高三数学三角函数、解三角形章末复习测试(有答案)
- 格式:doc
- 大小:19.97 KB
- 文档页数:5
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
高三数学三角函数与解三角形多选题测试试题含答案一、三角函数与解三角形多选题1.已知函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭且对于R x ∀∈都有144f x f x ππ⎛⎫-=- ⎪⎛⎫⎝⎭+ ⎪⎝⎭成立.现将函数()2sin 6f x x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度,再把所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数066g x g x ππ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭B .函数()g x 相邻的对称轴距离为πC .函数23g x π⎛⎫+ ⎪⎝⎭是偶函数 D .函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增 【答案】ABCD 【分析】先利用已知条件求出()f x 的周期T π=,即可得2ω=,再利三角函数图象的平移伸缩变换得()g x 的解析式,在逐一判断四个选项的正误即可得正确选项. 【详解】因为对于R x ∀∈都有144f x f x ππ⎛⎫-=-⎪⎛⎫⎝⎭+ ⎪⎝⎭成立 所以()12f x f x π=-⎛⎫+ ⎪⎝⎭,()12f x f x ππ⎛⎫+=- ⎪+⎝⎭, 所以()()()11f x f x f x ππ=-=+-+对于R x ∀∈都成立, 可得()f x 的周期T π=,所以22Tπω==, 所以()2sin 26f x x π⎛⎫=+⎪⎝⎭, 将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位长度,可得 2sin 22sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再把所有点的横坐标伸长到原来的2倍可得()2sin 6g x x π⎛⎫=- ⎪⎝⎭,对于选项A:()2sin 2sin 2sin 2sin 0666666g x g x x x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫-++=--++-=-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选项A 正确;对于选项B :函数()g x 周期为221T ππ==,所以相邻的对称轴距离为2Tπ=,故选项B正确;对于选项C :222sin 2sin 2cos 3362g x x x x ππππ⎛⎫⎛⎫⎛⎫+=+-=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭是偶函数,故选项C 正确; 对于选项D :当63x ππ≤≤,066x ππ≤-≤,所以函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,故选项D 正确, 故选:ABCD 【点睛】关键点点睛:本题解题的关键点是由144f x f x ππ⎛⎫-=-⎪⎛⎫⎝⎭+ ⎪⎝⎭恒成立得出 ()()f x f x π=+可得ω的值,求出()f x 的解析式.2.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则下列说法正确的是( )A .存在ϕ,使得()f x 是偶函数B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【分析】 根据3()8f x f π⎛⎫≤⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案. 【详解】08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N ,故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误;当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确; 故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力.3.已知函数()()()sin 0,0,0πf x A x B A ωϕωϕ=++>><<的部分自变量、函数值如下表所示,下列结论正确的是( ).A .函数解析式为()5π3sin 226f x x ⎛⎫ ⎝=⎪⎭++ B .函数()f x 图象的一条对称轴为2π3x =- C .5π,012⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D .函数()f x 的图象左平移π12个单位,再向下移2个单位所得的函数为奇函数 【答案】ABD 【分析】首先根据表格,利用最值求A 和B ,再根据周期求ω,以及根据最小值点求ϕ,求得函数的解析式,再分别代入23x π=-和512x π=-,判断BC 选项,最后根据平移规律求平移后的解析式. 【详解】由表格可知,2B =, 函数的最大值是5,所以25A B A +=+=,即3A =, 当3x π=时,函数取得最小值,最小值点和相邻的零点间的距离是71234πππ-=,所以12244ππωω⨯=⇒=, 当3x π=时,322,32k k Z ππϕπ⨯+=+∈,解得:526k πϕπ=+,0ϕπ<<, 56πϕ∴=,所以函数()53sin 226f x x π⎛⎫=++ ⎪⎝⎭,故A 正确; B.当23x π=-时,252362πππ⎛⎫⨯-+=- ⎪⎝⎭,能使函数取得最小值,所以23x π=-是函数的一条对称轴,故B 正确; C.当512x π=-时,5520126ππ⎛⎫⨯-+= ⎪⎝⎭,此时2y =,所以5,212π⎛⎫- ⎪⎝⎭是函数的一个对称中心,故C 不正确; D.函数向左平移12π个单位后,再向下平移2个单位后,得()53sin 2223sin 23sin 2126y x x x πππ⎡⎤⎛⎫=+++-=+=- ⎪⎢⎥⎝⎭⎣⎦,函数是奇函数,故D 正确.故选:ABD思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证次区间是否是函数sin y x =的增或减区间.4.将函数()2πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π6个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .π4g ⎛⎫= ⎪⎝⎭B .π,06⎛⎫⎪⎝⎭是函数()g x 图象的一个对称中心 C .函数()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增D .函数()g x 在ππ,63⎡⎤-⎢⎥⎣⎦上的值域是22⎡-⎢⎣⎦【答案】BC 【分析】首先求得函数()sin 23g x x π=-⎛⎫⎪⎝⎭,再根据选项,整体代入,判断函数的性质. 【详解】()2sin 2sin 2633g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,1sin 462g ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故A 错误;sin 0633g πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;0,4x π⎡⎤∈⎢⎥⎣⎦时,2,,33622x πππππ⎡⎤⎡⎤-∈-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()g x 在0,4⎡⎤⎢⎥⎣⎦π上单调递增,故C 正确;,63x ππ⎡⎤∈-⎢⎥⎣⎦时,22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当232x ππ-=-时,函数取得最小值-1,当233x ππ-=⎡-⎢⎣⎦.故选:BC思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.5.已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线3x π=对称,则( )A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增 C .函数()f x 的图象向右平移()0a a >个单位长度得到的函数的图象关于6x π=对称,则a 的最小值是3π D .若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根1x ,2x ,则12x x -的最大值为3π【答案】ACD 【分析】 由条件可得13f π⎛⎫=±⎪⎝⎭,可得6πϕ=-从而得出()f x 的解析式, 选项A 先得出12f x π⎛⎫+ ⎪⎝⎭的表达式,可判断;选项B 求出函数的单调区间,可判断;选项C 根据图象平移变换得出解析式,可得答案;选项D 作出函数的图像,根据图象可判断. 【详解】 根据条件可得23sin 333f ππϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭,所以2,32k k Z ππϕπ+=+∈ 则,6k k Z πϕπ=-∈,由22ππϕ-<<,所以6πϕ=-所以()3sin 26f x x π⎛⎫=- ⎪⎝⎭选项A. 3sin 212f x x π⎛⎫+= ⎪⎝⎭为奇函数,故A 正确.选项B. 由3222262k x k k Z πππππ+≤-≤+∈, 2522233k x k k Z ππππ+≤≤+∈, 536k x k k Z ππππ+≤≤+∈, 当0k =时,536x ππ≤≤,所以函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,故选项B 不正确. 选项C. 函数()f x 的图象向右平移()0a a >个单位长度得到, ()3sin 23sin 2266y x a x a ππ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭ 根据条件可得当6x π=时,3sin 23sin 23366a a πππ⎛⎫⎛⎫--=-=±⎪ ⎪⎝⎭⎝⎭所以2,62a k k Z πππ-=+∈,则1,26a k k Z ππ=--∈ 由0a >,则当1k =-时,a 有的最小值是3π,故C 正确. 选项D. 作出()3sin 26f x x π⎛⎫=-⎪⎝⎭的图象,如图 当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,由()3f x =,可得3x π= 由33sin 662f ππ⎛⎫== ⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,由()32f x =,可得2x π= 当332a ≤<时,方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根1x ,2x ,则1x +223x π= 设1x <2x ,则1211122233x x x x x ππ⎛⎫-=--=- ⎪⎝⎭,162x ππ⎡⎫∈⎪⎢⎣⎭,如图当32a =时,1x ,2x 分别为6π,2π时,12x x -最大,最大值为3π,故D 正确.故选:ACD【点睛】关键点睛:本题考查三角函数()sin y A x ωϕ=+的图像性质,考查三角函数的图象变换,解答本题的关键是根据正弦型函数的对称性求出ϕ的值,根据三角函数的对称性得到1211122233x x x x x ππ⎛⎫-=--=- ⎪⎝⎭,162x ππ⎡⎫∈⎪⎢⎣⎭,,属于中档题.6.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈ ⎪⎝⎭ C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确;对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确.故选:AC 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.7.函数()cos |cos |f x x x =+,x ∈R 是( ) A .最小正周期是π B .区间[0,1]上的减函数 C .图象关于点(k π,0)()k Z ∈对称 D .周期函数且图象有无数条对称轴 【答案】BD 【分析】根据绝对值的意义先求出分段函数的解析式,作出函数图象,利用函数性质与图象关系分别对函数的周期、单调区间、对称中心和对称轴进行判断求解.【详解】2cos (22)22()30(22)22x k x k f x k x k ππππππππ⎧-+⎪⎪=⎨⎪+<≤+⎪⎩,则对应的图象如图:A 中由图象知函数的最小正周期为2π,故A 错误,B 中函数在[0,]2π上为减函数,故B 正确,C 中函数关于x k π=对称,故C 错误,D 中函数由无数条对称轴,且周期是2π,故D 正确 故正确的是B D 故选:BD【点睛】本题考查由有解析式的函数图象的性质. 有关函数图象识别问题的思路:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复.8.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是3D .若8+=b c ,则ABC 73【答案】ACD【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D.【详解】依题意,设4,5,6b c k c a k a b k +=+=+=,所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==,故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯= 222222.5 1.5 3.515028k k +-==-<, 故选项B 不正确;若6c =,则4k =,所以14,10a b ==, 所以222106141cos 21062A +-==-⨯⨯,所以sin A =,故ABC 的面积是:11sin 61022bc A =⨯⨯= 故选项C 正确;若8+=b c ,则2k =,所以7,5,3a b c ===, 所以2225371cos 2532A +-==-⨯⨯,所以sin A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin a A ⨯=, 故选项D 正确;故选:ACD.【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.二、数列多选题9.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( )A .22800a t =-B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a > 【答案】BC【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案.【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t ->, 所以11277()(2800)0552n n n t a a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.10.已知数列{}n a ,下列结论正确的有( )A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列 D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断.【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确. 选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12n n S =3+,可得当1n =时,11722a =+=3 当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭,当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误.选项D. 由122n n n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列. 所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.。
2024年高考数学总复习第四章《三角函数、解三角形》复习试卷及答案解析一、选择题1.sin215°-cos215°等于()A.-12B.12C.-32D.32答案C解析sin215°-cos215°=-(cos215°-sin215°)=-cos30°=-32.故选C.2.若sinα=45,则-22cosα等于()A.225B.-225C.425D.-425答案A解析-22 cosα=sinαcos π4+cosαsinπ4-22cosα=45×22=225.3.已知sinα=-45α是第四象限角,则sin()A.52 10B.325C.7210D.425答案C解析由同角三角函数基本关系可得cosα=1-sin2α==35,结合两角差的正弦公式可得sin π4cosα-cosπ4sinα=7210.故选C. 4.函数f(x)=sin x的最大值为()A.3B.2C.23D.4答案A解析函数f(x)=sin x=12sin x +32cos x +sin x =32sin x +32cos xx +12cos=3sin ≤3.故f (x )的最大值为3.故选A.5.已知函数f (x )=2cos(ωx +φ)->0,|φ|y =1相邻两个交点的距离为4π3,若f (x )>0对x -π8,φ的取值范围是()A.-π12,0-π8,-π24C.-π12,D.0,π12答案B解析由已知得函数f (x )的最小正周期为4π3,则ω=32,当x -π8,时,32x +φ-3π16+φ,3π8+因为f (x )>0,即+>12,φ≥-π3+2k π,≤π3+2k π(k ∈Z ),解得-7π48+2k π≤φ≤-π24+2k π(k ∈Z ),又|φ|<π8,所以-π8<φ≤-π24,故选B.6.(2019·山师大附中模拟)设函数f (x )=sin(2x +φ)(0<φ<π)在x =π6时取得最大值,则函数g (x )=cos(2x +φ)的图象()AB C .关于直线x =π6对称D .关于直线x =π3对称答案A解析因为当x =π6时,f (x )=sin(2x +φ)(0<φ<π)取得最大值,所以φ=π6,即g (x )=x+π6,k ∈Z ,对称轴x =k π2-π12,k ∈Z ,故选A.7.(2019·沈阳东北育才学校模拟)如图平面直角坐标系中,角α-π2<β边分别交单位圆于A ,B 两点,若B 点的纵坐标为-513,且满足S △AOB =34,则sinα2·α2-sin +12的值为()A .-513 B.1213C .-1213D.513答案B解析由图易知∠xOA =α,∠xOB =-β.由题可知,sin β=-513.由S △AOB =34知∠AOB =π3,即α-β=π3,即α=π3+β.则sinα2-sin +12=3sin α2cos α2-sin 2α2+12=32sin α-12(1-cos α)+12=32sin α+12cos α=β=cos β=1-sin 2β=1213.故选B.8.(2019·重庆铜梁一中月考)已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈-π12,2π3的图象如图,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)的值为()A.3B.2C .1D .0答案C解析由图象得3T 4=2π3--π12∴T =π,ω=2πT=2,由2sin π6×2+φ=2sin π3+φ=2,得π3+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),由x 1+x 2=π6×2=π3,得f (x 1+x 2)=f π3=2sin 2×π3+π6+2k π1,故选C.9.(2019·重庆巴蜀中学期中)已知f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2f ′(x 1)=f ′(x 2)=0,|x 1-x 2|的最小值为π2,f (x )=f π3-x 将f (x )的图象向左平移π6个单位长度得g (x ),则g (x )的单调递减区间是()A.k π,k π+π2(k ∈Z )B.k π+π6,k π+2π3(k ∈Z )C.k π+π3,k π+5π6(k ∈Z )D.k π+π12,k π+7π12(k ∈Z )答案A解析∵f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2,由f ′(x 1)=f ′(x 2)=0可得x 1,x 2是函数的极值点,∵|x 1-x 2|的最小值为π2,∴12T =πω=π2,∴ω=2,∴f (x )=sin(2x +θ),又f (x )=f π3-x ∴f (x )的图象的对称轴为x =π6,∴2×π6+θ=k π+π2,k ∈Z ,又θ∈0,π2∴θ=π6,∴f (x )=x 将f (x )的图象向左平移π6个单位长度得g (x )=sin 2+π6=cos 2x 的图象,令2k π≤2x ≤2k π+π,k ∈Z ,∴k π≤x ≤k π+π2,k ∈Z ,则g (x )=cos 2x 的单调递减区间是k π,k π+π2(k ∈Z ),故选A.10.(2019·成都七中诊断)已知函数f (x )=sin(ωx +φ)(其中ω>0)的最小正周期为π,函数g (x )=+3f (x ),若对∀x ∈R ,都有g (x )≤|,则φ的最小正值为()A.π3B.2π3C.4π3D.5π3答案B解析由函数f (x )的最小正周期为π,可求得ω=2,∴f (x )=sin(2x +φ),g (x )=+3f (x )=sin 2φ+3sin(2x +φ)=cos(2x +φ)+3sin(2x +φ)=x +φ∴g (x )=x +φ又g (x )≤|,∴x =π3是g (x )的一条对称轴,代入2x +φ+π6中,有2×π3+φ+π6=π2+k π(k ∈Z ),解得φ=-π3+k π(k ∈Z ),当k =1时,φ=2π3,故选B.11.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于()A .27B .4C .23D .33答案C 解析∵a cos B +b cos Ac=2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C ,∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6=2,=4=4,=2,c 2=a 2+b 2-2ab cos C =4+16-8=12,∴c =23,故选C.12.(2019·河北衡水中学调研)若函数f (x )=(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是(),112∪14,23,16∪13,23C.14,23 D.13,23答案B解析易知函数y =sin x 的单调区间为k π+π2,k π+3π2,k ∈Z .由k π+π2≤ωx +π6≤k π+3π2,k ∈Z ,得k π+π3ω≤x ≤k π+4π3ω,k ∈Z .因为函数f(x )=ω>0)在区间(π,2π)内没有最值,所以f (x )在区间(π,2π)内单调,所以(π,2π)⊆k π+π3ω,k π+4π3ω,k ∈Z ,所以π,2π,k ∈Z ,解得k +13ω≤k 2+23,k ∈Z .由k +13≤k 2+23,k ∈Z ,得k ≤23,k ∈Z .当k =0时,得13≤ω≤23;当k =-1时,得-23≤ω≤16.又ω>0,所以0<ω≤16.综上,得ω,16∪13,23.故选B.二、填空题13.(2019·陕西四校联考)已知sin α=2cos α,则cos 2α=________.答案-35解析由已知得tan α=2,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=1-44+1=-35.14.(2019·山师大附中模拟)已知=14,则x ________.答案78解析根据三角函数诱导公式,得=14,x x 2cos 1=78.15.(2019·武汉示范高中联考)函数y =sin x +cos x +2sin x cos x 的最大值为________.答案2+1解析令t =sin x +cos x ,则t =sin x +cos x=2sin t ∈[-2,2],则t 2=1+2sinx cos x ,所以sin x cos x =t 2-12,所以y =t 2+t -1-54,对称轴为t =-12,因为t ∈[-2,2],所以当t =2时取得最大值,为2+1.16.(2019·银川一中月考)已知函数f (x )=cos x sin x (x ∈R ),则下列四个命题中正确的是________.(写出所有正确命题的序号)①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.答案③④解析f (x 1)=-f (x 2),即12sin 2x 1=-12sin 2x 2,由f (x )图象(图略)可知,①错误;由周期公式可得T =2π2=π,②错误;由f (x )的图象可知,③正确;=12sin 3π2=-12④正确.故填③④.三、解答题17.(2019·抚州七校联考)已知函数f (x )=cos(ωx +φ>0,|φ的距离为π2,且f (x )的图象与y =sin x 的图象有一个横坐标为π4的交点.(1)求f (x )的解析式;(2)当x ∈0,7π8时,求f (x )的最小值,并求使f (x )取得最小值的x 的值.解(1)由题可知,T =π=2πω,ω=2,又×π4+sin π4,|φ|<π2,得φ=-π4.所以f (x )=x (2)因为x ∈0,7π8,所以2x -π4∈-π4,3π2,当2x -π4=π,即x =5π8时,f (x )取得最小值.f (x )min = 1.18.(2019·福建闽侯五校期中联考)已知向量a =(3sin x ,cos x ),b =(cos x ,-cos x ),f (x )=a ·b .(1)求f (x )的最小正周期和单调递增区间;(2)若x a ·b =-54,求cos 2x 的值.解(1)f (x )=a ·b =3sin x cos x -cos 2x=32sin 2x -cos 2x +12=x -12,∴f (x )的最小正周期是π.令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴k π-π6≤x ≤k π+π3(k ∈Z ),∴f (x )的单调递增区间为k π-π6,k π+π3(k ∈Z ).(2)∵a ·b =x -12=-54,∴x =-34.∵x∴2x -π6∈,∴x =-74,∴cos 2x =x +π6=x cos π6-x sinπ6=-74×32-×12=3-218.。
决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。
高考数学三角函数与解三角形多选题复习题含答案一、三角函数与解三角形多选题1.设函数()2sin sin 2cos2f x x x =++,给出下列四个结论:则正确结论的序号为( ) A .()20f >B .()f x 在53,2ππ⎛⎫--⎪⎝⎭上单调递增 C .()f x 的值域为[]12cos2,32cos2-++ D .()f x 在[]0,2π上的所有零点之和为4π 【答案】ABD 【分析】由()23sin 22cos2f =+,结合3224ππ<<,可判定A 正确;作出函数2sin sin y x x =+的图象,可得函数()f x 的值域及单调性,可判定B 正确,C 不正确;结合函数的图象,可得()f x 在[]0,2π上的所有零点之和,可判定D 正确. 【详解】由题意,函数()2sin sin 2cos2f x x x =++, 可得()22sin 2sin 22cos23sin 22cos2f =++=+ 因为3224ππ<<,所以sin 2cos20>->,所以()20f >,所以A 正确; 由3sin ,222sin sin ,sin ,222x k x k y x x k Z x k x k πππππππ≤≤+⎧=+=∈⎨-+≤≤+⎩,作出函数2sin sin y x x =+的图象,如图所示, 可得函数()f x 是以2π为周期的周期函数,由函数2sin sin y x x =+的图象可知,函数()f x 在3(,)2ππ上单调递增, 又由()f x 是以2π为周期的周期函数,可得函数()f x 在5(3,)2ππ--上单调递增, 所以B 是正确的;由由函数2sin sin y x x =+的图象可知,函数()f x 的值域为[2cos 2,32cos 2]+, 所以C 不正确; 又由2223ππ<<,所以1cos 202-<<,则02cos21<-<, 令()0f x =,可得2sin sin 2cos2x x +=-,由图象可知,函数()f x 在[]0,2π上的所有零点之和为4π,所以D 正确. 故选:ABD.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查转化思想,以及数形结合思想的应用,以及推理与运算能力,属于中档试题.2.函数()sin()f x x ωϕ=+的部分图像如图中实线所示,图中的M 、N 是圆C 与()f x 图像的两个交点,其中M 在y 轴上,C 是()f x 图像与x 轴的交点,则下列说法中正确的是( )A .函数()y f x =的一个周期为56B .函数()f x 的图像关于点4,03成中心对称C .函数()f x 在11,26⎛⎫-- ⎪⎝⎭上单调递增 D .圆C 的面积为3136π【答案】BD 【分析】根据图象,结合三角函数的对称性、周期性、值域以及圆的中心对称性,可得,,C M N 的坐标,进而可得()f x 的最小正周期、对称中心、单调减区间,及圆的半径,故可判断选项的正误. 【详解】由图知:1(,0)3C ,3)M ,23()3N , ∴()f x 中111()2362T =--=,即1T =;对称中心为1,0,23k k Z ⎛⎫+∈ ⎪⎝⎭;单调减区间为17,,1212k k k Z ⎡⎤++∈⎢⎥⎣⎦;圆的半径r ==,则圆的面积为3136π; 综上,知:AC 错误,而BD 正确. 故选:BD. 【点睛】本题考查了三角函数的性质,结合了圆的中心对称性质判断三角函数的周期、对称中心、单调区间及求圆的面积,属于难题.3.函数()sin 24f x x π⎛⎫=+⎪⎝⎭,则( ) A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到 B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称D .函数2()y x f x =+在08π⎛⎫⎪⎝⎭,上为增函数【答案】BCD 【分析】对四个选项,一一验证:对于选项A ,利用三角函数相位变化即可;对于选项B ,利用正弦函数的对称轴经过最高(低)点判断; 对于选项C ,利用正弦函数的对称中心直接判断; 对于选项D ,利用复合函数的单调性“同增异减”判断; 【详解】由题意,对于选项A ,函数sin 2y x =的图象向右平移4π个单位可得到()sin 2sin 2cos 242f x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以选项A 错误;对于选项B ,sin 21884f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,取到了最大值,所以函数()y f x =的图象关于直线8x π=轴对称,所以选项B 正确;对于选项C ,08f π⎛⎫-= ⎪⎝⎭,所以函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称,所以选项C 正确;对于选项D ,函数2yx 在08π⎛⎫ ⎪⎝⎭,上为增函数,08x π⎛⎫∈ ⎪⎝⎭,时,2442x πππ⎛⎫+∈ ⎪⎝⎭,,单调递增,所以函数2()y x f x =+在08π⎛⎫⎪⎝⎭,上为增函数,所以选项D 正确.故选:BCD. 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.4.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为π C .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可. 【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,由于(0)30f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确; 2sin 22sin 2sin 3222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=-≠± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.5.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭; 由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.6.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 的外接圆半径是3【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确;若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以sin A =,故ABC 的面积是:11sin 61022bc A =⨯⨯= 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以sin A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.7.已知函数22()(sin cos )2cos f x x x x =++,则( ) A .()f x 的最小正周期是πB .()f x 的图像可由函数()22g x x =+的图像向左平移8π个单位而得到 C .4x π=是()f x 的一条对称轴D .()f x 的一个对称中心是,08π⎛⎫- ⎪⎝⎭【答案】AB 【分析】首先化简函数()224f x x π⎛⎫=++ ⎪⎝⎭,再根据三角函数形式的公式,以及代入的方法判断选项. 【详解】()1sin 2cos 21224f x x x x π⎛⎫=+++=++ ⎪⎝⎭,A.函数的最小正周期22T ππ==,故A 正确;B.根据图象的平移变换规律,可知函数()22g x x =+的图像向左平移8π个单位而得到()222284f x x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,故B 正确;C.当4x π=时,32444πππ⨯+=,不是函数的对称轴,故C 不正确;D.当8x π=-时,2084ππ⎛⎫⨯-+= ⎪⎝⎭,此时函数值是2,故函数的一个对称中心应是,28π⎛⎫- ⎪⎝⎭,故D 不正确. 故选:AB 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.8.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos 10α=- B .sin cos 5αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.9.设函数()()1sin 022f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误.【详解】 ()3131sin sin sin cos sin 222226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦, 作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确;对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误;对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<, 此时,函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上不单调,C 选项错误. 故选:AD.【点睛】关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.10.在ABC 中,下列说法正确的是( )A .若AB >,则sin sin A B >B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤【答案】ABC【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD.【详解】A.A B >,a b ∴>,根据正弦定理sin sin a b A B =,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确.故选:ABC【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.。
三角函数与解三角形高考试题精选一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC 的面积为,求cosA与a的值.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.14.△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.15.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.三角函数与解三角形高考试题精选参考答案与试题解析一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【解答】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.【解答】(Ⅰ)解:由,得asinB=bsinA,又asinA=4bsinB,得4bsinB=asinA,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.【解答】解:(1)∵A为三角形的内角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,则S=acsinB=×××=.△ABC5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.【解答】解:(Ⅰ)在三角形ABC中,由cosA=﹣,可得sinA=,△ABC的面积为3,可得:,可得bc=24,又b﹣c=2,解得b=6,c=4,由a2=b2+c2﹣2bccosA,可得a=8,,解得sinC=;(Ⅱ)cos(2A+)=cos2Acos﹣sin2Asin==.8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC 的面积为,求cosA与a的值.【解答】解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.【解答】解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.或由A=,b2﹣a2=c2.可得:sin2B﹣sin2A=sin2C,∴sin2B﹣=sin2C,∴﹣cos2B=sin2C,∴﹣sin=sin2C,∴﹣sin=sin2C,∴sin2C=sin2C,∴tanC=2.(2)∵=×=3,解得c=2.∴=3.13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.14.△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.15.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1.21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.==1.∴S△ABC24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.【解答】解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.【解答】解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.【解答】解:(1)由余弦定理可知2accosB=a2+c2﹣b2;2abcosc=a2+b2﹣c2;代入3acosA=ccosB+bcosC;得cosA=;(2)∵cosA=∴sinA=cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣cosC+sinC ③又已知 cosB+cosC=代入③cosC+sinC=,与cos2C+sin2C=1联立解得 sinC=已知 a=1正弦定理:c===29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,利用正弦定理可得,即=.解得cosA=.(Ⅱ)由余弦定理可得 a2=b2+c2﹣2bc•cosA,即 9=+c2﹣2×2×c×,即 c2﹣8c+15=0.解方程求得 c=5,或 c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cosB==,cosA==,∴cos2A=2cos2A﹣1==cosB,∴B=2A,满足条件.综上,c=5.。
高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。
答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。
答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。
答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。
由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。
因此,AB =10×sin0°/sin30° = 0/0 = 0。
高考数学复习专题过关测评—三角函数与解三角形一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·江西临川期中)已知角θ的终边经过点P(√2,a),若θ=-π3,则a=()A.√6B.√63C.-√6 D.-√632.(2021·北京房山区一模)将函数f(x)=sin 2x的图象向左平移π6个单位长度得到函数y=g(x)的图象,则函数g(x)的图象的一条对称轴方程为()A.x=-π6B.x=-π12C.x=π12D.x=π63.(2021·北京西城区一模)在△ABC中,内角A,B,C所对的边分别为a,b,c,且C=60°,a+2b=8,sin A=6sin B,则c=()A.√35B.√31C.6D.54.(2021·山西吕梁一模)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π2)部分图象如图所示,则f(π3)=()A.√32B.12C.-√3D.√35.(2021·北京海淀区模拟)已知sin(π6-α)=13+cos α,则sin(2α+5π6)=()A.-79B.-4√39C.4√39D.796.(2021·福建福州期末)疫情期间,为保障市民安全,要对所有街道进行消毒处理,某消毒装备的设计如图所示,PQ为路面,AB为消毒设备的高,BC为喷杆,AB⊥PQ,∠ABC=2π3,C处是喷洒消毒水的喷头,且喷射角∠DCE=π3,已知AB=2,BC=1,则消毒水喷洒在路面上的宽度DE的最小值为()A.5√2-5B.5√2C.5√33D.5√37.(2021·浙江宁波模拟)在△ABC中,“tan A tan B>1”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2021·安徽淮北一模)函数f(x)=2sin x+π4+cos 2x的最大值为()A.1+√2B.3√32C.2√2D.3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在△ABC中,角A,B,C所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是()A.sin A∶sin B∶sin C=4∶5∶6B.△ABC是钝角三角形C.△ABC的最大内角是最小内角的2倍D.若c=6,则△ABC的外接圆半径R为8√7710.(2021·江苏苏州月考)已知函数f(x)=(sin x+√3cos x)2,则()A.f(x)在区间[0,π6]上单调递增B.f(x)的图象关于点(-π3,0)对称C.f(x)的最小正周期为πD.f(x)的值域为[0,4]11.(2021·辽宁沈阳二模)关于f(x)=sin x·cos 2x的说法正确的为()A.∀x∈R,f(-x)-f(x)=0B.∃T≠0,使得f(x+T)=f(x)C.f(x)在定义域内有偶数个零点D.∀x∈R,f(π-x)-f(x)=012.(2021·山东潍坊统考)在△ABC中,内角A,B,C所对的边分别为a,b,c,若1tanA ,1tanB,1tanC依次成等差数列,则下列结论不一定成立的是()A.a,b,c依次成等差数列B.√a,√b,√c依次成等差数列C.a2,b2,c2依次成等差数列D.a3,b3,c3依次成等差数列三、填空题:本题共4小题,每小题5分,共20分.13.(2021·安徽合肥期中)已知cos(α+5π4)=-√63,则sin 2α=.14.(2021·北京东城区一模)已知函数f(x)=A sin(2x+φ)(A>0,|φ|<π2),其中x和f(x)部分对应值如下表所示:则A=.15.(2021·广东茂名二模)在矩形ABCD内(包括边界)有E,F两点,其中AB=120 cm,AE=100√3cm,EF=80√3 cm,FC=60√3 cm,∠AEF=∠CFE=60°,则该矩形ABCD的面积为cm2.(答案如有根号可保留)16.(2021·湖南长郡中学二模)如图,某湖有一半径为100 m的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距200 m的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且满足AB=AC,∠BAC=90°.四边形OACB及其内部区域为“直接监测覆盖区域”.设∠AOB=θ,则“直接监测覆盖区域”面积的最大值为m2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021·江西上饶一模)已知f(x)=2cos x·sin x+π3-√3sin2x+sin x cos x.(1)求函数f(x)的单调递增区间;(2)若x∈(-π4,π6),求y=f(x)的值域.18.(12分)(2021·河北石家庄一模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知2a-b=2c cos B.(1)求角C;(2)若a=2,D是AC的中点,BD=√3,求边c.19.(12分)(2021·广东韶关一模)在①cos C+(cos A-√3sin A)cos B=0;②cos 2B-3cos(A+C)=1;③b cosC+√33c sin B=a这三个条件中任选一个,补充在下面的问题中并解答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,若a+c=1,,求角B和b的最小值. 20.(12分)(2021·山东枣庄二模)已知函数f (x )=sin(ωx+φ)ω>0,0<φ<π2的部分图象如图所示,f (0)=12,f (5π12)=0. (1)求f (x )的解析式;(2)在锐角△ABC 中,若A>B ,f (A -B 2-π12)=35,求cosA -B2,并证明sin A>2√55.21.(12分)(2021·福建宁德期末)在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:若建立平面直角坐标系Oxy 如图所示,则股价y (单位:元)和时间x (单位:天)的关系在ABC 段可近似地用函数y=a sin(ωx+φ)+b (0<φ<π)来描述,从C 点走到今天的D 点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D 点和C 点正好关于直线l :x=34对称.老张预计这只股票未来的走势可用曲线DE 描述,这里DE 段与ABC 段关于直线l 对称,EF 段是股价延续DE 段的趋势(规律)走到这波上升行情的最高点F.现在老张决定取点A (0,22),点B (12,19),点D (44,16)来确定函数解析式中的常数a ,b ,ω,φ,并且求得ω=π72.(1)请你帮老张算出a ,b ,φ,并回答股价什么时候见顶(即求点F 的横坐标);(2)老张如能在今天以点D 处的价格买入该股票3 000股,到见顶处点F 的价格全部卖出,不计其他费用,这次操作他能赚多少元?22.(12分)(2021·深圳实验学校月考)已知函数f (x )=√3sin(ωx+φ)+2sin 2(ωx+φ2)-1(ω>0,0<φ<π)为奇函数,且f (x )图象的相邻两对称轴间的距离为π2. (1)当x ∈[-π2,π4]时,求f (x )的单调递减区间;(2)将函数f (x )的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数y=g (x )的图象,当x ∈[-π12,π6]时,求函数g (x )的值域;(3)对于第(2)问中的函数g (x ),记方程g (x )=43在区间[π6,4π3]上的根从小到大依次为x 1,x 2,…,x n ,试确定n 的值,并求x 1+2x 2+2x 3+…+2x n-1+x n 的值.答案及解析1.C解析由题意,角θ的终边经过点P(√2,a),可得|OP|=√2+a2(O为坐标原点),又由θ=-π3,根据三角函数的定义,可得cos(-π3)=√2√2+a2=12,且a<0,解得a=-√6.2.C解析将函数f(x)=sin 2x的图象向左平移π6个单位长度,得到y=g(x)=sin[2(x+π6)]=sin(2x+π3),令2x+π3=kπ+π2,k∈Z,解得x=kπ2+π12,k∈Z,结合四个选项可知,函数g(x)的图象的一条对称轴方程为x=π12 .3.B解析因为sin A=6sin B,所以a=6b,又a+2b=8,所以a=6,b=1,因为C=60°,所以c2=a2+b2-2ab cos C,即c2=62+12-2×6×1×12,解得c=√31.4.D解析由题中函数f(x)=A sin(ωx+φ)A>0,ω>0,|φ|<π2的部分图象知,A=2,34T=11π3−2π3=3π,所以T=4π=2πω,所以ω=12.又f(2π3)=2sin(12×2π3+φ)=2,可得12×2π3+φ=2kπ+π2,k∈Z,解得φ=2kπ+π6,k∈Z.∵|φ|<π2,∴φ=π6,∴f(x)=2sin(12x+π6).故f(π3)=2sin(12×π3+π6)=2sinπ3=√3.5.D解析由sin(π6-α)=13+cos α可得sinπ6·cos α-cosπ6·sin α=13+cos α,∴12cos α-√32sinα=13+cos α,∴√32sin α+12cos α=-13,∴sin(α+π6)=-13,∴sin(2α+5π6)=sin[π2+(2α+π3)]=cos(2α+π3)=1-2sin2(α+π6)=79.6.C解析在△CDE中,设定点C到底边DE的距离为h,则h=2+1·sin(2π3-π2)=52,又S△CDE=12DE·h=12CD·CE sinπ3,即5DE=√3CD·CE,利用余弦定理得DE2=CD2+CE2-2CD·CE cosπ3=CD2+CE2-CD·CE≥2CD·CE-CD·CE=CD·CE,当且仅当CD=CE时,等号成立,故DE 2≥CD·CE ,而5DE=√3CD·CE ,所以DE 2≥5√33DE ,则DE ≥5√33,故DE 的最小值为5√33. 7.D 解析 因为tan A tan B>1,所以sinAsinBcosAcosB >1,因为0<A<π,0<B<π,所以sin A sin B>0,cos A cos B>0,故A ,B 同为锐角,因为sin A sin B>cos A cos B ,所以cos A cos B-sin A sin B<0,即cos(A+B )<0,所以π2<A+B<π,因此0<C<π2,所以△ABC 是锐角三角形,不是钝角三角形,所以充分性不满足.反之,若△ABC 是钝角三角形,也推不出“tan A tan B>1”,故必要性不成立,所以为既不充分也不必要条件.8.B 解析 因为f (x )=2sin (x +π4)+cos 2x ,所以f (x )=2sin (x +π4)+sin [2(x +π4)]=2sin x+π4+2sin (x +π4)cos (x +π4). 令θ=x+π4,g (θ)=2sin θ+2sin θcos θ=2sin θ+sin 2θ,则g'(θ)=2cos θ+2cos 2θ=2(2cos 2θ-1)+2cos θ=4cos 2θ+2cos θ-2,令g'(θ)=0,得cos θ=-1或cos θ=12,当-1≤cos θ≤12时,g'(θ)≤0;当12≤cos θ≤1时,g'(θ)≥0,所以当θ∈[-5π3+2kπ,-π3+2kπ](k ∈Z )时,g (θ)单调递减;当θ∈[-π3+2kπ,π3+2kπ](k ∈Z )时,g (θ)单调递增,所以当θ=π3+2k π(k ∈Z )时,g (θ)取得最大值,此时sin θ=√32,所以f (x )max =2×√32+2×√32×12=3√32.9.ACD 解析 因为(a+b )∶(a+c )∶(b+c )=9∶10∶11,所以可设a+b=9x ,a+c=10x ,b+c=11x (其中x>0),解得a=4x ,b=5x ,c=6x ,所以sin A ∶sin B ∶sin C=a ∶b ∶c=4∶5∶6,所以A 中结论正确;由以上解答可知c 边最大,所以三角形中角C 最大,又cos C=a 2+b 2-c 22ab=(4x )2+(5x )2-(6x )22×4x×5x=18>0,所以C 为锐角,所以B 中结论错误;由以上解答可知a 边最小,所以三角形中角A 最小, 又cos A=c 2+b 2-a 22cb=(6x )2+(5x )2-(4x )22×6x×5x=34,所以cos 2A=2cos2A-1=18,所以cos 2A=cos C.由三角形中角C最大且角C为锐角可得2A∈(0,π),C∈(0,π2),所以2A=C,所以C中结论正确;由正弦定理,得2R=csinC(R为△ABC外接圆半径),又sin C=√1-cos2C=3√78,所以2R=3√78,解得R=8√77,所以D中结论正确.10.ACD解析f(x)=(sinx+√3cosx)2=sin2x+3cos2x+2√3sin x cos x=2+cos 2x+√3sin2x=2sin2x+π6+2;对于A选项:∵x∈[0,π6],∴2x+π6∈[π6,π2],∴f(x)=2sin(2x+π6)+2在区间[0,π6]上单调递增,故A正确;对于B选项:f(-π3)=2sin[2×(-π3)+π6]+2=0,由函数f(x)的图象(图略)可知-π3是f(x)的一个极小值点,故B错误;对于C选项:由f(x)=2sin(2x+π6)+2可知,函数的最小正周期T=2π2=π,故C正确;对于D选项,∵sin(2x+π6)∈[-1,1],∴f(x)=2sin(2x+π6)+2∈[0,4],故D正确.11.BD解析对于A,当x=π3时,f(-π3)-f(π3)=sin(-π3)cos2π3-sinπ3cos2π3=-√32×(-12)−√32×(-1 2)=√32≠0,故A错误.对于B,因为f(x+2π)=sin(2π+x)cos[2(x+2π)]=sin x cos 2x,所以∃T=2π≠0,使得f(x+T)=f(x),故B正确.对于C,因为f(-x)=sin(-x)cos(-2x)=-sin x cos 2x=-f(x),所以f(x)为奇函数,因为x=0在定义域内,所以f(0)=0,故f(x)有奇数个零点,故C错误.对于D,f(π-x)-f(x)=sin(π-x)cos[2(π-x)]-sin x cos 2x=sin x cos 2x-sin x cos 2x=0,故D正确.12.ABD 解析 因为1tanA ,1tanB ,1tanC 依次成等差数列,所以2tanB =1tanA +1tanC ,整理得2cosB sinB=cosC sinC +cosAsinA ,所以2·a 2+c 2-b 22abc=a 2+b 2-c 22abc+b 2+c 2-a 22abc ,整理得2b 2=a 2+c 2,即a 2,b 2,c 2依次成等差数列.但数列a ,b ,c 或√a,√b,√c 或a 3,b 3,c 3不一定是等差数列,除非a=b=c ,但题目没有说△ABC 是等边三角形.13.-13 解析 由cos (α+5π4)=-√63可得cos (α+π4)=√63,所以√22(cos α-sin α)=√63,即cos α-sin α=2√33,两边平方可得1-sin 2α=43,故sin 2α=-13.14.4 解析 由题意可得{f (0)=-2√3,f (π4)=2,即{Asinφ=-2√3,Asin (π2+φ)=2,所以{Asinφ=-2√3,Acosφ=2,所以tan φ=-√3,又因为|φ|<π2, 所以φ=-π3,所以A=√3-√32=4. 15.14 400√3 解析 连接AC 交EF 于点O (图略),由∠AEF=∠CFE=60°,得AE ∥FC ,所以△AEO 与△CFO 相似,所以OEOF =AECF =53,所以EO=50√3 cm,FO=30√3 cm,在△AEO 中,由余弦定理得,AO 2=AE 2+EO 2-2AE·EO·cos ∠AEO=(100√3)2+(50√3)2-2×100√3×50√3cos 60°=22 500,所以AO=150 cm,同理CO=90 cm,所以AC=240 cm,从而BC=√AC 2-AB 2=120√3 cm,所以矩形ABCD 的面积为14 400√3 cm 2.16.(10 000√5+25 000) 解析 在△OAB 中,∵∠AOB=θ,OB=100 m,OA=200 m,∴AB 2=OB 2+OA 2-2OB·OA·cos ∠AOB ,即AB=100√5-4cosθ,∴S 四边形OACB =S △OAB +S △ABC =12·OA·OB·sin θ+12AB 2,于是S 四边形OACB =1002(sinθ-2cosθ+52)=1002√5sin(θ-φ)+52(其中tan φ=2),所以当sin(θ-φ)=1时,S 四边形OACB 取最大值10 000(√5+52)=10 000√5+25 000,即“直接监测覆盖区域”面积的最大值为(10 000√5+25 000)m 2.17.解 (1)f (x )=2cos x sin (x +π3)−√32(1-cos 2x )+12sin 2x=2cos x (12sinx +√32cosx)−√32+√32cos 2x+12sin 2x=12sin 2x+√32(2cos 2x-1)+√32cos 2x+12sin 2x=sin 2x+√3cos 2x=2sin (2x +π3), 令2k π-π2≤2x+π3≤π2+2k π,k ∈Z , 解得k π-5π12≤x ≤k π+π12,k ∈Z ,因此,函数f (x )的单调递增区间为[kπ-5π12,kπ+π12],k ∈Z .(2)∵x ∈(-π4,π6),∴-π6<2x+π3<2π3,∴-12<sin (2x +π3)≤1,∴-1<f (x )≤2, 因此当x ∈(-π4,π6)时,y=f (x )的值域为(-1,2].18.解 (1)因为2a-b=2c cos B ,由正弦定理得2sin A-sin B=2sin C cos B ,因为sin A=sin(B+C )=sin B cos C+cos B sin C ,代入上式得,2sin B cos C+2cos B sin C-sin B=2sin C cos B ,即2sin B cos C-sin B=0,即sin B (2cos C-1)=0.因为B ∈(0,π),所以sin B ≠0,所以2cos C=1,即cos C=12,又0<C<π,所以C=π3. (2)依题意,在△CBD 中,CB=2,CD=12b ,BD=√3,C=π3, 利用余弦定理的推论可得,cos C=cos π3=12=4+(12b )2-32×2×12b,即b 2-4b+4=0,解得b=2.在△ABC 中,b=a=2,C=π3,故△ABC 是等边三角形,故c=2.19.解 若选择①:在△ABC 中,有A+B+C=π,则由题意可得cos[π-(A+B )]+(cos A-√3sinA )cos B=0,即-cos(A+B )+cos A cos B-√3sin A cos B=0, sin A sin B-cos A cos B+cos A cos B-√3sin A cos B=0, sin A sin B=√3sin A cos B ,又sin A ≠0,所以sin B=√3cos B ,则tan B=√3. 又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 若选择②:在△ABC 中,有A+B+C=π,则由题意可得2cos 2B-1-3cos(π-B )=2cos 2B+3cos B-1=1,解得cos B=12或cos B=-2(舍去),又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 若选择③:由正弦定理可将已知条件转化为sin B cos C+√33sin C sin B=sin A , 又sin A=sin[π-(B+C )]=sin(B+C )=sin B cos C+sin C cos B ,所以√33sin C sin B=sin C cos B ,又sin C ≠0,所以sin B=√3cos B ,所以tan B=√3. 又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 20.解 (1)由f (0)=12,得sin φ=12,又0<φ<π2,所以φ=π6.由f (5π12)=0,得sin (ω·5π12+π6)=0,所以ω·5π12+π6=k π,k ∈Z ,即ω=25(6k-1),k ∈Z . 由ω>0,结合题中函数f (x )的图象可知12·2πω>5π12, 所以0<ω<125,所以有0<25(6k-1)<125,即16<k<76, 又k ∈Z ,所以k=1,从而ω=25×(6×1-1)=2,因此,f (x )=sin (2x +π6). (2)由f (A -B2-π12)=35,得sin(A-B )=35,又由题意可知0<A-B<π2,故cos(A-B )=45,于是cos A -B2=√1+cos (A -B )2=√10,sin A -B2=√10, 又A+B>π2,所以A=A+B 2+A -B 2>π4+A -B2,又因为函数y=sin x 在区间(0,π2)上单调递增,A ∈(0,π2),π4+A -B 2∈(0,π2),所以sin A>sin π4+A -B2=√22×(3√10+1√10)=2√55.21.解 (1)∵点C ,D 关于直线l 对称,∴点C 坐标为(2×34-44,16),即(24,16). 把点A ,B ,C 的坐标分别代入函数解析式,得{22=asinφ+b , ①19=asin (π6+φ)+b ,②16=asin (π3+φ)+b ,③②-①,得a [sin (π6+φ)-sinφ]=-3, ③-①,得a [sin (π3+φ)-sinφ]=-6,∴2sin (π6+φ)-2sin φ=sin (π3+φ)-sin φ, ∴cos φ+√3sin φ=√32cos φ+32sin φ,∴(1-√32)cos φ=(32-√3)sin φ=√3(√32-1)sin φ,∴tan φ=-√33.∵0<φ<π,∴φ=5π6,代入②,得b=19. 将φ=5π6,b=19代入①得,a=6.于是ABC 段对应的函数解析式为y=6sin (π72x +5π6)+19,由对称性得DEF 段对应的函数解析式为y=6sin π72(68-x )+5π6+19.设点F 的坐标为(x F ,y F ),则由π72(68-x F )+5π6=π2,解得x F =92. 因此可知,当x=92时,股价见顶.(2)由(1)可知,y F =6sin [π72×(68-92)+5π6]+19=6sin π2+19=25,故这次操作老张能赚3 000×(25-16)=27 000(元).22.解 (1)由题意,函数f (x )=√3sin(ωx+φ)+2sin 2(ωx+φ2)-1=√3sin(ωx+φ)-cos(ωx+φ)=2sin (ωx +φ-π6),因为函数f (x )图象的相邻两对称轴间的距离为π2, 所以T=π,可得ω=2.又f (x )为奇函数,且f (x )在x=0处有定义,可得f (0)=2sin (φ-π6)=0, 所以φ-π6=k π,k ∈Z ,因为0<φ<π,所以φ=π6, 因此f (x )=2sin 2x.令π2+2k π≤2x ≤3π2+2k π,k ∈Z ,解得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递减区间为[π4+kπ,3π4+kπ],k ∈Z , 又因为x ∈[-π2,π4],故函数f (x )的单调递减区间为[-π2,-π4].(2)将函数f (x )的图象向右平移π6个单位长度,可得y=2sin (2x -π3)的图象,再把横坐标缩小为原来的12,得到函数y=g (x )=2sin 4x-π3的图象,当x ∈[-π12,π6]时,4x-π3∈[-2π3,π3],当4x-π3=-π2时,函数g (x )取得最小值,且最小值为-2,当4x-π3=π3时,函数g (x )取得最大值,且最大值为√3,故函数g (x )的值域为[-2,√3].(3)由方程g (x )=43,即2sin (4x -π3)=43,即sin 4x-π3=23.(*)因为x ∈[π6,4π3],可得4x-π3∈[π3,5π],设θ=4x-π3,其中θ∈[π3,5π],则方程(*)可转化为sin θ=23,结合正弦函数y=sin θ的图象,如图,可得方程sin θ=23在区间[π3,5π]上有5个解,设这5个解分别为θ1,θ2,θ3,θ4,θ5,所以n=5,其中θ1+θ2=3π,θ2+θ3=5π,θ3+θ4=7π,θ4+θ5=9π,即4x 1-π3+4x 2-π3=3π,4x 2-π3+4x 3-π3=5π,4x 3-π3+4x 4-π3=7π,4x 4-π3+4x 5-π3=9π, 解得x 1+x 2=11π12,x 2+x 3=17π12,x 3+x 4=23π12,x 4+x 5=29π12,所以x 1+2x 2+2x 3+2x 4+x 5=(x 1+x 2)+(x 2+x 3)+(x 3+x 4)+(x 4+x 5)=20π3.。
高三数学 三角函数与解三角形多选题复习题含答案一、三角函数与解三角形多选题1.如图,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a b =,且()3cos cos 2sin a C c A b B +=,D 是ABC 外一点,1DC =,3DA =,则下列说法正确的是( )A .ABC 是等边三角形B .若23AC =A ,B ,C ,D 四点共圆 C .四边形ABCD 面积最大值为5332+ D .四边形ABCD 面积最小值为5332- 【答案】AC 【分析】利用三角函数恒等变换化简已知等式可求sin B ,再利用a b =,可知ABC 为等边三角形,从而判断A ;利用四点A ,B ,C ,D 共圆,四边形对角互补,从而判断B ;设AC x =,0x >,在ADC 中,由余弦定理可得2106cos x D =-,利用三角形的面积公式,三角函数恒等变换的,可求ABCD S 四边形,利用正弦函数的性质,求出最值,判断CD .【详解】由正弦定理2sin ,2sin ,2sin a R A b R B c R C ===, 3(sin cos sin cos )2sin sin A C C A B B +=⋅,332sin ,sin B B =∴=, a b =,B 是等腰ABC 的底角,(0,)2B π∴∈,,3B ABC π∴=∴△是等边三角形,A 正确;B 不正确:若,,,A BCD 四点共圆,则四边形对角互补, 由A 正确知21,cos 32D D π∠==-, 但由于1,3,3DC DA AC ===22211cos 232DC DA AC D DA DC +-===-≠-⋅⋅,∴B 不正确. C 正确,D 不正确:设D θ∠=,则2222cos 106cos AC DC DA DC DA θθ=+-⋅⋅=-,(106cos )cos 422ABC S θθ∴=⋅-=-△, 3sin 2ADC S θ=△,3sin 2ABCADCABCD S S Sθθ∴=+=-+四边形13(sin cos 2θθ=⋅-+,3sin()3πθ=-+(0,),sin()(3πθπθ∈∴-∈,3ABCD S <≤+四边形,∴C 正确,D 不正确; 故选:AC.. 【点睛】本题主要考查正弦定理,余弦定理,三角函数恒等变换,正弦函数的图象和性质在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.2.(多选题)已知22tan 2tan 10x y --=,则下列式子成立的是( ) A .22sin 2sin 1y x =+ B .22sin 2sin 1y x =-- C .22sin 2sin 1y x =-D .22sin 12cos y x =-【答案】CD 【分析】对原式进行切化弦,整理可得:222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,结合因式分解代数式变形可得选项. 【详解】∵22tan 2tan 10x y --=,2222sin sin 210cos cos x yx y-⋅-=, 整理得222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,∴()()()22222221cos 1sin sin cos cos sin cos x x y x y y x ---⋅=+, 即22222221cos sin sin cos sin cos cos x y y x y x x --+⋅-⋅=, 即222sin 12cos 2sin 1y x x =-=-,∴C 、D 正确. 故选:CD 【点睛】此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.3.设函数()sin 6f x M x πω⎛⎫=+ ⎪⎝⎭(0,0)M ω>>的周期是π,则下列叙述正确的有( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 的最大值为MC .()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减D .5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】BCD 【分析】已知只有周期的条件,只能求出ω,其中M 未知;A 选项代值判定;B 选项由解析式可知;C 选项由()f x 的单调递减区间在32,2,22k k k Z ππππ⎛⎫++∈ ⎪⎝⎭上化简可得;D 选项由()f x 的对称中心为(),0,k k Z π∈化简可得. 【详解】 由题可知2T ππω==,解得2ω=,即()sin 26f x M x π⎛⎫=+ ⎪⎝⎭当0x =时,()0sin 20sin 662Mf M M ππ⎛⎫=⨯+== ⎪⎝⎭,故选项A 错误; 因为()sin 26f x M x π⎛⎫=+⎪⎝⎭,所以最大值为M ,故选项B 正确; 由解析式可知()f x 在3222,262k x k k Z πππππ+≤+≤+∈ 即2,63x k k ππππ⎡⎤∈++⎢⎥⎣⎦上单调递减,当0k =时,选项C 正确; 由解析式可知()f x 的对称中心的横坐标满足26x k ππ+=,即212k x ππ=- 当1k =时,512x π=,对称中心为5,012π⎛⎫⎪⎝⎭,故选项D 正确. 故选:BCD 【点睛】本题考查()()sin f x A x =+ωϕ型三角函数的性质,其中涉及最值、对称轴、对称中心,属于较难题.4.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则下列关于函数()f x 的说法中正确的是( )A .函数()f x 最靠近原点的零点为3π-B .函数()f x 的图像在y 3C .函数56f x π⎛⎫-⎪⎝⎭是偶函数 D .函数()f x 在72,3ππ⎛⎫ ⎪⎝⎭上单调递增【答案】ABC 【分析】首先根据图象求函数的解析式,利用零点,以及函数的性质,整体代入的方法判断选项. 【详解】根据函数()()cos f x A x ωϕ=+的部分图像知,2A =, 设()f x 的最小正周期为T ,则24362T πππ=-=,∴2T π=,21T πω==. ∵2cos 266f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴6πϕ=-, 故()2cos 6f x x π⎛⎫=- ⎪⎝⎭. 令()2cos 06f x x π⎛⎫=-= ⎪⎝⎭,得62x k πππ-=+,k Z ∈, 即23x k ππ=+,k Z ∈,因此函数()f x 最靠近原点的零点为3π-,故A 正确; 由()02cos 36f π⎛⎫=-= ⎪⎝⎭()f x 的图像在y 3B 正确;由()52cos 2cos 6f x x x ππ⎛⎫-=-=- ⎪⎝⎭,因此函数56f x π⎛⎫-⎪⎝⎭是偶函数,故C 正确; 令226k x k ππππ-≤-≤,k Z ∈,得52266k x k ππππ-≤≤+,k Z ∈,此时函数()f x 单调递增,于是函数()f x 在132,6ππ⎛⎫ ⎪⎝⎭上单调递增,在137,63ππ⎛⎫⎪⎝⎭上单调递减,故D 不正确. 故选:ABC . 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.5.将函数()2πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π6个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .π4g ⎛⎫= ⎪⎝⎭B .π,06⎛⎫⎪⎝⎭是函数()g x 图象的一个对称中心 C .函数()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增D .函数()g x 在ππ,63⎡⎤-⎢⎥⎣⎦上的值域是⎡⎢⎣⎦【答案】BC 【分析】首先求得函数()sin 23g x x π=-⎛⎫⎪⎝⎭,再根据选项,整体代入,判断函数的性质. 【详解】()2sin 2sin 2633g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,1sin 462g ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故A 错误;sin 0633g πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;0,4x π⎡⎤∈⎢⎥⎣⎦时,2,,33622x πππππ⎡⎤⎡⎤-∈-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()g x 在0,4⎡⎤⎢⎥⎣⎦π上单调递增,故C 正确;,63x ππ⎡⎤∈-⎢⎥⎣⎦时,22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当232x ππ-=-时,函数取得最小值-1,当233x ππ-=时,函数取得最大值3,所以函数的值域是31,⎡⎤-⎢⎥⎣⎦.故选:BC 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.6.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭ B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确;求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.7.已知函数()1cos cos 632f x x x ππ⎛⎫⎛⎫=+-+⎪ ⎪⎝⎭⎝⎭,则以下说法中正确的是( ) A .()f x 的最小正周期为πB .()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减C .51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心 D .()f x 的最大值为12【答案】ABC 【分析】利用三角恒等变换思想化简()11sin 2232f x x π⎛⎫=++ ⎪⎝⎭,利用正弦型函数的周期公式可判断A 选项的正误,利用正弦型函数的单调性可判断B 选项的正误,利用正弦型函数的对称性可判断C 选项的正误,利用正弦型函数的有界性可判断D 选项的正误. 【详解】cos cos sin 3266x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以,()1111cos cos cos sin sin 2632662232f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.对于A 选项,函数()f x 的最小正周期为22T ππ==,A 选项正确; 对于B 选项,当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,32232x πππ≤+≤,此时,函数()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,5151111sin 2sin 262632222f ππππ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭, 所以,51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心,C 选项正确; 对于D 选项,()max 111122f x =⨯+=,D 选项错误. 故选:ABC. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.8.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+ 【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.9.设函数()()1sin 0222f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭ 【答案】AD 【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误. 【详解】()3131sin sin sin cos sin 222226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+>⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误; 对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<,此时,函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上不单调,C 选项错误. 故选:AD.【点睛】 关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.10.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示,则下列正确的是( )A .2()2sin 23f x x π⎛⎫=+ ⎪⎝⎭ B .(2021)1f π= C .函数|()|y f x =为偶函数D .,066x f x f x ππ⎛⎫⎛⎫∀∈++-= ⎪ ⎪⎝⎭⎝⎭R 【答案】AD【分析】 先利用图象得到2A =,T π=,求得2ω=,再结合12x π=-时取得最大值求得ϕ,得到解析式,再利用解析式,结合奇偶性、对称性对选项逐一判断即可.【详解】由图象可知,2A =,5212122T πππ=+=,即2T ππω==,2ω=, 由12x π=-时,()2sin 2212f x =πϕ⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦,得22,122=k k Z ππϕπ⎛⎫⨯-++∈ ⎪⎝⎭, 即22,3=k k Z πϕπ+∈,而0ϕπ<<,故2=3πϕ,故2()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,A 正确; 22(2021)2sin 22021=2sin =333f ππππ⎛⎫=⨯+ ⎪⎝⎭B 错误;由2()2sin 23y f x x π⎛⎫==+ ⎪⎝⎭知,222sin 2=2sin 233x x ππ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭不是恒成立,故函数|()|y f x =不是偶函数,故C 错误; 由6x π=时,22sin 22sin 0663f =ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,故06π⎛⎫ ⎪⎝⎭,是2()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的对称中心,故,066x f x f x ππ⎛⎫⎛⎫∀∈++-= ⎪ ⎪⎝⎭⎝⎭R ,故D 正确. 故选:AD.【点睛】方法点睛: 三角函数模型()sin()f x A x b ωϕ=++求解析式时,先通过图象看最值求A ,b ,再利用特殊点(对称点、对称轴等)得到周期,求ω,最后利用五点特殊点求初相ϕ即可.。
高三数学三角函数与解三角形多选题复习题含答案一、三角函数与解三角形多选题1.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( )A .若sin sin a bB A =,则ABC 为等腰三角形 B .若cos cos a bB A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形D .若sin cos a b C c B =+,则4C π∠=【答案】ACD 【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断; 对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断; 对于D :利用正弦定理判断得cos sin C C =求出角C . 【详解】对于A :∵由正弦定理得:sin sin a bA B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a bA B=, ∴若cos cos a bB A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误; 对于C :∵A+B+C=π,∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,, ∴tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C++ sin cos sin cos sin =cos cos cos A B B A CA B C++sin sin =cos cos cos C CA B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭ sin sin sin =cos cos cos A B CA B C.∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>> ∴cos cos cos A B C 、、必有一个小于0,∴ABC 为钝角三角形. 故C 正确;对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+, 即sin cos sin cos sin sin sin cos B C C B B C C B +=+ ∴cos sin C C = ∵()0,C π∈∴4C π.故D 正确. 故选:ACD 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.2.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确; 求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.3.已知函数()22sin cos f x x x x =+,则下列结论中正确的是( )A .()f x 的图象是由y= 2sin2x 的图象向左移3π个单位得到的 B .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增C .()f x 的对称中心的坐标是(),026k k Z ππ⎛⎫-∈⎪⎝⎭D .函数()()g x f x =[]0,10内共有8个零点 【答案】BCD 【分析】A.化简得()2sin(2)3f x x π=+,利用函数的图象变换得该选项错误;B.利用复合函数的单调性原理分析得该选项正确;C. 由2,3x k k Z ππ+=∈得该选项正确;D.解方程sin 23x π⎛⎫+= ⎪⎝⎭得该选项正确. 【详解】()2π2sin cos sin 222sin 22sin 236f x x x x x x x x π⎛⎫⎛⎫=+-=+=+=+ ⎪ ⎪⎝⎭⎝⎭,把2sin 2y x =的图象向左平移6π个单位,得到()f x ,所以选项A 不正确; 设23t x π=+,则t 在,03π⎡⎤-⎢⎥⎣⎦上单调增,,03x π⎡⎤∈-⎢⎥⎣⎦2,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦,,33t ππ⎡⎤∴∈-⎢⎥⎣⎦又sin y t =在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增, ()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭在,03π⎡⎤-⎢⎥⎣⎦上单调递增,所以选项B 正确;由2,3x k k Z ππ+=∈得对称中心为(),062k k Z ππ⎛⎫-+∈ ⎪⎝⎭,所以选项C 正确;由sin 23x π⎛⎫+= ⎪⎝⎭2233x k πππ+=+或222,33x k k Z πππ+=+∈ 解得x k π=或,6x k k Z ππ=+∈,又[]0,10,x ∈0,1,2,3k ∴=时,713190,,,,2,,3,6666x πππππππ=,共8个零点,所以选项D 正确. 故选:BCD 【点睛】方法点睛:函数的零点问题的研究,常用的方法有:(1)方程法(解方程即得解);(2)图象法(直接画出函数的图象得解);(3)方程+图象法(令()=0f x 得()()g x h x =,再分析函数(),()g x h x 的图象得解). 要根据已知条件灵活选择方程求解.4.设函数()sin()(0)4f x x πωω=+>,已知()f x 在[]02π,有且仅有5个零点,则下列结论成立的有( )A .()1y f x =+在()02π,有且仅有2个零点 B .()f x 在023π⎛⎫⎪⎝⎭,单调递增C .ω的取值范围是192388⎡⎫⎪⎢⎣⎭,D .将()f x 的图象先右移4π个单位,再纵坐标不变,横坐标扩大为原来的2倍,得到函数1()sin()2g x x ω=【答案】BC 【分析】首先利用图象直接判断A 选项;再利用函数()f x 在[]02π,有且仅有5个零点,求得ω的范围,并利用整体代入的方法判断B 选项;最后利用图象的变换规律,求得变换之后的解析式,判断D.【详解】A.如图,[]0,2π上函数仅有5个零点,但有3个最小值点,这3个最小值点就是()1y f x =+在()0,2π上的3个零点;B.[]0,2x π∈时,,2444t x πππωωπ⎡⎤=+∈⋅+⎢⎥⎣⎦ 若函数()f x 在[]02π,有且仅有5个零点,则5264ππωππ≤⋅+<,得192388ω≤<,当023x π⎛⎫∈ ⎪⎝⎭,时,,448t x πππω⎛⎫=+∈ ⎪⎝⎭,此时函数单调递增,故BC 正确; D. 函数()f x 的图象先右移4π个单位后得到sin sin 4444y x x ππωππωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标扩大为原来的2倍,得到()1sin 244g x x ωππω⎛⎫=-+ ⎪⎝⎭,故D 不正确;故选:BC 【点睛】关键点点睛:本题的关键是求出ω的取值范围,首先根据函数在区间[]0,2π有5个零点,首先求4t x πω=+的范围,再分析sin y t =的图象,求得ω的范围.5.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,2cos()10αβ+=-,则( ) A .10cos α=B .5sin cos 5αα-= C .34πβα-= D .2cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()0αβ+=<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.6.设函数()()sin f x A x =+ωϕ,x ∈R (其中0A >,0>ω,2πϕ<),在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值,且()026f f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则下列结论错误的是( )A .若()()()12f x f x f x ≤≤对任意x ∈R ,则21min x x π-=B .()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭中心对称 C .函数()f x 的单调减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是2π【答案】ABD 【分析】根据条件先求函数的解析式,对于A:判断出()1f x 为最小值,()2f x 为最大值,即可; 对于B:根据函数的对称性进行判断;对于C:求出角的范围,结合三角函数的单调性进行判断; 对于D:根据函数的对称性即对称轴之间的关系进行判断. 【详解】 因为函数()f x 在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值, 所以,62ππ⎛⎫⎪⎝⎭是函数的一个单调区间,区间长度为263πππ-=,即函数的周期2233T ππ≥⨯=,即223ππω≥,则03ω<≤因为()06f f π⎛⎫= ⎪⎝⎭,所以06212ππ+=为函数的一条对称轴;则1223πππωϕωϕπ+=+=①② 由①②解得:=2=3πωϕ,,即()sin 23f x A x π⎛⎫=+⎪⎝⎭,函数的周期=T π.对于A: 若()()()12f x f x f x ≤≤对任意x ∈R 恒成立,则()1f x 为最小值,()2f x 为最大值,所以12||22T k x x k π-==,则21x x -必为2π的整数倍,故A 错误,可选A; 对于B:3x π=-时,()sin 03f x A π⎛⎫=-≠ ⎪⎝⎭,故,03π⎛-⎫ ⎪⎝⎭不是()y f x =的对称中心,B 错误,可选B; 对于C:当7,1212x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,322,2322x k k πππππ⎡⎤+∈++⎢⎥⎣⎦,此时()y f x =单调递减,C 正确,不选C;对于D: 函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是44T π=,故D 错误,可选D 故选:ABD 【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②(2)求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.7.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC 【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD. 【详解】 A.A B >,a b ∴>,根据正弦定理sin sin a bA B=,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-<⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确. 故选:ABC 【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.8.函数()cos |cos |f x x x =+,x ∈R 是( ) A .最小正周期是π B .区间[0,1]上的减函数 C .图象关于点(k π,0)()k Z ∈对称 D .周期函数且图象有无数条对称轴 【答案】BD 【分析】根据绝对值的意义先求出分段函数的解析式,作出函数图象,利用函数性质与图象关系分别对函数的周期、单调区间、对称中心和对称轴进行判断求解. 【详解】2cos (22)22()30(22)22x k x k f x k x k ππππππππ⎧-+⎪⎪=⎨⎪+<≤+⎪⎩,则对应的图象如图:A 中由图象知函数的最小正周期为2π,故A 错误,B 中函数在[0,]2π上为减函数,故B 正确,C 中函数关于x k π=对称,故C 错误,D 中函数由无数条对称轴,且周期是2π,故D 正确 故正确的是B D 故选:BD【点睛】本题考查由有解析式的函数图象的性质. 有关函数图象识别问题的思路:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置; ②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.二、数列多选题9.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( )A .公比大于1的等比数列一定是“间隔递增数列”B .若()21nn a n =+-,则{}n a 是“间隔递增数列” C .若(),2n r a n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误.【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n k n n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦, 当n 是奇数时,()211k n k n a a k +=---+,则存在1k 时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211k n k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<.又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确.故选:BCD.【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.10.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( )A .22800a t =-B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案.【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t ->, 所以11277()(2800)0552n n n t a a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.。
高三数学三角函数、解三角形章末复习测试(有答案)高三数学三角函数、解三角形章末复习测试(有答案)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知α是第一象限角,tan α=34,则sin α等于( ) A.45 B.35 C.-45 D.-35 解析 B 由2kπ<α<π2+2kπ,sin αcosα=34,sin2α+cos2α=1,得sin α=35. 2.在△ABC中,已知sin(A-B)cos B+cos(A-B)sin B≥1,则△ABC是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形解析 A sin(A-B)cos B+cos(A-B)sin B=sin[(A-B)+B]=sin A≥1,又sin A≤1,∴sin A=1,A=90°,故△ABC为直角三角形. 3.在△ABC中,∠A=60°,AC=16,面积为2203,那么BC的长度为( ) A.25 B.51 C.493 D.49 解析 D 由S△ABC=12•AB•ACsin 60°=43AB=2203,得AB=55,再由余弦定理,有BC2=162+552-2×16×55×cos 60°=2 401,得BC=49. 4.设α,β都是锐角,那么下列各式中成立的是( ) A.sin(α+β)>sin α+sin βB.cos(α+β)>cos αcos βC.sin(α+β)>sin(α-β) D.cos(α+β)>cos(α-β) 解析 C ∵sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,又∵α、β都是锐角,∴cos αsin β>0,故sin(α+β)>sin(α-β). 5.张晓华同学骑电动自行车以24 km/h的速度沿着正北方向的公路行驶,在点A 处望见电视塔S在电动车的北偏东30°方向上,15 min后到点B处望见电视塔在电动车的北偏东75°方向上,则电动车在点B时与电视塔S的距离是( ) A.22 km B.32 km C.33 km D.23 km 解析 B 如图,由条件知AB=24×1560=6 .在△ABS中,∠BAS =30°, AB=6,∠ABS=180°-75°=105°,所以∠ASB=45°. 由正弦定理知BSsin 30°=ABsin 45°,所以BS=ABsin 30°sin 45°=32.故选威海一模)若函数y=Asin(ωx+φ)+m的最大值为4,最小值为0,最小正周期为π2,直线x=π3是其图象的一条对称轴,则它的解析式是( ) A.y=4sin4x+π6 B.y =2sin2x+π3+2 C.y=2sin4x+π3 +2 D.y=2sin4x+π6+2解析 D ∵A+m=4,-A+m=0,∴A=2,m=2. ∵T=π2,∴ω=2πT=4.∴y=2sin(4x+φ)+2. ∵x=π3是其对称轴,∴sin4×π3+φ=±1. ∴4π3+φ=π2+kπ(k∈Z).∴φ=kπ-5π6(k∈Z).当k=1时,φ=π6,故选D. 7.函数y=sin(2x +φ)(0≤φ≤π)是R上的偶函数,则φ的值是( ) A.0 B.π4 C.π2 D.π解析 C 当φ=π2时,y=sin2x+π2=c os 2x,而y=cos 2x是偶函数. 8.在△ABC中“cos A+sin A=cos B+sin B”是“C=90°”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 B C=90°时,A与B互余,sin A=cos B,cos A=sin B,有cos A+sin A=cos B+sin B成立;但当A=B时,也有cos A+sin A=cos B+sin B成立,故“cos A+sin A=cos B+sin B”是“C=90°”的必要不充分条件. 9.△ABC的三边分别为a,b,c,且满足b2=ac,2b =a+c,则此三角形是( ) A.钝角三角形 B.直角三角形 C.等腰直角三角形 D.等边三角形解析 D ∵2b=a+c,∴4b2=(a +c)2,又∵b2=ac,∴(a-c)2=0,∴a=c,∴2b=a+c=2a,∴b =a,即a=b=c. 10.f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1处取最大值,则( ) A.f(x-1)一定是奇函数 B.f(x-1)一定是偶函数 C.f(x+1)一定是奇函数 D.f(x+1)一定是偶函数解析D ∵f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1处取最大值,∴f(x +1)在x=0处取最大值,即y轴是函数f(x+1)的对称轴,∴函数f(x+1)是偶函数. 11.函数y=sin2x-π3在区间-π2,π上的简图是( ) 解析 A 令x=0得y=sin-π3=-32,排除B,D.由f-π3=0,fπ6=0,排除C. 12.若tan α=lg(10a),tan β=lg1a,且α+β=π4,则实数a的值为( ) A.1 B.110 C.1或110 D.1或10 解析 C tan(α+β)=1⇒tan α+tan β1-tan αtanβ=+lg1a1-=1⇒lg2a+lg a=0,所以lg a=0或lg a=-1,即a=1或110. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.(2011•黄冈模拟)已知函数f(x)=Acos(ωx+φ)的图象如图所示,fπ2=-23,则f(0)=________. 解析由图象可得最小正周期为2π3. 所以f(0)=f2π3,注意到2π3与π2关于7π12对称,故f2π3=-fπ2=23. 【答案】23 14.设a、b、c分别是△ABC中角A、B、C所对的边,sin2A+sin2B-sin Asin B=sin2C,且满足ab=4,则△ABC的面积为________.解析由sin2A+sin2B-sin Asin B=sin2C,得a2+b2-ab=c2,∴2cos C=1.∴C =60°. 又∵ab=4,∴S△ABC=12absin C=12×4×sin 60°=3. 【答案】 3 15.在直径为30 m的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆形,且其轴截面顶角为120°,若要光源恰好照亮整个广场,则光源的高度为________m. 解析轴截面如图,则光源高度h=15tan 60°=53(m).【答案】53 16. 如图所示,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i段弧所对的圆心角为αi(i=1,2,3),则cosα13cosα2+α33-sinα13sinα2+α33=________. 解析记相应的三个圆的圆心分别是O1,O2,O3,半径为r,依题意知,可考虑特殊情形,从而求得相应的值.当相应的每两个圆的公共弦都恰好等于圆半径时,易知有α1=α2=α3=2π-2π3=4π3,此时cosα13cosα2+α33-sinα13sinα2+α33 =cosα1+α2+α33=cos4π3=cosπ+π3=-cosπ3=-12. 【答案】-12 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC中,如果lg a-lg c=lg sin B=lg22,且B为锐角,试判断此三角形的形状.解析∵lg sin B=lg22,∴sin B=22,∵B为锐角,∴B=45°. 又∵lg a-lg c=lg22,∴ac=22. 由正弦定理,得sin Asin C=22,∴2sin C=2sin A=2sin(135°-C),即sin C=sin C+cos C,∴cos C=0,∴C=90°,故△ABC 为等腰直角三角形. 18.(12分)已知函数f(x)=2cos2ωx+2sin ωxcos ωx+1(x∈R,ω>0)的最小正周期是π2. (1)求ω的值;(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.解析(1)f(x)=1+cos 2ωx+sin 2ωx+1 =sin 2ωx+cos 2ωx+2 =2sin2ωx+π4+2. 由题设,函数f(x)的最小正周期是π2,可得2π2ω=π2,所以ω=2. (2)由(1)知,f(x)=2sin4x+π4+2. 当4x+π4=π2+2kπ(k∈Z),即x=π16+kπ2(k∈Z)时, sin4x+π4取得最大值1,所以函数f(x)的最大值是2+2,此时x的集合为xx=π16+kπ2,k∈Z. 19.(12分)在△ABC 中,角A,B,C的对边分别为a,b,c,且sin Aa=3cos Cc. (1)求角C的大小; (2)如果a+b=6,CA→•CB→=4,求c的值.解析(1)因为asin A=csin C,sin Aa=3cos Cc,所以sin C=3cos C.所以tan C=3. 因为C∈(0,π),所以C=π3. (2)因为CA→•CB→=|CA→|•|CB→|cos C=12ab=4,所以ab=8.因为a+b=6,根据余弦定理,得 c2=a2+b2-2abcos C=(a+b)2-3ab=12. 所以c的值为23. 20.(12分)在△ABC中,a, b,c分别是角A,B,C的对边,m=(2b-c,cos C),n=(a,cos A),且m∥n. (1)求角A的大小; (2)求y=2sin2B+cosπ3-2B的值域.解析(1)由m∥n 得(2b-c)•cos A-acos C=0. 由正弦定理得2sin Bcos A-sin Ccos A-sin Acos C=0. 所以2sin Bcos A-sin(A+C)=0,即2sin Bcos A-sin B=0. 因为A,B∈(0,π),所以sin B≠0,cos A=12,所以A =π3. (2)y=2sin2B+cosπ3cos 2B+sinπ3sin 2B =1-12cos 2B+32sin 2B =sin2B-π6+1. 由(1)得0<B<2π3,所以-π6<2B-π6<7π6,所以sin2B-π6∈-12,1,所以y∈12,2. 21.(12分)设函数f(x)=sin(2x+φ)(-π<φ<0)的图象过点π8,-1. (1)求φ; (2)求函数y=f(x)的周期和单调增区间; (3)画出函数y=f(x)在区间[0,π]上的图象.解析(1)∵f(x)=sin(2x +φ)的图象过点π8,-1,∴-1=sinπ4+φ,∴φ+π4=2kπ-π2(k∈Z),又φ∈(-π,0),∴φ=-3π4.∴f(x)=sin2x-3π4. (2)由题意,T=2π2=π,由(1)知f(x)=sin2x-3π4,由2kπ-π2≤2x-3π4≤2kπ+π2(k∈Z)得增区间为kπ+π8,kπ+5π8(k∈Z). (3)f(x)在[0,π]上的图象如图: 22.(12分)已知sinα-π4=35,π4<α<3π4. (1)求cosα-π4的值; (2)求sin α的值.解析(1)∵sinα-π4=35,且π4<α<3π4,∴0<α-π4<π2,∴cosα-π4= 45. (2)sin α=sinα-π4+π4=sinα-π4cosπ4+cosα-π4sinπ4=7210.。