八年级数学知识竞赛试卷
- 格式:doc
- 大小:421.00 KB
- 文档页数:7
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
八年级数学学校竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 根号2C. 0.33333...D. 42. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -84. 一个正数的倒数是1/6,这个正数是多少?A. 6B. 1/6C. 1/3D. 35. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 256. 一个数列的前三项是2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定7. 下列哪个是二次方程?A. x + 3 = 0B. x^2 + 5x + 6 = 0C. x^3 - 2 = 0D. x - 4 = 08. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是多少?A. 24B. 12C. 16D. 89. 如果一个数的立方根是3,这个数是多少?A. 27B. 9C. 3D. 610. 下列哪个是多项式?A. x + 2B. x^2 - 3x + 1C. x^3 - 2x + 1D. x - 5二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可以是________。
12. 如果一个二次方程的解是x=2和x=3,那么这个二次方程可以是__________。
13. 一个圆的直径是10,那么它的周长是__________。
14. 一个数的平方是25,这个数可以是__________。
15. 一个等差数列的前三项是1, 4, 7,那么第四项是__________。
三、解答题(每题5分,共55分)16. 解释什么是有理数和无理数,并给出两个例子。
17. 证明勾股定理。
18. 解释什么是等差数列,并给出一个等差数列的例子。
八年级数学竞赛题试卷一、选择题(每题5分,共30分)1. 若公式,公式,则公式的值为()A. 5B. 6C. 7D. 8解析:根据完全平方公式公式,已知公式,公式,则公式,所以答案是A。
2. 已知公式,则分式公式的值为()A. 公式B. 9C. 1D. 公式解析:由公式可得公式,即公式,公式。
将公式变形为公式,把公式代入可得:公式,所以答案是A。
3. 若关于公式的方程公式有增根,则公式的值为()A. -4或6B. -4或1C. 6或1D. -4或6或1解析:先将方程化为整式方程,方程两边同乘公式得:公式,公式,公式。
因为方程有增根,所以公式或公式。
当公式时,公式,公式,公式;当公式时,公式,公式,公式。
所以答案是A。
二、填空题(每题5分,共30分)1. 分解因式公式______。
解析:先提取公因式公式,再利用平方差公式,公式。
2. 若公式,则公式______。
解析:根据完全平方公式公式,已知公式,则公式,所以公式。
3. 已知公式是方程公式的一个根,则公式______。
解析:因为公式是方程公式的根,所以公式,即公式。
则公式。
三、解答题(每题20分,共40分)1. 先化简,再求值:公式,其中公式。
解析:化简原式:\[\begin{align}&(\frac{(x 1)^{2}}{(x + 1)(x 1)}+\frac{1}{x})\div\frac{1}{x + 1}\\ =&(\frac{x 1}{x + 1}+\frac{1}{x})\div\frac{1}{x + 1}\\=&(\frac{x(x 1)+(x + 1)}{x(x + 1)})\div\frac{1}{x + 1}\\=&\frac{x^{2}-x+x + 1}{x(x + 1)}\times(x + 1)\\=&\frac{x^{2}+1}{x}\end{align}\]当公式时,公式。
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。
2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。
3. 一个数的立方根是2,那么这个数是________。
4. 一个数的倒数是1/2,那么这个数是________。
5. 一个圆的半径是5cm,那么它的直径是________cm。
三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。
2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。
一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是:A. -3B. -2C. 0D. 12. 如果一个数的平方等于4,那么这个数是:A. ±2B. ±1C. ±4D. ±33. 下列各式中,正确的是:A. 3x + 2 = 2x + 5B. 2(x + 3) = 2x + 6C. 3x - 2 = 2x - 5D. 2(x - 3) = 2x - 94. 一个长方形的长是8厘米,宽是5厘米,它的周长是:A. 16厘米B. 20厘米C. 24厘米D. 32厘米5. 如果a > b,那么下列不等式中不正确的是:A. a + 3 > b + 3B. a - 3 < b - 3C. a + 2 > b + 2D. a - 2 < b - 2二、填空题(每题5分,共25分)6. 若x² - 4x + 3 = 0,则x的值为______。
7. 若a² - 5a + 6 = 0,则a的值为______。
8. 若3a - 2 = 5,则a的值为______。
9. 若2x + 3 = 11,则x的值为______。
10. 若x - 7 = 3,则x的值为______。
11. 若a² = 25,则a的值为______。
12. 若|a| = 5,则a的值为______。
三、解答题(每题10分,共30分)13. 解方程:2x - 5 = 3x + 1。
14. 解方程:x² - 6x + 9 = 0。
15. 已知等腰三角形的底边长为10厘米,腰长为13厘米,求该三角形的周长。
四、应用题(每题15分,共30分)16. 一辆汽车从甲地出发,以每小时60千米的速度行驶,3小时后到达乙地。
然后汽车以每小时50千米的速度返回甲地,返回时遇到一辆自行车,自行车从乙地出发,速度为每小时15千米,自行车与汽车相遇后继续向甲地行驶,汽车与自行车相遇后继续行驶,直到返回甲地。
初二数学竞赛试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333…D. 3答案:B2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的面积是多少?A. 12B. 15C. 18D. 20答案:B3. 如果一个数的平方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D4. 一个两位数,十位上的数字比个位上的数字大3,这个两位数可能是:A. 23B. 47C. 52D. 69答案:B5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 一个数的相反数是-5,那么这个数是:A. 5C. 0D. 10答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 以上都是答案:D9. 一个等差数列的前三项分别是2,5,8,那么这个数列的第五项是多少?A. 11B. 12C. 13答案:A10. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C二、填空题(每题4分,共20分)11. 一个等腰直角三角形的斜边长为10厘米,那么这个三角形的面积是______平方厘米。
答案:2512. 如果一个数的立方等于8,那么这个数是______。
答案:213. 一个数的平方根是3,那么这个数是______。
答案:914. 一个数的倒数是1/4,那么这个数是______。
答案:415. 一个圆的周长是31.4厘米,那么这个圆的半径是______厘米。
答案:5三、解答题(每题10分,共40分)16. 已知一个等腰三角形的底边长为8,腰长为10,求这个三角形的高。
解:根据勾股定理,设高为h,则有:h^2 + (8/2)^2 = 10^2h^2 + 16 = 100h^2 = 84h = √84 = 2√21答:这个三角形的高是2√21。
一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。
12. 下列分数中,最简分数是______。
13. 下列数中,能被5整除的是______。
14. 下列方程中,方程的解为x=3的是______。
15. 下列数中,平方根是正数的是______。
16. 下列代数式中,合并同类项后的结果为5x的是______。
17. 下列函数中,函数值为0的x值有______。
18. 下列数中,是合数的是______。
19. 下列图形中,面积最小的是______。
20. 若a=2,b=4,则a×b的值为______。
三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。
初中八年级数学竞赛试题一、选择题(每题3分,共30分)1. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 82. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. -43. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²4. 如果一个数的绝对值是3,那么这个数可能是:A. 3B. -3C. 3或-3D. 05. 下列哪个分数是最简分数:A. 4/8B. 5/10C. 3/4D. 6/96. 一个正整数n,如果n²+n+1是质数,那么n的取值范围是:A. n=0B. n=1C. n=2D. n=-17. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,它的体积是:A. 72 cm³B. 144 cm³C. 216 cm³D. 432 cm³8. 一个数列的前三项是2, 4, 6,如果这是一个等差数列,那么第四项是:A. 8B. 9C. 10D. 119. 一个数的立方根是2,这个数是:A. 6B. 8C. 4D. 210. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是_________。
12. 一个直角三角形的两个锐角的度数之和是_________。
13. 如果一个数的立方是-8,那么这个数是_________。
14. 一个数的倒数是1/4,那么这个数是_________。
15. 一个圆的直径是10厘米,那么它的周长是_________厘米。
三、解答题(共50分)16. (10分)解方程:2x + 5 = 1717. (15分)证明:在一个直角三角形中,如果一条直角边是另一条直角边的两倍,那么斜边是这条直角边的根号3倍。
一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. -3.14B. 0.101010...C. √2D. 52. 如果一个数的平方是4,那么这个数是()A. 2B. -2C. ±2D. 03. 下列各组数中,成等差数列的是()A. 1, 3, 5, 7B. 2, 4, 6, 8C. 3, 6, 9, 12D. 4, 8, 12, 164. 下列各式中,正确的是()A. (a+b)² = a² + b²B. (a-b)² = a² - b²C. (a+b)² = a² +2ab + b² D. (a-b)² = a² - 2ab + b²5. 下列各式中,正确的是()A. (x+y)(x-y) = x² - y²B. (x+y)(x-y) = x² + y²C.(x+y)(x-y) = x² + 2xy + y² D. (x+y)(x-y) = x² - 2xy + y²6. 下列函数中,是反比例函数的是()A. y = x²B. y = 2xC. y = 1/xD. y = 2x + 17. 下列各式中,正确的是()A. 2a²b³c = 2abc²B. 2a²b³c = 2ab²c³C. 2a²b³c = 2abc³D. 2a²b³c = 2ab³c²8. 下列各式中,正确的是()A. √(a² + b²)= a + bB. √(a² + b²) = a - bC. √(a² +b²) = |a + b| D. √(a² + b²) = |a - b|9. 下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C.(a+b)² = a² - 2ab + b² D. (a-b)² = a² + 2ab + b²10. 下列函数中,是二次函数的是()A. y = x²B. y = x³C. y = 2x + 1D. y = 1/x二、填空题(每题3分,共30分)11. 已知等差数列的首项为2,公差为3,求第10项的值。
八年级数学知识竞赛试卷
班级 座号 姓名
一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、在实数2,0.3, 310,22
7
, 3131131113.0(每两个3之间依次多一个1)中,无理数的个数是
A 、1
B 、2
C 、3
D 、4
2、下列美丽的图案中,是轴对称图形的是
3、下列各式正确的是
A 、164=±
B 、3273-=-
C 、93-=-
D 、1125593
= 4、函数3
2+-=
x x
y 中自变量x 的到值范围是 A 、2≤x B 、3=x C 、32≠≥x x 且 D 、32-≠≤x x 且 5、如图,90BAC ∠=︒,BD DE ⊥,CE DE ⊥,添加下列条件 后仍不能使ABD ∆≌CAE ∆的条件是
A 、AD AE =
B 、AB A
C = C 、B
D A
E = D 、AD CE = 二、细心填一填(6×3分=18分)
6、25-的相反数是 ,绝对值是 .
7、直线y = 2x +6与两坐标轴围成的三角形面积是 .
8、点P (1,2)关于x 轴对称的点的坐标是 ,关于直线y =-1对称的点的坐标是 .
9、如图,△ABC 是等腰直角三角形,△DEF 是一个含300
角的直角三角形,将D 放在BC 的中点上,转动△DEF ,设DE ,DF 分别交AC ,BA 的延长线于E ,G ,则下列结论 ① AG =CE ②DG =DE
A .
B .
C .
D .
A
F
D
B
C
G
D
A E
C
B
第5题图
③BG -AC =CE ④S △BDG -S △CDE = 1
2 S △ABC
其中总是成立的是 (填序号)
10、一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图3所示
当时 0≤
x ≤1,y 关于x 的函数解析式为
y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____________.
三、用心做一做(本大题共7小题,满分46分) 11、求下列各式的值:(本题6分=3分×2)
(1)9+25+327- (2)(
)
1232----
12、(本题6分=3分×2)如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE =CD , AD 与BE 相交于点F . (1)求证:ABE ∆≌△CAD ; (2)求∠BFD 的度数.
O
1
2
160
第10题图
x
y 第20题图
13、(本题6分)若a 、b 为实数,且22
4472
a a
b a -+-=++,求a +b 的平方根.
14、(本题6分=3分×2)已知一次函数经过点A (3,5)和点B (-4,-9).
(1)求此一次函数的解析式; (2)若点)2,(m C 是该函数上一点,求C 点坐标.
15、(本题3分=3分×2)如图,四边形ABCD 是长方形. (1)作△ABC 关于直线AC 对称的图形; (2)试判断(1)中所作的图形与△ACD 重叠部分
的三角形形状,并说明理由.
D C
B
A
第23题图
16、(本题8分=4分×2)如图,在等腰Rt △ABC 中,∠ACB =90o ,AC=CB ,F 是AB 的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD=CE ,连接DE 、DF 、EF .
求证:
(1)△ADF ≌△CEF ; (2)△DFE 是等腰直角三角形.
17、(本题8分=3分×2+2分)现计划把甲种货物1 240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂A 、B 两种不同规格的车厢共40节,使用A 型车厢每节费用为6 000元,使用B •型车厢,费用为每节8 000元.
(1)设运送这批货物的总费用为y 万元..
,这列货车挂A 型车厢x 节,试求出y 与x 之间的函数关系式.
(2)如果每节A 型车厢最多装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可
装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种...安排车厢方案? (3)最低运费是多少?
E
F
B
C
A
D 第24题图
附:答案(八年级)
题号 1 2 3 4 5 答案
C
D
B
D
A
6、52-,25-;
7、9 ;
8、)2,1(1-P 、)4,1(2-P ;
9、①②③④; 10、)21(40100≤≤-=x x y ; 11、 (1) 9+25+327-
=3+5-3
=5 ……………………………………3分 (2) (
)1
232---
-
=
)12()23(---- ……………………………………4分
=1223+-+- ……………………………………5分 =-2 ……………………………………6分 12、(1)在ABE ∆和△CAD 中
⎪⎩
⎪⎨⎧==∠=∠=CD AE ACD BAE AC
AB 0
60 ……………………………………2分
ABE ∆∴≌△CAD (SAS ) ……………………………………3分 (2)ABE ∆ ≌△CAD
CAD ABE ∠=∠∴ ……………………………………4分
BAF
CAD BAF
ABF BFD ∠+∠=∠+∠=∠∴ ……………………………………5分
=60º ……………………………………6分
13、22
4472
a a
b a -+-=++
⎪⎩
⎪⎨⎧≠+≥-≥-0204042
2a a a ……………………………………3分
7,2==∴b a ……………………………………4分
9=+∴b a ……………………………………5分
39±=±=+±∴b a ……………………………………6分
14、(1)设其解析式为)0(≠+=k b kx y
则⎩⎨
⎧+-=-+=b
k b
k 4935 ……………………………………1分
⎩
⎨⎧-==∴12
b k ……………………………………2分 12-=∴x y 其解析式为 ……………………………………3分
(2)上在点12)2,(-=x y m C ……………………………………4分 122-=∴m
2
3
=
∴m ……………………………………5分 )2,2
3
(的坐标为点C ∴ ……………………………………6分
15、(1)过点B 作直线AC 的对称点B '
连AB '交CD 于点E ,连CB ',则△AB 'C 为所求;
B '
E
B
C
D
A ……………………………………3分
(2)AEC ∆为等腰三角形 ……………………………………4分 理由如下:
中和在E CB ADE '
∆∆
⎪⎩
⎪⎨⎧==∠=∠∠=∠'0
''90CB AD B D EC
B DEA
ADE ∆∴≌)('
AAS E CB ∆ ……………………………………5分 CE AE =∴,AEC ∆为等腰三角形 ……………………………………6分
16、(1)BF AF BC AC ==,
EFC
DFC AFD A FCE FB
AF CF ∠=∠-=∠=∠=∠∴==∴00
9045
……………………………………1分
⎪⎩
⎪
⎨⎧∠=∠=∠=∠∆∆EFC AFD CF
AE ECF A CEF ADF 中和在 ……………………………………3分
ADF ∆∴≌)(ASA CEF ∆ ……………………………………4分
(2)ADF ∆ ≌CEF ∆ ……………………………………5分
EF DF =∴ ……………………………………6分
090=∠+∠=∠+∠∴CFD AFD CFD CFE ………………………………7分
△DFE 是等腰直角三角形 ……………………………………8分 17、解:(1)设用A 型车厢x 节,则用B 型车厢(40-x )节,总运费为y 万元,……… 1分
依题意有y =0.6x +0.8(40-x )=-0.2x +32. ……………… 3分 (2)依题意,得3525(40)1240,
1535(40)880,
x x x x +-≥⎧⎨
+-≥⎩ ………………… 4分
化简,得10240,
52020.x x x ≥⎧⎨≥⎩
∴24≤x ≤26.……………… 5分
∴有三种装车方案: ①24节A 车厢和16节B 车厢; ②25节A 型车厢和15节B 型车厢;
③26节A 型车厢和14节B 型车厢. ………………… 6分
(3)由函数y =-0.2x +32知,当x =26时,运费最省,
这时y =-0.2×26+32=26.8万元. …………………… 8分。