴EF EG =故以线段BE 、EF 、FC 为边能构成一个直角三角形.【例8】 ***如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果2222BM CN DM DN +=+,求证()22214AD AB AC =+.NMDCBAE NMDCBA【解析】 延长ND 至E ,使DE DN =,连接EB 、EM 、MN .因为DE DN =,DB DC =,BDE CDN ∠=∠,则BDE CDN ∆∆≌. 从而BE CN =,DBE C ∠=∠.而DE DN =,90MDN ︒∠=,故ME MN =,因此2222DM DN MN ME +==, 即222BM BE ME +=,则90MBE ︒∠=,即90MBD DBE ︒∠+∠=. 因为DBE C ∠=∠,故90MBD C ︒∠+∠=,则90BAC ︒∠=.AD 为Rt ABC ∆斜边BC 上的中线,故12AD BC =.由此可得()22221144AD BC AB AC ==+.【例10】 在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.图 6G E F D BCA【解析】 如图、延长DF 至点G ,使得DF FG =,联结GB 、GE .由AF FB =,有ADF BGF ∆∆≌ 3BG AD ⇒== ADF BGF ⇒∠=∠ AD GB ⇒∥180GBE ACB ⇒∠+∠=︒ 90GBE ⇒∠=︒5GE ⇒=.又DF FG =,EF DG ⊥5DE GE ⇒==.如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.MEDCBAFNO H ABC EM【解析】 如图所示,设AM 交DC 于H ,要证明AM CD ⊥,实际上就是证明90AHD ∠=︒,而条件BM ME =不好运用,我们可以倍长中线AM 到F ,连接BF 交AD 于点N ,交CD 于点O .容易证明AM E FM B ∆∆≌则AE FB =,EAF F ∠=∠,从而AE FB ∥,90ANF ∠=︒ 而90CAD DAB ∠+∠=︒,90DAB ABN ∠+∠=︒,故CAD ABN ∠=∠ 从而CAD ABF ∆∆≌,故D F ∠=∠ 而90D DON FOH F ∠+∠=∠+∠=︒ 故90AHD ∠=︒,亦即AM CD ⊥.在 1、如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.GFEDCBA【解析】 延长AD 到E ,使AD DE =,连结BE .在ADC ∆和EDB ∆中AD EDADC EDB DC DB =⎧⎪∠=∠⎨⎪=⎩∴ADC EDB ∆∆≌ ∴AC EB =,CAD BEA ∠=∠在ABE ∆中,∵<AB AC ,∴AB EB <∴<AEB EAB ∠∠,∴<DAC DAB ∠∠.(如果取AB 中点用中位线也可证,目前还不能)2、 如图所示,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.E DCABB'A'C'D'E'【解析】 如图所示,分别延长AD 、A D ''至E 、E ',使DE AD =,D E A D ''''=.连接BE 、B E '',则2AE AD =,2A E A D ''''=. 因为AD A D ''=,所以AE A E ''=.在ADC ∆和EDB ∆中,AD ED =,ADC EDB ∠=∠,BD CD =, 故ADC EDB ∆∆≌,从而AC EB =,E CAD ∠=∠.同理,'A D C E D B '''''∆∆≌,则A C E B ''''=,E C A D ''''∠=∠. 因为AC A C ''=,所以BE B E ''=.在ABE ∆和A B E '''∆中,AB A B ''=,BE B E ''=,AE A E ''=, 所以A B E A '''∆∆≌,从而E E '∠=∠,BAE B A E '''∠=∠,故CAD E E C A D ''''∠=∠=∠=∠,则BAC B A C '''∠=∠.在ABC ∆和A B C '''∆中,A B A B ''=,BAC B A C ''∠=∠,AC A C ''=,故A B C A B C '''∆∆≌.3、已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.AMDCB【解析】 如图所示,延长AM 到D ,使DM AM =,连结BD ,利用SAS 证得ACM ∆≌DBM ∆,∴BD AC =ABD ∆中,AD AB BD <+,∴2AM AB AC <+∴1()2AM AB AC <+4、如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.MEDCBAFNOH ABC EM【解析】 如图所示,设AM 交DC 于H ,要证明AM CD ⊥,实际上就是证明90AHD ∠=︒,而条件BM ME =不好运用,我们可以倍长中线AM 到F ,连接BF 交AD 于点N ,交CD 于点O .容易证明AM E FM B ∆∆≌则AE FB =,EAF F ∠=∠,从而AE FB ∥,90ANF ∠=︒ 而90CAD DAB ∠+∠=︒,90DAB ABN ∠+∠=︒,故CAD ABN ∠=∠ 从而CAD ABF ∆∆≌,故D F ∠=∠ 而90D DON FOH F ∠+∠=∠+∠=︒故90AHD ∠=︒,亦即AM CD ⊥励志名言“哪里有什么天才,我是把别人喝咖啡的功夫,都用在了工作上的。
成都市2007年高中阶段教育统一招生考试 (含成都市初三毕业会考) 数 学全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分 第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题. A卷第Ⅰ卷(选择题) 注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、选择题:1.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A.26-℃ B.22-℃ C.18-℃ D.16-℃ 2.下列运算正确的是( )A.321x x -= B.22122xx--=-C.236()a a a -=·D.236()a a -=-3表示该位置上小立方块的个数,那么该几何体的主视图为(4.下列说法正确的是( )A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行 B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数 C.明天我市会下雨是可能事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.在函数3y x=中,自变量x 的取值范围是( ) A.2x -≥且0x ≠ B.2x ≤且0x ≠ C.0x ≠D.2x -≤6.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形A .B .C .D .B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=8.如图,O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A.40° B.55°C.65° D.70°9.如图,小“鱼”与大“鱼”是位似图形, 已知小“鱼”上一个“顶点”的坐标为()a b ,, 那么大“鱼”上对应“顶点”的坐标为( ) A.(2)a b --, B.(2)a b --, C.(22)a b --,D.(22)b a --,10.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cm B .35cm C .8cmD .53cm第Ⅱ卷(非选择题) 注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题将答案直接写在该题目的横线上.11.已知22(5)0a b -++=,那么a b +的值为 .12.已知小明家五月份总支出共计1200元,各项支出如图所示, 那么其中用于教育上的支出是 元.DO AFCE衣服10% 教育18%食物36%医疗 12% 其它24%13.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D , 分别落在C D '',的位置上,EC '交AD 于点G . 已知58EFG ∠=°,那么BEG ∠= °.14.如图,已知AB 是O 的直径,弦CD AB ⊥,22AC =,1BC =,那么sinABD ∠的值是.15.如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 . 三、16.解答下列各题: (1)计算:1122323sin 30--+--°.(2)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.(3)解方程:32211x x x +=-+. 四、17.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)ABECDFGC 'D 'ACBD OOyx18.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.五、19.小华与小丽设计了A B ,两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜. 游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜. 请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.20.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论.D AEFGB 卷一、填空题: 将答案直接写在该题目中的横线上.21.如图,如果要使ABCD 成为一个菱形, 需要添加一个条件,那么你添加的条件是.22.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)”的统计,其频率分布如下表:小时.23.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .24.如图,将一块斜边长为12cm ,60B ∠=°的 直角三角板ABC ,绕点C 沿逆时针方向旋转90° 至A B C '''△的位置,再沿CB 向右平移,使点B ' 刚好落在斜边AB 上,那么此三角板向右平移的 距离是 cm .25.在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 . 二、26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支? (2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,D C B A '()C C '买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =;(2)求证:PA 是O 的切线; (3)若FG BF =,且O的半径长为求BD 和FG 的长度.28.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,.(1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.成都市二○○七年高中阶段教育学校统一招生考试试卷 (含成都市初三毕业会考) 数学参考答案A 卷 第Ⅰ卷C一、选择题 1.C ; 2.D ; 3.C ;4.C ; 5.A ; 6.D ; 7.D ; 8.B ; 9.C ; 10.B .A 卷 第Ⅱ卷 二、填空题: 11.3-; 12.216;13.64; 14.223; 15.1-三、16.(1)解:原式112323322=-+--⨯132323322=-+--=. (2)解:解不等式3312x x -++≥,得1x ≤. 解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,,. (3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. 去括号,得22332222x x x x ++-=-. 解得5x =-.经检验5x =-是原方程的解. ∴原方程的解是5x =-. 四、17.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°, ∴四边形BECD 是矩形. CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米.tan BECEβ=∵, tan 90tan 60BE CE β==⨯∴·°903= (米). 903CD BE ==∴(米)。
2007年四川巴中市高中阶段教育招生考试数学试卷(全卷满分150分,120分钟完卷)第I 卷 选择题(共30分)注意事项:1.考生姓名、考号、考试科目,应在答题卡上“先填后涂”。
2.每小题选出的答案,必须用2B 铅笔在答题卡上“对应涂黑”。
3.答题卡上答案项需改动,应用橡皮擦擦干净后再涂。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填入题后的括号内。
(本题共10个小题,每小题3分,共30分) 1.下列各式计算正确的是( ) A .224a a a +=B .22(3)6x x =C .236()x x =D .222()x y x y +=+2.2007年我市初中毕业生约为3.94万人,把3.94万用科学记数表示且保留两个有效数字为( ) A .44.010⨯B .43.910⨯C .43910⨯D .4.0万3.李明为好友制作一个(图1)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )4.下列说法正确的是( )A .要想了解NBA 各球队在2007赛季的比赛结果,应采用民意调查法B .某工厂质检人员检测灯泡的使用寿命采用普查法C .要了解某小组各学生某次数学测试成绩采用抽样调查法D .了解我市中学生的身体素质状况采用抽样调查法祝 成预 图1A.B.C.D.5.如图2,O 是ABC △的外接圆,已知50ABO ∠=,则ACB ∠的大小为( )A .40B .30C .45D .506.下列说法错误..的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为13B .不可能事件发生机会为0C .买一张彩票会中奖是可能事件D .一件事发生机会为0.1%,这件事就有可能发生 7.一元二次方程2210x x --=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根D .没有实数根8.函数(0)y kx k k =+≠在直角坐标系中的图象可能是( )9.巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为12米,在如图4所示的坐标系中,这支喷泉的函数关系式是( )A .2132y x ⎛⎫=--+ ⎪⎝⎭B .21312y x ⎛⎫=-+ ⎪⎝⎭C .21832y x ⎛⎫=--+ ⎪⎝⎭D .21832y x ⎛⎫=-++ ⎪⎝⎭10.“五一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x 元,男装部购买了原价为y 元服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( )图3A. B.C. D.yxO图4A .5800.80.85700x y x y +=⎧⎨+=⎩B .7000.850.8580x y x y +=⎧⎨+=⎩C .7000.80.85700580x y x y +=⎧⎨+=-⎩D .7000.80.85580x y x y +=⎧⎨+=⎩第II 卷 非选择题(共120分)二、填空题(每小题3分,共30分,把答案直接填写在题中横线上) 11.12-的相反数是 ,倒数是 ,平方等于 。
12.函数y =的自变量x 的取值范围为 。
13.如图5,点P 在双曲线(0)ky k x=≠上,点(12)P ',与点P 关于y 轴对称,则此双曲线的解析式为。
14.分解因式:3a a -=。
15.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个 三角形。
16.某承陶瓷市场现出售的有边长相等的正三角形、正方形、正五边形的地板砖,某顾客想买其中的两种..镶嵌着铺地板,则他可以选择的是。
17.2007年4月,巴中市出租车收经费方式全面调整,具体收费方式如下,行驶距离在3千米以内(包括3千米)付起步价3元,超过3千米后,每多行驶1千米加收1.4元,试写出乘车费用y (元)与乘车距离x (千米)(x>3)之间的函数关系式为 。
18.某射击运动员五次射击成绩分别为9环,6环,7环,8环,10环,则他这五次成绩的平均数为 ,方差为 。
19.2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的 (填“平均数”或“中位数”或“众数”)。
20.先阅读下列材料,然后解答问题:从A ,B ,C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯。
2),图5一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法。
问题:从某学习小组10人中选取3人参加活动,不同的选法共有种。
三、解答题(每小题6分,共18分)21.计算:3012007)6tan30)3-⎛⎫+- ⎪⎝⎭22.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭23.解不等式组12(1)01132x x x --<⎧⎪⎨-+<⎪⎩ ① ②四、解答题(24题9分,25题10分,26题12分,共31分)24.如图6,将AOC △各顶点的横纵坐标分别乘以-2作为对应顶点的横纵坐标,得到所得的111AO C △。
①在图中画出所得的111AO C (4分)②猜想111AO C △与AOC △的关系,并说明理由(5分)25.如图7,在Rt ABC △中,90C ∠=,60A ∠=,点E ,F 分别在AB ,AC 上,把A ∠沿着EF 对折,使点A 落在BC 上点D 处,且使ED BC ⊥。
(1)猜测AE 与BE 的数量关系,并说明理由。
(5分) (2)求证:四边形AEDF 是菱形(5分)26.巴中市进行课程改革已经五年了,为了了解学生对数学实验教材的喜欢程度,现对某中学初中学生进行了一次问卷调查,具体情况如下:①已知该校初一共月480人,求该校初中学生总数。
(2分) ②求该校初二学生人数及其扇形的圆心角度数。
(3分)③请补全统计表,并制作条形统计图来反映统计表中的内容。
(5分)④请计算不喜欢此教材的学生的频率,并对不喜欢此教材的同学提出一条建议,希望能通过你的建议让他喜欢上此教材。
(2分)五、(10分)27.赵明暑假到光雾山旅游,从地理课上知道山区气温会随着海拔高度的增加而下降,沿途他利用随身所带的登山表,测得以下数据:图7初一 初二 初三图8(1)现以海拔高度为x 轴,气温为y 轴建立平面直角坐标系(如图9),根据上表中提供的数据描出各点。
(3分)(2)已知y 与x 之间是一次函数关系,求出这个关系式。
(5分)(3)若赵明到达光雾山山巅时,测得当时气温为19.4C,请求出这里的海拔高度。
(2分)六、(10分)28.如图10所示,某学校拟建两幢平行的教学楼,现设计两楼相距30米,从A 点看C 点,仰角为5;从A 点看D 点,俯角为30,解决下列问题:(1)求两幢楼分别高多少米?(结果精确到1米)(6分)(2)若冬日上午9:00太阳光的入射角最低为30(光线与水平线的夹角),问一号楼的光照是否会有影响?请说明理由,若有,则两楼间距离应至少相距多少米时才会消除这种影响?(结果精确到1米)(4分)(参考数据:tan50.0875≈tan300.5774≈cos30 1.732≈ )图10图9七、(10分)29.在学习勾股定理时,我们学会运用图(I )验证它的正确性;图中大正方形的面积可表示为2()a b +,也可表示为2142c ab ⎛⎫+⎪⎝⎭,即221()42a b c ab ⎛⎫+=+ ⎪⎝⎭ 由此推出勾股定理222a b c +=,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”。
(1)请你用图(II )(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等)。
(3分)(2)请你用(III )提供的图形进行组合,用组合图形的面积表达式验证222()2x y x xy y +=++(3分) (3)请你自己设计图形的组合,用其面积表达式验证: 22()()()x p x q x px qx pq x p q x pq ++=+++=+++(4分)。
八、(11分)如图12,ABCD 的对角线所在直线建立平面直角坐标系,抛物线2y x bx c =++经过点B 且与直线AB 只有一个公共点。
(1)求直线AB 的解析式.(3分)(2)求抛物线2y x bx c =++的解析式.(3分)(3)若点P 为(2)中抛物线上一点,过点P 作PM x ⊥轴于点M ,问是否存在这样的点P ,使PMC ADC △△?若存在,求出点P 的坐标;若不存在,请说明理由。
(5分)图12。