选修3《现代生物科技专题》知识点总结B5活页版
- 格式:docx
- 大小:575.14 KB
- 文档页数:18
②。
《现代生物科技专题》知识点总结选修3③具有,供。
专题1 基因工程(2)最常用的运载体是,它是一种裸露的、结构简单的、独立于一、基因工程的基本工具,并具有的双链。
1.“分子手术刀”——二、基因工程的基本操作程序 1)来源:主要是从生物中分离纯化出来的。
(第一步:目的基因的获取分子的某种2)功能:能够识别 DNA的核苷酸序列,并且使每一条链中(性。
部位的两个核苷酸之间的断开,因此具有的因子。
,也可以是一些具有1.目的基主要是指:(片段末端通常有两种形式:3)结果:经限制酶切割产生的DNA 2.原核基因采取直接分离获得,真核基因是人工合成。
人工合成目的基因的常用方法有。
和法。
法和2.“分子缝合针”——技术扩增目的基因连接酶)的比较:TE连接酶(·coliDNA连接酶和DNA(1)两种DNA4- DNA片段的核酸合成技术。
)PCR的含义:是一项在生物体外复制特定(1 键。
①相同点:都缝合 2)目的:获取大量的目的基因(,只能将双链·②区别:EcoliDNA连接酶来源于 DNA片段互补的(3)原理:,但连接平连接酶能缝合DNA之间的磷酸二酯键连接起来;而T 4。
末端的之间的效率较解链为;)过程:第一步:加热至90~95℃,DNA(4与(2)DNA聚合酶作用的异同:DNA加到已有的核苷酸片段的末端,聚合酶只能将 DNA结合;6055~℃,与两条单链第二步:冷却到的末端,形成磷酸二酯键。
形成磷酸二酯键。
DNA连接酶是连接的合成。
75℃,从引物起始进行70第三步:加热至~第二步:基因表达载体的构建,目的:使目的基因在受体细胞中,并且可以1.模板不同点模板模板。
使目的基因能够个连接的对象2DNADNA单个脱氧核苷酸加到已存在的单链片段片段上+组成:+++2.作用实质形成,是1)启动子:是一段有特殊结构的,位于基因的(相同点化学本质蛋白质,最终获得所需的。
能驱动基因识别和结合的部位,。
2()终止子:也是一段有特殊结构的,位于基因的 3.“分子运输车”——,从而将 3()标记基因的作用:是为了鉴定受体细胞中)运载体具备的条件:(1。
选修3基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA 重组技术。
(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E·coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
(3)其它载体:λ噬菌体的衍生物、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获取1.目的基因是指:编码蛋白质的结构基因。
2.原核基因采取直接分离获得,真核基因是人工合成。
人工合成目的基因的常用方法有反转录法_和化学合成法_。
3.PCR技术扩增目的基因(1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。
选修3《现代生物科技专题》书本知识点总结专题1 基因工程1.基因工程旳概念: 基因工程是指按照人们旳愿望, 进行严格旳设计, 通过体外DNA重组和转基因技术, 赋予生物以新旳遗传特性, 发明出更符合人们需要旳新旳生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工旳, 又叫做DNA重组技术。
2、基因工程旳原理: 基因重组一、DNA重组技术旳基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源: 重要是从原核生物中分离纯化出来旳。
(2)功能:可以识别双链DNA分子旳某种特定旳核苷酸序列, 并且使每一条链中特定部位旳两个核苷酸之间旳磷酸二酯键断开, 因此具有专一性。
(3)成果: 经限制酶切割产生旳DNA片段末端一般有两种形式: 黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)旳比较:①相似点: 都缝合磷酸二酯键。
②区别:E·coliDNA连接酶来源于T4噬菌体, 只能将双链DNA片段互补旳黏性末端之间旳磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端, 但连接平末端旳之间旳效率较低。
(2)与DNA聚合酶作用旳异同:DNA聚合酶只能将单个核苷酸加到已经有旳核苷酸片段旳末端, 形成磷酸二酯键。
DNA连接酶是连接两个DNA片段旳末端, 形成磷酸二酯键。
3.“分子运送车”——载体(1)载体具有旳条件: ①能在受体细胞中复制并稳定保留。
②具有一至多种限制酶切点, 供外源DNA片段插入。
③具有标识基因, 供重组DNA旳鉴定和选择。
(2)最常用旳载体是质粒, 它是一种裸露旳、构造简朴旳、独立于细菌染色体之外, 并具有自我复制能力旳双链环状DNA分子。
(3)其他载体: 噬菌体旳衍生物、动植物病毒。
二、基因工程旳基本操作程序基因工程旳基本操作程序重要包括四个环节:目旳基因旳获取、基因体现载体旳构建、将目旳基因导入受体细胞、目旳基因旳检测与鉴定。
焦作四中选修3《现代生物科技专题》必记知识点归纳1、DNA重组技术,实现这一精确的操作过程至少需要三种工具,即准确切割DNA的“分子手术刀”——限制性核酸内切酶(限制酶)、将DNA片断再连接起来的“分子缝合针”——DNA连接酶、将体外重组好的DNA导入受体细胞的“运输工具”——运载体。
2、限制酶:主要从原核生物中分离纯化出来,能够识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断裂。
形成黏性末端和平末端两种。
3、DNA连接酶:根据酶的来源不同分为两类:E.coliDNA连接酶、T4DNA连接酶。
二者都是将双连DNA片段“缝合”起来,恢复被限制酶切开的两个核苷酸之间的磷酸二酯键。
4、常用的运载体:质粒、噬菌体的衍生物、动植物病毒。
质粒是一种裸露的、结构简单、独立于细菌染色体之外并具有自我复制能力的双链环状DNA分子。
5、基因工程的基本操作步骤主要包括四步:目的基因的获取、基因表达载体的构建、将目的基因导入受体细胞、目的基因的检测与鉴定。
6、基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。
其目的是:是目的基因在受体细胞中稳定存在并且可以遗传给下一代并表达和发挥作用。
其组成是:目的基因、启动子、终止子、标记基因(鉴定受体细胞是否含有目的基因,便于筛选)。
7、受体细胞有植物、动物、微生物之分。
8、目的基因导入受体细胞后,是否可以维持和表达其遗传特性,只有通过检测与鉴定才能知道。
这是基因工程的第四步工作。
9、将目的基因导入植物细胞的方法:农杆菌转化法、花粉管通道法、基因枪法。
10、将目的基因导入动物细胞的方法:显微注射技术。
11、将目的基因导入微生物细胞:用CaCl2处理,增大细胞壁的通透性。
12、检测目的基因是否插入到受体细胞的基因组中,是否转录出mRNA的方法:DNA分子杂交技术(用目的基因做探针,如果显示出杂交带则成功)。
13、检测目的基因是否翻译成蛋白质的方法:抗原——抗体杂交。
选修3 现代生物科技专题知识点 专题1 基因工程 一.知识网络概念:又叫DNA 重组技术,是指按照人们的愿望,进行严格的设计, 通过体外DNA 重组和转基因等技术,赋予生物以新的遗传特性,创造出 更符合人们需要的新的生物类型和生物产品DNA 中某种特定的核苷酸序列,并使特定部位的磷酸二酯键断开基 来源:大肠杆菌本 作用 :连接黏性末端 工T 4 噬菌体具能在受体细胞中复制并稳定保存 具有一至多个限制酶切点 具有标记基因将目 的基 因导 入受 体细胞目的基因的 检测与鉴定基因工程的操作程序基因工程 应用基因工程操作中的几个问题DNA 连接酶、DNA 聚合酶等的理解蛋白质工程与基因工程比较如果有一亲代DNA上某个碱基发生突变,一定会使其子代的性状发生改变吗?①体细胞中某基因发生改变,生殖细胞中不一定出现该基因;②DNA上某个碱基对发生改变,它不一定位于基因的中能编码氨基酸的部位;③若为父方细胞质内的DNA上某个碱基对发生改变,则受精后一般不会传给子代;④若该亲代DNA上某个碱基对发生改变产生的是一个隐性基因,并将该隐性基因传给子代,而子代为杂合子,则隐性性状不会表现出来;⑤根据密码子的兼并性,有可能翻译出相同的氨基酸;⑥性状表现是遗传基因和环境因素共同作用的结果,在某些环境条件下,改变了的基因可能并不会在性状上表现出来。
思考:真核生物的基因导入细菌细胞后,不能正常发挥功效的可能原因有哪些?①被细菌体内的限制性内切酶破坏。
②该基因指导合成的蛋白质不能在细菌体内正确修饰和表达。
③细菌的RNA聚合酶不能识别真核基因的位点,致使不能启动转录。
④细菌细胞中没有切除内含子转录部分的酶。
专题2 细胞工程(2)动物细胞培养①概念:取动物体的相关组织分散成单个细胞后,在适宜培养基中使细胞生长和增殖的过程。
②基本过程:培养的动物细胞大都取自动物胚胎或出生不久的幼龄动物的器官组织,将组织取出来以后,先用胰蛋白酶或胶原蛋白酶进行处理,使细胞分散成单个细胞,然后配制一定浓度的悬浮液,在培养瓶中进行原代培养。
选修3《现代生物科技专题》知识点总结专题1 基因工程一、基因工程的基本工具1.“分子手术刀”——(1)来源:主要是从生物中分离纯化出来的。
(2)功能:能够识别 DNA分子的某种的核苷酸序列,并且使每一条链中部位的两个核苷酸之间的断开,因此具有性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:和。
2.“分子缝合针”——(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合键。
②区别:E·coliDNA连接酶来源于,只能将双链DNA片段互补的之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合,但连接平末端的之间的效率较。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接的末端,形成磷酸二酯键。
3.“分子运输车”——(1)运载体具备的条件:①。
③具有,供。
(2)最常用的运载体是,它是一种裸露的、结构简单的、独立于,并具有的双链。
二、基因工程的基本操作程序第一步:目的基因的获取1.目的基主要是指:,也可以是一些具有的因子。
2.原核基因采取直接分离获得,真核基因是人工合成。
人工合成目的基因的常用方法有法和法。
3.PCR技术扩增目的基因(1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。
(2)目的:获取大量的目的基因(3)原理:(4)过程:第一步:加热至90~95℃,DNA解链为;第二步:冷却到55~60℃,与两条单链DNA结合;第三步:加热至70~75℃,从引物起始进行的合成。
第二步:基因表达载体的构建1.目的:使目的基因在受体细胞中,并且可以,使目的基因能够。
2.组成:++++(1)启动子:是一段有特殊结构的,位于基因的,是识别和结合的部位,能驱动基因,最终获得所需的。
(2)终止子:也是一段有特殊结构的,位于基因的。
(3)标记基因的作用:是为了鉴定受体细胞中,从而将筛选出来。
高中生物选修3《现代生物科技专题》知识梳理本文将对高中生物选修3《现代生物科技专题》进行知识梳理,主要涉及基因工程、细胞工程、胚胎工程和蛋白质工程等内容。
一、基因工程基因工程是一种对DNA进行操作的技术,其基本原理是利用限制性内切酶将外源基因切成片段,再通过连接酶将其与载体DNA结合,进而将目的基因导入受体细胞中。
基因工程的应用非常广泛,涉及到医药、农业、工业等领域。
例如,利用基因工程生产药物、改良作物、制造化学品等。
二、细胞工程细胞工程是一种通过对细胞进行操作的技术,包括培养、融合、转化等。
其中,培养细胞是细胞工程的基础,通过培养细胞可以获得大量的细胞样本。
此外,细胞融合也是细胞工程的重要技术,通过该技术可以获得异源细胞。
细胞工程在医药、农业、工业等领域也有广泛应用,例如,利用细胞工程生产疫苗、改良作物、制造细胞培养物等。
三、胚胎工程胚胎工程是一种对早期胚胎进行操作的技术,包括超数排卵、胚胎移植、胚胎克隆等。
其中,超数排卵是胚胎工程的基础,通过该技术可以获得大量的早期胚胎。
此外,胚胎移植也是胚胎工程的重要技术,通过该技术可以将早期胚胎移植到代孕母亲体内。
胚胎工程在农业、畜牧业等领域也有广泛应用,例如,利用胚胎工程生产优良品种家畜、克隆珍稀动物等。
四、蛋白质工程蛋白质工程是一种通过对蛋白质进行操作的技术,包括蛋白质合成、蛋白质修饰等。
其中,蛋白质合成是蛋白质工程的基础,通过该技术可以合成各种蛋白质。
此外,蛋白质修饰也是蛋白质工程的重要技术,通过该技术可以改变蛋白质的化学性质、生物学性质等。
蛋白质工程在医药、农业、工业等领域也有广泛应用,例如,利用蛋白质工程生产药物、改良作物、制造酶等。
综上所述,高中生物选修3《现代生物科技专题》主要涉及基因工程、细胞工程、胚胎工程和蛋白质工程等内容。
这些技术不仅在学术研究领域具有重要意义,而且在各个领域得到了广泛的应用。
随着科学技术的发展,这些技术将会不断改进和完善,为人类带来更多的福祉。
生物选修三易考知识点背诵专题1 基因工程1.基因工程:又名或操作环境:;操作对象:;操作水平:基本过程:特点:;本质(原理):2.基因工程的基本工具Ⅰ.“分子手术刀”——(1)来源:主要是从中分离纯化出来的。
(2)功能:能够识别,并且使断开。
(3)结果:产生的DNA片段末端——。
(4)要获得某个特定性状的基因必须要用限制酶切几个切口?可产生几个黏性末端?Ⅱ.“分子缝合针”——(1)两种DNA连接酶(和)的比较:①相同点:都缝合键。
②区别:前者来源于,只能连接;而后者来源于,能连接,但连接平末端的之间的效率较低。
(2)与DNA聚合酶作用的区别:DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接的末端,形成磷酸二酯键。
Ⅲ.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中上,并随染色体DNA同步复制;②具有一至多个,供外源DNA片段插入;③具有,供重组DNA的鉴定和选择。
(2)最常用的载体是,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的。
(3)其它载体:3.基因工程的基本操作程序第一步:(1)获取目的基因的方法:、、(2)PCR技术①原理:②条件:、、、③PCR技术与体内DNA复制的区别:a. PCR不需要酶;体内DNA复制需要;b. PCR需要酶(即Taq酶),生物体内的聚合酶在高温时会变性;c. PCR一般要经历三十多次循环,而生物体内DNA复制受生物体遗传物质的控制。
(3)注意:构建基因文库需要哪些操作工具?第二步:——基因工程的核心基因表达载体组成: +复制原点(1):是一段有特殊的DNA片段,位于基因的首端,是识别和结合的部位,能驱动基因转录出mRNA。
没有启动子,基因就不能转录。
(2):也是一段有特殊的DNA片段,位于基因的尾端,使转录终止。
(3)标记基因的作用:,常用的标记基因是。
第三步:将目的基因导入受体细胞常用的转化方法:(1)导入植物细胞:采用最多的方法是法,其次还有基因枪法和花粉管通道法等。
选修3《现代生物科技专题》第一章基因工程基因工程的概念是狭义的遗传工程,其核心是构建重组的DNA分子,早期也称为重组DNA技术。
(一)基因工程的基本工具1.限制性核酸内切酶(限制酶)(1)来源:从细菌中分离出来。
(2)作用:能够识别双链DNA分子的某种特定的核甘酸序列,并且使每一条链中特定部位的两个核甘酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
2. DNA连接酶(1)两种DNA连接酶(E • coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E・coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
⑵与DNA聚合酶作用的异同:DNA聚合酶只能将单个核甘酸加到已有的核甘酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
(2)最常用的载体是一一质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
(3)其它载体:丸噬菌体的衍生物、动植物病毒基因工程的原理:让人们感兴趣的基因(即目的基因)在宿主细胞中稳定和高效地表达(二)基因工程的基本操作程序(1)获得目的基因有两种方法:①目的基因的序列是已知的:用化学方法合成目的基因,用聚合酶链式反应(PCR)技术扩增目的基因②目的基因的序列是未知的:从基因文库中提取目的基因。
(2)形成重组DNA分子用一定的限制性核酸内切酶切割质粒,使其出现一个切口,露出粘性末端。
用相同的限制性核酸内切酶切割目的基因,使其产生相同的粘性末端。
专题1 基因工程1.基因工程:基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA 分子水平上进行设计和施工的,又叫做DNA重组技术。
2、基因工程的原理:基因重组一、DNA重组技术的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)作用部位:磷酸二酯键(4)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
(1)基因重组的三种类型:①基因的交叉互换:减I前期;②基因的自由组合:减I后期;③基因工程:可定向改造生物性状。
(2)对限制酶的理解:①限制酶是一类酶,而不是一种酶;②限制酶的成分均为蛋白质,其作用的发挥需要适宜的理化条件,高温、强碱或强酸均易使之变性失活;③限制酶作为酶类,其催化作用具有高效性、专一性和作用条件较温和等特点;④在原核细胞内,限制酶起切割外源DNA,防止寄生生物侵染的作用。
如细菌2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E ·coliDNA 连接酶来源于T 4噬菌体,只能将双链DNA 片段互补的黏性末端之间的磷酸二酯键连接起来;而T 4DNA 连接酶能缝合两种末端,但连接平末端的之间的效率较低。
(2)与DNA 聚合酶作用的异同:DNA 聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA 连接酶是连接两个DNA 片段的末端,形成磷酸二酯键。
3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA 片段插入。
③具有标记基因,供重组DNA 的鉴定和选择。
(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA 分子。
(3)其它载体:噬菌体的衍生物、动植物病毒。
注解:①天然质粒需要经过人工改造后,才能用作基因工程中的载体;③对限制酶和载体切割位点的说明a.若用于切割载体的限制酶有多个切点,则切割后载体可能丢失含有复制起始点的片段,重组DNA 分子进入受体细胞后便不能进行自主复制;b.切点所处位置必须在载体本身需要的基因片段之外,以避免载体因目的基因的插入而失活。
二、基因工程的基本操作程序基因工程的基本操作程序主要包括四个步骤:目的基因的获取、基因表达载体的构建、将目的基因导入受体细胞、目的基因的检测与鉴定。
第一步:目的基因的获取1.目的基因是指:编码蛋白质的基因 。
2.基因组文库:包含了一种生物的所有基因。
部分基因文库(cDNA 文库):只包含了一种生物的一部分基因。
3.人工合成目的基因的常用方法有反转录法和化学合成法。
①反转录法:目的基因的mRNA −−→−反转录单链DNA −−→−合成双链DNA (即目的基因) 已知蛋白质的氨基酸序列−−→−推测mRNA 的核苷酸序列−−→−推测目的基因的核苷酸序列−−−→−化学合成目的基因4.PCR 技术扩增目的基因(1)概念:PCR 是一项在生物体外复制特定DNA 片段的核酸合成技术。
通过这一技术,可以在短时间内大量扩增目的基因。
(2)原理:DNA双链复制在体外将基因的核苷酸序列不断地加以复制,使其数量呈指数形式扩增(约为2n,n为扩增循环的次数).5.②过程:可采用PCR扩增仪,进行扩增(3)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA 链;第三步:加热至70~75℃,热稳定DNA聚合酶(Taq酶)从引物起始互补链的合成。
第二步:基因表达载体的构建(基因工程的核心)1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。
2.组成:目的基因+启动子+终止子+标记基因(1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。
(2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。
(3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。
常用的标记基因是抗生素基因。
注解1.终止子:DNA分子上决定转录停止的三个相邻碱基;终止密码子:mRNA分子上决定翻译停止的三个相邻碱基。
2.对构建基因表达载体的说明①形成重组DNA分子的过程中,必须用同一种限制酶切割目的基因和载体;②目的基因插入载体或者插入受体细胞的染色体DNA中并不能说明基因工程操作成功,还要使目的基因在受体细胞中稳定存在和表达,并且可以遗传给下一代;③目的基因能在受体细胞中表达,产生相应性状的原因是:不同生物共用一套遗传密码;④组成基因表达载体的四部分相互协作,缺一不可,共同维持目的基因的表达;⑤基因表达载体虽然都由四部分组成,但由于受体细胞(动物、植物、微生物)不同,基因表达载体的构建也会有差别。
3.基因表达载体应具备的条件①对受体细胞无害,不影响受体细胞正常的生命活动;②能自我复制,通过复制进行基因扩增,否则可能会使重组DNA丢失;③具有标记基因,以便于鉴定目的基因是否进入受体细胞;④重组DNA分子大小应适宜,以方便操作。
2.常用的转化方法:(1)将目的基因导入植物细胞:采用最多的方法是农杆菌转化法,其次还有基因枪法和花粉管通道法等。
选农杆菌的原因:农杆菌中的Ti质粒上的T-DNA可转移至受体细胞,并且整合到受体细胞染色体的DNA上。
(2)将目的基因导入动物细胞:最常用的方法是显微注射技术。
此方法的受体细胞多是受精卵。
选受精卵作为受体细胞原因:因为受精卵发育的全能性最高,体积大,容易操作。
(3)将目的基因导入微生物细胞:Ca2+处理法。
原核生物作为受体细胞的原因是繁殖快、多为单细胞、遗传物质相对较少,最常用的原核细胞是大肠杆菌,其转化方法是:先用Ca2+处理细胞,使其成为感受态细胞,再将重组表达载体DNA分子溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程。
3.重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是标记基因是否表达。
第四步:目的基因的检测和表达1.首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交技术。
如果显示杂交带,就表明目的基因已插入染色体DNA中。
2.其次还要检测目的基因是否转录出了mRNA,方法是采用用标记的目的基因作探针与mRNA杂交。
杂交带3.最后检测目的基因是否翻译成蛋白质,方法是从转基因生物中提取蛋白质,用相应的抗体进行抗原-抗体杂交。
杂交带4.有时还需进行个体生物学水平的鉴定。
如转基因抗虫植物是否出现抗虫性状。
(三)基因工程的应用1.植物基因工程:抗虫、抗病、抗逆转基因植物,利用转基因改良植物的品质。
2.动物基因工程:提高动物生长速度(外源生长激素)、改善畜产品品质、用转基因动物生产药物。
3.基因治疗:把正常的外源基因导入病人体内,使该基因表达产物发挥作用。
(四)蛋白质工程(1)概念:蛋白质工程是指以蛋白质分子的结构规律及其生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。
(2)蛋白质工程崛起的缘由:基因工程只能生产自然界已存在的蛋白质。
(3)蛋白质工程的基本原理:它可以根据人的需求来设计蛋白质的结构,又称为第二代的基因工程。
(4)基本途径:从预期的蛋白质功能出发→设计预期的蛋白质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列(基因)。
特别注意:蛋白质工程中,直接需要进行操作的对象是基因结构。
专题2 细胞工程1.细胞工程是指应用细胞生物学和分子生物学的原理和方法,通过细胞水平或细胞器水平上的操作,按照人的意愿来改变细胞内的遗传物质或获得细胞产品的一门综合科学技术。
根据操作对象的不同,可分为植物细胞工程和动物细胞工程两大技术。
一、植物细胞工程1.理论基础(原理):细胞全能性(具有某种生物全部遗传信息的任何一个细胞都具有发育成完整个体生物体的潜能)全能性表达的难易程度:①受精卵>干细胞>生殖细胞>体细胞:植物细胞>动物细胞(动物细胞中的细胞核具有全能性)②受精卵>生殖细胞(即配子,包括精子和卵细胞)>体细胞;③体细胞:分化程度低>分化程度高的;幼嫩的>衰老的;分裂能力强的>分裂能力弱的。
二、植物细胞表现出全能性的条件1.离体条件2.无菌操作3.适宜物质的诱导和调节(激素主要是生长素和细胞分裂素)4.种类齐全,比例适合的营养物质5.温度、酸碱度、光照等条件的控制。
注解:(1)对细胞全能性的说明①构成生物体的所有体细胞都是由一个受精卵发育而来的,都含有相同的遗传物质,都含有本物种全套的遗传信息,因而每个体细胞都有发育成完整生物个体的潜能。
②在生物的生长发育过程中,生物体内的细胞并不会表现出全能性,而是分化成各种组织和器官,这是因为细胞内的基因在特定的时间和空间条件下选择性地表达。
2.植物组织培养技术(1)概念:植物组织培养体就是在无菌和人工控制条件下,将离体生物植物器官、组织、细胞,培养在人工配制的培养基上,给予适宜的培养条件,诱导其产生愈伤组织、丛芽,最终形成完整的植株。
(2)过程:离体的植物器官、组织或细胞愈伤组织胚状体或丛芽 植物体胡萝卜的组织培养案例注意事项:①愈伤组织:特点排列疏松、不定形、高度液泡化的薄壁组织。
②选取胡萝卜形成层的部位进行脱分化的原因:分裂旺盛、全能性较高,容易诱导形成愈伤组织。
③脱分化无光(形成愈伤组织之前需避光)、再分化需光照(长出芽和茎后需进行光合作用制造营养物质)。
(3)用途:微型繁殖、作物脱毒、制造人工种子、单倍体育种、细胞产物的工厂化生产(培养到愈伤组织阶段)。
Ⅰ植物繁殖的新途径①微型繁殖:快速繁殖优良品种的植物组织培养技术。
脱分化 再分化 (试管苗)②作物脱毒:采用茎尖组织培养技术来除去病毒(因为植物分生区附近的病毒极少或没有)。
③人工种子:以植物组织培养得到的胚状体、不定芽、顶芽和腋芽等为材料,经人工薄膜包装得到的种子。
人工种子的优点:完全保持优良品种的遗传特性,不受季节的限制;方便储藏和运输。
Ⅱ作物新品种培育①单倍体育种:a 过程:植株(AaBb)通过减数分裂得到花粉(AB、Ab、aB、ab)→对花粉进行花药离体培养(技术是植物组织培养),得到单倍体植株(基因型分别为AB、Ab、aB、ab四种)→对其幼苗时期进行秋水仙素处理;得到了正常的纯合二倍体植株(基因型分别为AABB、AAbb、aaBB、aabb四种)。