梁灿彬《电磁学》考研核心题库之计算题精编
- 格式:pdf
- 大小:11.30 MB
- 文档页数:38
《电磁学》计算题(附答案)1.如图所示,两个点电荷+ q 和一3q ,相距为d.试求:(1)在它们的连线上电场强度 E = 0的点与电荷为+ q 的点电荷相距多远?⑵ 若选无穷远处电势为零,两点电荷之间电势U=0的点与电荷为+ q 的点电荷相距多远?For pers onal use only in study and research; not for commercial use-92. 一带有电荷q = 3X 10 C 的粒子,位于均匀电场中,电场方向如图 所示.当该粒子沿水平方向向右方运动 5cm 时,外力作功6X 10-5 J ,粒子动能的增量为 4.5X 10- J.求:(1)粒子运动过程中电场力作功 多少?(2)该电场的场强多大? 3. 如图所示,真空中一长为 L 的均匀带电细直杆,总电荷为试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.For pers onal use only in study and research; not for commercial use4. 一半径为R 的带电球体,其电荷体密度分布为r=Ar (r w R) ,?=0 (r > R)A 为一常量.试求球体内外的场强分布.For pers onal use only in study and research; not for commercial use5. 若电荷以相同的面密度■:角匀分布在半径分别为 r i = 10 cm 和「2= 20 cm 的两个同心球面上, 设无穷远处电势为零,已知球心电势为 300 V ,试求两球面的电荷面密度/ N • m 2 )6.真空中一立方体形的高斯面 ,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x = bx , E y =0 , E z =0.For personal use only in study and research; not for commercial use常量b = 1000 N/(C • m ).试求通过该高斯面的电通量.-67. 一电偶极子由电荷 q = 1.0 X 10 C 的两个异号点电荷组成,两电荷相距1 = 2.0 cm .把这电偶极子+q-3qd10.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x = bx , E y = 0, E z = 0.咼斯面边长 a = 0.1 m ,常量 b = 1000 N/(C • m ).试求该闭合面中包含的净电荷.(真空介电常数 0=8.85 X 10-12 C 2 • N -1 • m -2 )11.有一电荷面密度为 曲勺"无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12.如图所示,在电矩为p 的电偶极子的电场中, 将一电荷为q 的点电荷从点沿半径为R 的圆弧(圆心与电偶极子中心重合, R>>电偶极子正负电荷之 间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为 E = 5 X 104 N/C ,方向竖直朝上,把一电荷为-8 X 10 C 的点电荷,置于此电场中的a 点,如图所示•求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径I 移到右方同高度的b 点,ab = 45 cm ;沿直线路径n 向下移到 c 点, ac = 80 cm ;d 点,ad = 260 cm (与水平方向成 45。
大学电磁学考研题库与答案大学电磁学考研题库与答案电磁学是物理学的重要分支,研究电荷、电流和电磁场之间的相互作用。
在大学物理学习中,电磁学是一个重要的课程,对于理解电磁现象和应用具有关键作用。
而在考研中,电磁学也是一个重要的科目,掌握电磁学的基本原理和解题方法对于考研的成功至关重要。
下面我们来介绍一些大学电磁学考研题库与答案。
第一题:电场强度与电势的关系电场强度是描述电场的物理量,而电势则是描述电场中某一点的电能。
它们之间存在一定的关系,请问电场强度与电势之间的关系是什么?答案:电场强度与电势之间的关系可以通过电场强度的梯度来描述。
具体来说,电场强度的负梯度等于电势,即E = -∇V其中,E表示电场强度,V表示电势,∇表示梯度运算符。
这个关系可以帮助我们计算电场强度和电势之间的转换。
第二题:电场中的高斯定律高斯定律是电磁学中的重要定律之一,它描述了电场与电荷之间的关系。
请问高斯定律的表达式是什么?答案:高斯定律的表达式为∮E·dA = Q/ε0其中,∮E·dA表示电场在闭合曲面上的通量,Q表示闭合曲面内的总电荷量,ε0表示真空介电常数。
这个定律可以帮助我们计算电场在不同形状的闭合曲面上的通量。
第三题:电磁感应定律电磁感应定律是电磁学中的另一个重要定律,它描述了磁场变化引起的感应电动势。
请问电磁感应定律的表达式是什么?答案:电磁感应定律的表达式为ε = -dφ/dt其中,ε表示感应电动势,dφ/dt表示磁通量的变化率。
这个定律可以帮助我们计算磁场变化引起的感应电动势。
第四题:安培环路定理安培环路定理是电磁学中的另一个重要定律,它描述了电流与磁场之间的相互作用。
请问安培环路定理的表达式是什么?答案:安培环路定理的表达式为∮B·dl = μ0I其中,∮B·dl表示磁场在闭合回路上的环路积分,I表示通过闭合回路的总电流,μ0表示真空磁导率。
这个定律可以帮助我们计算磁场在不同形状的闭合回路上的环路积分。
///5.1.1 解答:(1) 质子所受洛伦兹力的方向向东(2) 质子的电荷量191.610q C -=⨯,质子所受洛伦兹力大小为163.210F qvB N -==⨯质子的质量271.6710m kg -=⨯,质子所受洛伦兹力与受到的地球引力相比较:101.9510F qvB F mg==⨯洛重 5.2.1 解答:O 点的磁场B 可看作两条半无限长直载流导线产生的磁场1B 、2B 和MN 部分阶段1/4圆周载流导线产生的磁场3B 的合成。
由于磁场方向均垂直纸面向外,所以直接求出它们大小并相加即可0012cos0cos 424I IB B R Rμμπππ⎛⎫==-=⎪⎝⎭ 40032448I IB Rd R Rππμμαπ-==⎰0123124I B B B B R μππ⎛⎫=++=+ ⎪⎝⎭方向垂直纸面向外 5.2.2 解答:(a )延长线通过圆心的直长载流导线在O 点产生磁场为1B ,其大小为0;另一直长载流导线在O 点产生的磁场为2B ,方向垂直纸面向里;圆弧部分载流导线在O 点产生的磁场为3B ,方向垂直纸面向里。
故O 点的合磁场大小为0001233314842I I I B B B B R R R μμμπππ⎛⎫=++=+=+ ⎪⎝⎭方向垂直纸面向里(b )两半直长载流导线在O 点产生的磁场分别为1B 、2B ,方向均垂直纸面向里;圆弧部分载流导线在O 点产生的磁场为3B ,方向垂直纸面向里。
故O 点的合磁场大小为()000012324444I I I IB B B B R R R Rμμμμππππ=++=++=+ 方向垂直纸面向里 5.2.3 解答:(a )因为两直长载流导线延长线均通过圆心,所以对O 点的磁场没有贡献,故只需要考虑两个圆弧载流导线在O 点产生的磁场,它们所激发的磁场分别为1B 、2B ,方向均垂直纸面向里,故O 点的合磁场大小为00123312248I I B B B a b a b ππμμπ⎛⎫⎪⎛⎫=+=+=+ ⎪ ⎪⎝⎭ ⎪⎝⎭方向均垂直纸面向里(b )两延长线的直长载流导线对O 点的磁场没有贡献,只需要考虑两长度为b 的直长载流导线对O 点的磁场1B 、2B 和圆弧载流导线对O 点的磁场3B ,方向均垂直纸面向里,其合磁场大小为()0001232332cos90cos13524442a I I I B B B B b a b a πμμμππππ⎛⎫⎛⎫⎪=++=-⨯+=+ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭方向均垂直纸面向里。
习题一1.2 写出以下时谐变量的复数表示(if have) (2) ()8sin 8cos()2I t t t πωω=-=+288jI e j π==(4) 266jC ej π-==-(6) 1()cos()cos(2)262U t t ππω⎡⎤=-+⎢⎥⎣⎦频率不一样,不能用复数表述1.3 写出下面复数对应的时谐变量(3) 0.82()Re{}Re{(34)}3cos()4cos(0.8)2jj tj j t C t Ce ee e t t πωωπωω==+=+++*3写出下面时谐矢量的复矢量表示(1) 000()3cos 4sin cos()2U t tx ty t z πωωω=+++复数表示022000000343(4)j j j U e x e y e z x jy jz ππ-=++=+-+(3) 0()0.5cos()H t kz t x ω=-0()0.5c o s ()H t t k z x ω=- 所以00.5jkz H e x -=*4(3) 00exp()exp()C jkz x j jkz y =-+00()Re{}cos()(1)sin()j t C t C e t kz x t kz y ωωω==-+--1.4 1(2)(2)1A B j j =---+-=-0000000001121(34)(13){(12)}1(12)(44)(13)(1)x y z A B j j x j x j y j j z j j j x j y j z ⎛⎫ ⎪⨯=+=-⨯+-+-++-++ ⎪ ⎪--+⎝⎭=--+-+*000(12)B x j y jz =----*1(12)(12)()12212A B j j j j j j j =---++-=----+=--00*0001126(1)(1)112)x y z A B j j x j x j z j j ⎛⎫ ⎪⨯=+=-++-+ ⎪ ⎪----⎝⎭*000Re{}6A B x y z ⨯=--*7 假定300056A x yzy x z =++ ,求A ∇⨯ ,A ∇ .00020036(3)56x y z A yx x y x y z yzx ⎛⎫ ⎪∂∂∂⎪∇⨯==-- ⎪∂∂∂ ⎪⎝⎭, 3000000()(56)6A x y z x yzy x z z x y z∂∂∂∇=++++=∂∂∂*10 证明 1) r r r ∇= 2) 3r ∇= 3) 22r r r ∇∇=∇=4) 31r r r∇=- 5) 0r ∇⨯=6) 2114()r r r πδ∇∇=∇=- 证明000r xx yy zz =++r =1) 000(r r x y z x y z r ∂∂∂∇=++=∂∂∂2) 000000()()3r x y z xx yy zz x y z ∂∂∂∇=++++=∂∂∂3) 3132()r r r r r r r r r r r r ∇∇∇=∇=+∇=-=4) 23111dr r r r r dr r r r∇=∇=-=-5) 0000x y z r x y z x y z ⎛⎫ ⎪∂∂∂ ⎪∇⨯== ⎪∂∂∂ ⎪⎝⎭6) 当0r ≠,323333341()113()()(())33()0d r r r r r r r r r r r drr r r r r∇∇=∇-=-+∇=-+∇=--=对于0r =的点作包含0r =的体积分20321114v s r ds dv dv ds r ds r r r r r π∇=∇∇=∇==-=-⎰⎰⎰⎰⎰所以等式成立习题二2.1已知0.042/R m '=Ω, 7510/L H m -'=⨯, 7510/G S m -'=⨯, 30.5/C pF m '=,求,c k Z .解: jk ==Z ==2.2 3(0)13L C v L C Z Z Z Z -Γ==+ 驻波系数 1|(0)|1.61|(0)|v v ρ+Γ==-Γ(0)max min max (0)|(0)|(0)00,44j v v e d d d ψλλψΓ=Γ∴==>==+=max 0d =故max V 出现在Z=0处,即max 5L V V V ==,maxmin 5/1.6 3.0125V V ρ===(0)tan ()(0)tan c cc Z jZ kzZ z Z Z jZ kz-=- (0)L Z Z =,2k πλ=4l λ=,2250080c in L Z Z Z == 2l λ=,2225008031.25c in in Z Z Z λ===(相当于平移)max min ||I v d d =,故maxmax 0.1cV I A Z ==,2.3 8l λ=,L tan 525.995050tan 50525.99o L c in c oc Z jZ kz j Z Z Z jZ kz j +∠+==++∠ 4l λ=,22250050025.99525.99oc in oin Z Z Z λ===∠-∠ 38l λ=,tan 525.995050(0)tan 50525.99o L c in c oc Z jZ kz j Z Z Z jZ kz j -∠-==--∠minmin max min ||0.0627I v cV d d I A Z ===2.4 10.8 1.010.2 1.0(0)0.8 1.01 1.8 1.01LL C C v LL C CZ Z Z Z j j Z Z Z j j Z --+--+Γ====+++++ ||0.4953v Γ= (a)1||2.91||v v ρ+Γ==-Γ(b) 0.8, 1.0L L R X j == =>2(0)arctan() 1.270.64ψ===> m i n 1(0)0.3544d λλπψ=+= (c) 2||0.25r i P P=Γ=(d) max min min1max1(0)|| 1.5,||0.5,0.35,0.0984V V d d λπψ===== |(0)||1(0)| 1.2488V =+Γ=2.52||r i P P =Γ,max minV V ρ=121.25, 1.5ρρ==,12121211||0.11,||0.211v v ρρρρ--Γ==Γ==++,所以传输线1效率高 功率上, max ||12C V P Z ρ=,121280,100,P P P P ==<2.15 0.3cm fλ==,0.0754l m λ==匹配器长度,270.71C Z ===Ω匹配器特征阻抗tan tan L c in cc L Z jZ kl Z Z Z jZ kl +=+,||||0.1in Cv in CZ Z f Z Z -Γ=<=>+的范围习题三3.1求以下量纲(1) E D (2) H B (3) S3/J m 3/J m 2/w m3.2 写出以下时谐矢量的复矢量表示 (1) 000()3cos 4sin cos()2V t tx ty t z πωωω=+++解: 200034j V x jy e z π=-+(2) 00()(3cos 4sin )8(cos sin )E t t t x t t z ωωωω=++-解: 00(34)8(1)E j x j z =-++(3) 0()0.5cos()H t kz t x ω=-解: 00.5jkz H e x -=3.3 从复矢量写出相应的时谐矢量 (1) 00C x jy =-解: 0000()Re[]Re[]cos sin j t j t j t C t C e x e je y tx ty ωωωωω==-=+(3) 00exp()exp()C jkz x j jkz y =-+解: 0000()Re[exp()exp()]cos()sin()C t j t jkz x j j t jkz y t kz x t kz y ωωωω=-++=--+3.4 无源空间00H zy yz =+,D 是否随时间变化? 解0DH H t∂∇⨯==>∇⨯=∂,所以D 是否随时间变化. 3.10 一点电荷(电量为510C -)作圆周运动,其角速度1000/rad s ω=,圆周半径r=1cm,如图3.10,求圆心处的位移电流密度.解000220000(cos sin )44qqE r tx ty R R ωωπεπε==+002(sin cos )4d D q J tx ty t R ωωωπ∂==-+∂3.11 假定0000(),()jz jz E x jy e H y jx e --=+=-,求S 以及<S>解0000()Re[()]cos()sin()jz j t E t x jy e e t z x t z y ωωω-=+=---00()cos()sin()H t t z y t z x ωω=-++0()()()S t E t H t z=⨯=*0000011()Re[]Re[()()]22jz jz S t E H x jy e y jx e z -<>=⨯=+⨯-=习题四4.1 写出,,,,k f T ωλ的单位 解: /,/,,rad s rad m Hz m4.2 激光器输出波长76.32810m -⨯,计算它的,,f T k 。
3.2.1 解答:(1)如图3.2.1所示,偶极子的电荷量q 和q -所受的电场力分别为qE 和qE -,大小相等,合力为0,但所受的力矩为M P E =⨯当且仅当0θ=和θπ=时,电偶极子受的力矩为0,达到平衡状态,但在0θ=的情况下稍受微扰,电偶极子将受到回复力矩回到平衡位置上,因此,0θ=时,是稳定平衡;但在θπ=的情况下稍受微扰,电偶极子受到的力矩将使电偶极子“倾覆”到达0θ=情况,因此,θπ=的情况是不稳定平衡。
(2)若E 不均匀,一般情况下,偶极子的电荷量q 和q -所受的电场力不为0,电场力将使偶极子转向至偶极矩P 与场强E 平行的情况,由于电场不均匀,偶极子所受的合力不为0.因此,电偶极子不能达到平衡状态。
3.2.2 解答:(1)如图3.2.2所示,偶极子1P 和2P 中的2q -处激发的电场为13222p E kl r -=⎛⎫- ⎪⎝⎭2q -所受的电场力为2123222q p F q E kl r ---=-=⎛⎫- ⎪⎝⎭偶极子1P 和2P 中的2q 处激发的电场为13222p E kl r +=⎛⎫+ ⎪⎝⎭2q 所受的电场力为2123222q p F q E kl r ++==⎛⎫+ ⎪⎝⎭偶极子2P 受到的合力为()332221222l l F F F k q p r r --+-⎡⎤⎛⎫⎛⎫=+=+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦令22l x ≡,()()3f x r x -≡+,()()3g x r x -≡-,则()()330,0f r g r --==,故()()()()()()4444'3,'3,'03,'03f x r x g x r x f r g r ----=-+=-=-=因22l r >>,对22l r ⎛⎫+ ⎪⎝⎭和22l r ⎛⎫- ⎪⎝⎭在0r =处展开后,略去高次项 ()()()()()()3434'003,0'03f x f x f r r x g x g g x r r x ----≈+=-=+=+()()46f x g x xr --=-所以()42121221440033(2)62q p l p p F k q p xr r rπεπε--=-=-= 其大小为124032p p F r πε=以上是1P 和2P 同向的情况,反向时大小不变,受力方向相反。