基于MATLAB的灰色预测模型
- 格式:pdf
- 大小:107.41 KB
- 文档页数:3
基于MATLAB的灰色预测GM(1,1)模型在经济分析中的
应用
宋秀英
【期刊名称】《数学学习与研究:教研版》
【年(卷),期】2011(000)011
【摘要】灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律.MATLAB具有强大的数据处理和分析功能,可以方便、快捷、准确、直观地进行预测分析.本文介绍了灰色预测模型GM(1,1)的基本原理和精度检验方法,并用GM(1,1)模型对经济指标进行了预测.考虑到人工计算的复杂性和不准确性,本文将MATLAB程序用于GM(1,1)模型对经济指标的预测中,得到了理想的预测结果.
【总页数】3页(P93-95)
【作者】宋秀英
【作者单位】四川信息职业技术学院数学教研室,628017
【正文语种】中文
【中图分类】N941.5
【相关文献】
1.灰色预测系统GM(1,1)模型及其Matlab实现 [J], 殷鹏远
2.改进的灰色预测GM(1,1)模型的MATLAB实现 [J], 杨旭
3.灰色预测GM(1,1)模型在大学普及率中的应用研究
——基于西藏GER的实证分析 [J], 邱婧玲
4.灰色预测GM(1,1)模型在大学普及率中的应用研究--基于西藏GER的实证分析[J], 邱婧玲
5.福建省2030年碳达峰前二氧化碳排放趋势研究——基于GM(1,1)、GM(2,1)与GM(1,1)邓聚龙灰色预测模型 [J], 柳尧云;林润玮;阎虎勤
因版权原因,仅展示原文概要,查看原文内容请购买。
GM(1,1)灰色预测模型IntroductionInitial给定原始序列:x(0) =(x(0)(1), x(0)(2), x(0)(3)…, x(0)(n))Step 1一次AGO(1-AGO)生成序列,以弱化原始序列的随机性和波动性:x(1) =(x(1)(1), x(1)(2), x(1)(3)…, x(1)(n)) Matlab Programclearsyms a b;c=[a b]';fid=fopen('.\Grey Model\test.txt');x0=fscanf(fid,'%f');x0=x0';fclose(fid);x1=cumsum(x0); %原始数据累加n=length(x0);for i=1:(n-1)z(i)=(x1(i)+x1(i+1))/2; %生成累加矩阵end%计算待定参数的值Y=x0;Y(1)=[];Y=Y';B=[-z;ones(1,n-1)];B=B';c=inv(B'*B)*B'*Y;c=c';a=c(1);b=c(2);%预测后续数据%预测之后10个时间单位的数据xx1=[];xx1(1)=x0(1);for i=2:(n+10)xx1(i)=(x0(1)-b/a)/exp(a*(i-1))+b/a; endxx0=[];xx0(1)=x0(1);Step 2(1) dx (1)dt+ax (1)(t )=u ,式中a, u 为待定系数。
灰微分方程模型为:x (0)(k )+az (1)(k )=u ,z 为背景值z (1)(k )=1/2(x (1)(k )+x (1)(k −1))(2) 构造矩阵B 和数据向量Y nY n =Ba ̂Y n =[ x (0)(2)x (0)(3)⋮x (0)(n )] , B =[ −1/2(x (1)(1)+x (1)(2)),−1/2(x (1)(2)+x (1)(3)),⋮−1/2(x (1)(n −1)+x (1)(n )), 1 1 ⋮ 1]a ̂=(au)=(B T B)−1B T Y nStep 3模型响应函数x ̂(1)(k +1)=(x (0)(1)−u a )e −ak +u ax ̂(0)(k +1)=x ̂(1)(k +1)−x ̂(1)(k )Step 4检验和判断GM(1,1)模型的精度 (1) 残差检验for i=2:(n+10)xx0(i)=xx1(i)-xx1(i-1); end%关联度检验 for i=1:ne(i)=abs(x0(i)-xx0(i)); endmmax=max(e); for i=1:nee(i)=0.5*mmax/(e(i)+0.5*mmax); endr=sum(ee)/n; %后验差检验x0bar=sum(x0)/n; s1=0; for i=1:ns1=s1+(x0(i)-x0bar)^2; ends1=sqrt(s1/n); s2=0;ebar=sum(e)/n; for i=1:ns2=s2+(e(i)-ebar)^2; ends2=sqrt(s2/n); C=s2/s1; p=0;for i=1:nif abs(e(i)-ebar)<0.6745*s1绝对误差:ε(k)=|x(0)(k)−x̂(0)(k)|相对误差:Φ(k)=ε(k)x(0)(k)(2) 关联度检验分辨率β一般取0.5,此时若关联度大于0.6则认为模型可接受(3) 后验差检验和小误差概率原始序列标准差:S1=√∑[x(0)(i)−x̅(0)]2n绝对误差序列标准差:S2=√∑[ε(i)−ε̅]2n计算方差比:C=S2S1小误差概率:P=P{|ε(i)−ε̅|<0.6745S1}p=p+1;endendp=p/n;Cpif p>0.95&C<0.35disp('预测精度好');else if p>0.8&C<0.5disp('预测合格');else if p>0.7&C<0.65disp('预测勉强合格'); elsedisp('预测不合格'); endendend%原始数据与预测数据进行比较t1=1:n;t2=1:(n+10);xx0plot(t1,x0,'o',t2,xx0)。
%x=[1019,1088,1324,1408,1601];gm1(x); 测试数据%二次拟合预测GM(1,1)模型function gmcal=gm1(x)if nargin==0x=[1019,1088,1324,1408,1601]endformat long gsizex=length(x);%求数组长度k=0;for y1=xk=k+1;if k>1x1(k)=x1(k-1)+x(k);%累加生成z1(k-1)=-0.5*(x1(k)+x1(k-1));%z1维数减1,用于计算Byn1(k-1)=x(k);elsex1(k)=x(k);endend%x1,z1,k,yn1sizez1=length(z1);%size(yn1);z2 = z1';z3 = ones(1,sizez1)';YN = yn1'; %转置%YNB=[z2 z3];au0=inv(B'*B)*B'*YN;au = au0';%B,au0,auafor = au(1);ufor = au(2);ua = au(2)./au(1);%afor,ufor,ua%输出预测的 a u 和 u/a的值constant1 = x(1)-ua;afor1 = -afor;x1t1 = 'x1(t+1)';estr = 'exp';tstr = 't';leftbra = '(';rightbra = ')';%constant1,afor1,x1t1,estr,tstr,leftbra,rightbrastrcat(x1t1,'=',num2str(constant1),estr,leftbra,num2str(afor1),tstr,rightbra,'+ ',leftbra,num2str(ua),rightbra)%输出时间响应方程%******************************************************%二次拟合k2 = 0;for y2 = x1k2 = k2 + 1;if k2 > kelseze1(k2) = exp(-(k2-1)*afor);endend%ze1sizeze1=length(ze1);z4 = ones(1,sizeze1)';G=[ze1' z4];X1 = x1';au20=inv(G'*G)*G'*X1;au2 = au20';%z4,X1,G,au20Aval = au2(1);Bval = au2(2);%Aval,Bval%输出预测的 A,B的值strcat(x1t1,'=',num2str(Aval),estr,leftbra,num2str(afor1),tstr,rightbra,'+',lef tbra,num2str(Bval),rightbra)%输出时间响应方程nfinal = sizex-1 + 1;(其中+1可改为+5等其他数字,即可预测更多的数字)%决定预测的步骤数5 这个步骤可以通过函数传入%nfinal = sizexd2 - 1 + 1;%预测的步骤数 1for k3=1:nfinalx3fcast(k3) = constant1*exp(afor1*k3)+ua;end%x3fcast%一次拟合累加值for k31=nfinal:-1:0if k31>1x31fcast(k31+1) = x3fcast(k31)-x3fcast(k31-1);elseif k31>0x31fcast(k31+1) = x3fcast(k31)-x(1);elsex31fcast(k31+1) = x(1);endendendx31fcast%一次拟合预测值for k4=1:nfinalx4fcast(k4) = Aval*exp(afor1*k4)+Bval;end%x4fcastfor k41=nfinal:-1:0if k41>1x41fcast(k41+1) = x4fcast(k41)-x4fcast(k41-1);elseif k41>0x41fcast(k41+1) = x4fcast(k41)-x(1);elsex41fcast(k41+1) = x(1);endendendx41fcast,x%二次拟合预测值%***精度检验p C************////////////////////////////////// k5 = 0;for y5 = xk5 = k5 + 1;if k5 > sizexelseerr1(k5) = x(k5) - x41fcast(k5);endend%err1%绝对误差xavg = mean(x);%xavg%x平均值err1avg = mean(err1);%err1avg%err1平均值k5 = 0;s1total = 0 ;for y5 = xk5 = k5 + 1;if k5 > sizexelses1total = s1total + (x(k5) - xavg)^2;endends1suqare = s1total ./ sizex;s1sqrt = sqrt(s1suqare);%s1suqare,s1sqrt%s1suqare 残差数列x的方差 s1sqrt 为x方差的平方根S1 k5 = 0;s2total = 0 ;for y5 = xk5 = k5 + 1;if k5 > sizexelses2total = s2total + (err1(k5) - err1avg)^2; endends2suqare = s2total ./ sizex;%s2suqare 残差数列err1的方差S2Cval = sqrt(s2suqare ./ s1suqare);Cval%nnn = 0.6745 * s1sqrt%Cval C检验值k5 = 0;pnum = 0 ;for y5 = xk5 = k5 + 1;if abs( err1(k5) - err1avg ) < 0.6745 * s1sqrtpnum = pnum + 1;%ppp = abs( err1(k5) - err1avg )elseendendpval = pnum ./ sizex;pval%p检验值%arr1 = x41fcast(1:6)%预测结果为区间范围预测步长和数据长度可调整程序参数进行改进运行结果x =1019 1088 1324 1408 1601ans =x1(t+1)=8908.4929exp(0.11871t)+(-7889.4929)ans =x1(t+1)=8945.2933exp(0.11871t)+(-7935.7685)x31fcast =Columns 1 through 31019 1122.89347857097 1264.43142178303 Columns 4 through 61423.80987235488 1603.27758207442 1805.36675232556 x41fcast =Columns 1 through 31019 1118.05685435129 1269.65470492098 Columns 4 through 61429.69153740195 1609.90061644041 1812.82460377782 x =1019 1088 1324 1408 1601Cval =0.139501578334155 pval =1。
灰色预测心设尹曲⑴#为原始数列,其1次累<加生成数列为炉=(孝①宀2\S,其中©=2^°:⑺卫=12…止i-1尋定文沙的灰导数为d(Jt)=玄㈣(Jt)=尤⑴的-工⑴(*-1).令尹为数列壬⑴的邻值生成数列,即尹)(町=加小(町十(1—a)x山(k-1).于是定文GM(1T1)的灰微分方程模型为d(k)+az①(上)=&_即或.严⑹+盘⑴懐)=乩⑴在式(1)中口①的称为灰导数’熬称为发展系数'弧称为白化背景值,b称为灰作用量。
将时刻表庄=23…用代入(O式有j<0)(2)-az⑴(2)=工®⑶—俺叫巧=»于是GMIL)樫型可表示为r=现在问题归结为求巧h在值。
用一元绒性回归,即最小二垂進求它们的估计值住=[]卜护跖护F奕厢上回归分析中求诂计值是用软件计算的,有标淮程博求解,如山訥甜等。
GM(1.1)的白化型对于的(1-1)的获微分方程⑴,如果将解导教矿悶的时報=%…屮观対连续叢里"则工⑴衩为时间i函敕卅®,于是-<'W耐应于导敕重级必%),白化背杲值刃(時对应于导數申⑴。
于是GM(1,1)的换微分方嗨对应于的白微分方程为写®4曲%「)=也⑵GAI(1>1)换色预刪的步叢1-數堀的椅噓弓处理为了保证©M(B1)屋複方达的可行性・需要対已却皴堀锁必要的检峻处Ho 设療皓数攥列为了-计算埶列的级比如果所有的级比都落在可容覆盖区间盂-內・则數摒列X糾可咲建立G*ICL-1)複型且可以避行页色预测。
否则,丙軌据懺适当的叢换处理,如平移銮换:取C使得敕培列严⑹二工蚀盘)+匚用二12…”的级比都落在可啓禎盖内。
(1)残差檢验:计算相对薙差Z 建立GM (L T 1)複型不妬设少弋以m 叫唠霸足上面的要求,以它芮議堀列建立GM(1>1)型蛊(仍(i)+血C1\A)=b ・用回归分祈求得目上的估计值"于是相应的白化模型为 气^十小卄工解为工叱)=0)①—勺中1-色-⑶ 应Q于是停到预测值壬⑴(上+1)=0叫1)一勺>加+仝血二12…卫一1=aa伙而相应地得到预«=x co \t +1)=x 0)(t+l)-x a)(i)3i =1,2,-?n-l ?如果对所有的^<0.1・则认为达到鞭嵩的要求:否则,若耐所有的|^)1<0^,则认対达到一般要求©(2)级比偏差値桧验:计算能)=1-呂学©如果对所有的|,则认为达列较高的要求孑吾则若对斫有的,则认为达到一般要求O灰色预测计算实例^…;=:=-■■■■昏例北方某城市1986—1992年道路交通噪声平均声级数据见表6序号年吶寺表拆市近年来交通噪声数据[眶(应)]二諾;二319S872.4第—爭:级比检验建立丢通噪屛均声级数锯时间序列如下:4198972.1j 1990?1.4 619?17201199771.6艸=(•严①卫购(2)厂卅⑺) =(711,72.4.71.4,72.1.71.4,7UQ.71.6)些(1)求级比k(k)忠防护住T)2=(几⑵山⑶.…也⑺)g=(0.982JJ.0042J.0098-0.9917J.0056)(2)级比判断由于所有的X.(10e[0.982J.009S],k=2,3.6故可以用双0)作满意的GM(1,1)建模’第二步:GM(1,1)建模(1)对原始数据X®作一次累加,即卞⑴=(71.L143.5215.9.288359.4.431.4,503)(2)构造数据矩阵B及数据向量Y-2)—H 弋3/>1⑶讦算1T心求解得F'⑴=(工倒〔1〉_-)e 弋Q f+-1*^+1)=0<l,U)--)£-t +-=-3092^--^+31000⑶求生咸数列值歸型齊看:n令“is 那血由上面的碉醯数可甲得,其中取菱由龙⑴(i}=恥壮曲5加得丁I —"炉閃=进悶-进德-尊(71儿72.4.72.2:72.1:71.9:71.7,71.6)^}=(s"a >亍⑴⑵,…,网⑺A<第三步;模型检验•>模型的各种检验指标值的计算结果见表工 •t*表7GM(1检验表<序号年俯原始值模型值残差相对误差级比偏差•>1 19S6 71.1 71.1<219S7 72.4 72.4 -0.0057 0.01%0.0023 <3 19S S 72.4 72.2 0.163S 0.23%0.0203 •>4 19S9 72.1 72.1 0.0329 0.05%-O.(K H8 •>5199071.4 71.9 -0-49S4 0.7%-0.0074 <61991 72.0 71.7 0.21599 037%0.0107<71992 71.6 71.6 0.037S0.05%-0.0032于是得到目=山的餡,立欖型7-B)'1B TY=(dt0.0023 72.6573dt+0.002ix (1>=72.657^心经验证・该模型的精度较高.可进行预测和预报计算的Matlab 程序如下:仃坝测和预报n=length(x); z=0;%取输入数据的样本量for i=1:nz=z+x(i,:)be(i,:)=z; %计算累加值,并将值赋予矩阵beend for i=2:n %对y(i-1,:)=x(i,:)%对原始数列平行移位 endfor i=1:n-1%计算数据矩阵B 的第一列数据c(i,:)=-0.5*(be(i,:)+be(i+1,:)); clCjdearxO=[71H 72.472A 72J71477m c n.lengthtxO);*'b%注意这里为列帖lamda =xD(l :n-1),A0(2:n)%计算级比range =minmaxflamda f )%计算级比的范阖 X1=cumsum(xO);%累加运算B=['0,5*(xl(l ;n ^l)+xl(2:n))t ones(n -1,1)]TY 二甸(2:町;口=B\Y%拟合参数u(l>=a .u(2)=bx=dsolve (+a 'x =b\f x(0)-xO^J ;%求徴分方程的特号解x =subs(xJ*a\,b r /xO ,Mu(l)P u(2)t xO(l)|)i%代入荷计痹擞值和初蜡值yucel =subs %求巳知数擁的扳测位y-vpa(x,6)奄其中的石表示显不白位数字yuce=[x0(l)T diff(yucel)]%羔分运算,还原数据 epsiIon=-yuce%计算战羞作用:求累加数列、求ab 的值、求预测方程、求残差clc %清屏,以使结果独立显示x=[71.172.472.472.171.472.071.6]; format long ;%设置计算精度if length(x(:,1))==1%对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x endM.I-JTVorhlllst 模型endfor j=1:n-1%计算数据矩阵B的第二列数据e(j,:)=1;endfor i=1:n-1%构造数据矩阵BB(i,1)=c(i,:);B(i,2)=e(i,:);endalpha=inv(B'*B)*B'*y;%计算参数矩阵即ab的值for i=1:n+1%计算数据估计值的累加数列,如改为n+1为n+m可预测后m-1个值ago(i,:)=(x(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1,:)*(i-1))+alpha( 2,:)/alpha(1,:);%显示输出预测值的累加数列endvar(1,:)=ago(1,: )for i=1:n%显示输出预测值%如改n为n+m-1,可预测后m-1个值var(i+1,:)=ago(i+1,:)-ago(i,:);%估计值的累加数列的还原,并计算出下一预测值endfor i=1:nerror(i,:)=x(i,:)-var(i,:);%计算残差endc=std(error)/std(x);%调用统计工具箱的标准差函数计算后验差的比值cago alpha var%显示输出预测值的累加数列%显示输出参数数列%显示输出预测值error %显示输出误差c %显示后验差的比值作用:数据处理判断是否可以用灰色预测、求级比、求累加数列、求ab的值、求预测方程clc,clearx0=[71.172.472.472.171.472.071.6]';%注意这里为列向量n=length(x0);lamda=x0(1:n-1)./x0(2:n)%计算级比range=minmax(lamda')%计算级比的范围x1=cumsum(x0)%累加运算B=[-0.5*(x1(1:n-1)+x1(2:n)),ones(n-1,1)];Y=x0(2:n);u=B\Y%拟合参数u(1)=a,u(2)=bx=dsolve('Dx+a*x=b','x(0)=x0');%求微分方程的符号解x=subs(x,{'a','b','x0'},{u(1),u(2),x0(1)})%代入估计参数值和初始值yuce1=subs(x,'t',[0:n-1]);%求已知数据的预测值y=vpa(x,6)%其中的6表示显示6位数字yuce=[x0(1),diff(yuce1)]%差分运算,还原数据。
灰色系统预测GM(1,1)模型及其Matlab 实现预备知识(1)灰色系统白色系统是指系统内部特征是完全已知的;黑色系统是指系统内部信息完全未知的;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。
(2)灰色预测 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行 预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此得到的数据集合具备潜在的规律。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
目前使用最广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM(1,1)模型。
它是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。
经证明,经一阶线性微分方程的解逼近所揭示的原始时间序列呈指数变化规律。
因此,当原始时间序列隐含着指数变化规律时,灰色模型GM(1,1)的预测是非常成功的。
1 灰色系统的模型GM(1,1)1.1 GM(1,1)的一般形式设有变量X (0)={X (0)(i ),i =1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X(0)进行一次累加(1—AGO , Acum ul at ed Ge nera ting Opera to r)生成一次累加序列: X (1)={X(1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k-1)+ X (0)(k) (1)对X(1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即G M(1,1)模型。
上述白化微分方程的解为(离散响应): ∧X(1)(k +1)=(X (0)(1)-a u )ake -+au (3)或∧X (1)(k )=(X (0)(1)-a u ))1(--k a e +au (4)式中:k 为时间序列,可取年、季或月。