当前位置:文档之家› 平面直角坐标系找规律题型分类汇总解析

平面直角坐标系找规律题型分类汇总解析

平面直角坐标系找规律题型分类汇总解析
平面直角坐标系找规律题型分类汇总解析

平面直角坐标系找规律题型解析

1、如图,正方形ABCD 的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y 轴上有

一点P(0,2)。作点P 关于点A 的对称点p1,作p1关于点B 的对称点p2,作点p2关于点C

的对称点p3,作p3关于点D 的对称点p4,作点p4关于点A 的对称点p5,作p5关于点B 的

对称点p6┅,按如此操作下去,则点p2011的坐标是多少?

解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。

设每个周期均由点P1,P2,P3,P4组成。

第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)

第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)

第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)

第n 周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)

2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)

解法2:根据题意,P1(2,0) P2(0,-2) P3(-2,0) P4(0,2)。

根据p1-pn 每四个一循环的规律,可以得出:

P4n (0,2),P4n+1(2,0),P4n+2(0,-2),P4n+3(-2,0)。

2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)

总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。此题是每四个点

一循环,起始点是p 点。

2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次

不断移动,每次移动1个单位.其行走路线如下图所示.

(1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( );

(2)写出点A4n 的坐标(n 是正整数);

(3)按此移动规律,若点Am 在x 轴上,请用含n 的代数式表示m (n 是正整数)

(4)指出蚂蚁从点A2011到点A2012的移动方向.

(5)指出蚂蚁从点A100到点A101的移动方向.(6)指出A106,A201的的坐标及方向。

解法:(1)由图可知,A4,A12,A8都在x 轴上,

∵小蚂蚁每次移动1个单位, ∴OA4=2,OA8=4,OA12=6,

∴A4(2,0),A8(4,0),A12(6,0);同理可得出:A10(5,1)

(2)根据(1)OA4n=4n÷2=2n,∴点A4n 的坐标(2n ,0);

(3)∵只有下标为4的倍数或比4n 小1的数在x 轴上,

∴点Am 在x 轴上,用含n 的代数式表示为:m=4n 或m=4n-1;

(4)∵2011÷4=502…3,

O 1 A 1 A 2 A 3 A4 A5 A6 A7 A8 A9 A 10 A 11 A 12 x

y

∴从点A2011到点A2012的移动方向与从点A3到A4的方向一致,为向右.

(5)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0)和A101(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上。

(6)方法1:点A1、A2、A3、A4每4个点,图形为一个循环周期。

设每个周期均由点A1,A2,A3,A4组成。

第1周期点的坐标为:A1(0,1), A2(1,1), A3(1,0), A4(2,0)

第2周期点的坐标为:A1(2,1), A2(3,1), A3(3,0), A4(4,0)

第3周期点的坐标为:A1(4,1), A2(5,1), A3(5,0), A4(6,0)

第n周期点的坐标为:A1(2n-2,1),A2(2n-1,1),A3(2n-1,0),A4(2n,0)

106÷4=26…2,所以点A106坐标与第27周期点A2坐标相同,(2×27-1,1),即(53,1)方向朝下。

201÷4=50…1,所以点A201坐标与第51周期点A1坐标相同,(2×51-2,1),即(100,1)方向朝右。

方法2:由图示可知,在x轴上的点A的下标为奇数时,箭头朝下,下标为偶数时,箭头朝上。106=104+2,即点A104再移动两个单位后到达点A106,A104的坐标为(52,0)且移动的方向朝上,所以A106的坐标为(53,1),方向朝下。

同理:201=200+1,即点A200再移动一个单位后到达点A201,A200的坐标为(100,0)且移动的方向朝上,所以A201的坐标为(100,1),方向朝右。

3、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是多少?第42、49、2011秒所在点的坐标及方向?

解法1:到达(1,1)点需要2秒

到达(2,2)点需要2+4秒

到达(3,3)点需要2+4+6秒

到达(n,n)点需要2+4+6+...+2n秒=n(n+1)秒

当横坐标为奇数时,箭头朝下,再指向右,当横坐标为偶数时,箭头朝上,再指向左。

35=5×6+5,所以第5*6=30秒在(5,5)处,此后要指向下方,再过5秒正好到(5,0)即第35秒在(5,0)处,方向向右。

42=6×7,所以第6×7=42秒在(6,6)处,方向向左

49=6×7+7,所以第6×7=42秒在(6,6)处,再向左移动6秒,向上移动一秒到(0,7)即第49秒在(0,7)处,方向向右

解法2:根据图形可以找到如下规律,当n为奇数是n2秒处在(0,n)处,且方向指向右;当n为偶数时n2秒处在(n,0)处,且方向指向上。

35=62-1,即点(6,0)倒退一秒到达所得点的坐标为(5,0),即第35秒处的坐标为(5,0)方向向右。用同样的方法可以得到第42、49、2011处的坐标及方向。

4、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,顶点A55的坐标是()

解法1:观察图象,每四个点一圈进行循环,根据点的脚标与坐标寻找规律。

观察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。

设每个周期均由点A1,A2,A3,A4组成。

第1周期点的坐标为:A1(-1,-1), A2(-1,1), A3(1,1), A4(1,-1)

第2周期点的坐标为:A1(-2,-2), A2(-2,2), A3(2,2), A4(2,-2)

第3周期点的坐标为:A1(-3,-3), A2(-3,3), A3(3,3), A4(3,-3)

第n周期点的坐标为:A1(-n,-n), A2(-n,n), A3(n,n), A4(n,-n)

∵55÷4=13…3,∴A55坐标与第14周期点A3坐标相同,(14,14),在同一象限

解法2:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,

根据题中图形中的规律可得:

3=4×1-1,A3的坐标为(1,1),7=4×2-1,A7的坐标为(2,2),

11=4×3-1,A11的坐标为(3,3);55=4×14-1,A55(14,14)

5、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:

(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);

(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).

按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),

6、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:

1、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);

2、g(a,b)=(b,a).如:g(1,3)=(3,1);

3、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).

按照以上变换有:f(g(2,﹣3))=f(-3,2)=(3,2),那么f(h(5,-3))等于()(5,3)

7、一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M3处,第二次从M3跳到OM3的中点M2处,第三次从点M2跳到OM2的中点M1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为()

解:由于OM=1,所有第一次跳动到OM的中点M3处时,OM3=OM=,同理第二次从M3

点跳动到M2处,即在离原点的2处,同理跳动n次后,即跳到了离原点的处

8、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为()45 .

解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,

右下角的点的横坐标为2时,共有4个,4=22,

右下角的点的横坐标为3时,共有9个,9=32,

右下角的点的横坐标为4时,共有16个,16=42,

右下角的点的横坐标为n时,共有n2个,

∵452=2025,45是奇数,∴第2025个点是(45,0),第2012个点是(45,13),

9、(2007?遂宁)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第88个点的坐标为().

解:由图形可知:点的横坐标是偶数时,箭头朝上,点的横坐标是奇数时,箭头朝下。

坐标系中的点有规律的按列排列,第1列有1个点,第2列有2个点,第3列有3个点…第n列有n个点。

∵1+2+3+4+…+12=78,∴第78个点在第12列上,箭头常上。

∵88=78+10,∴从第78个点开始再经过10个点,就是第88个点的坐标在第13列上,

坐标为(13,13-10),即第88个点的坐标是(13,3)

10、如图,已知Al(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),….则点A2007的坐标为().

解法1:观察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。

设每个周期均由点A1,A2,A3,A4组成。

第1周期点的坐标为:A1(1,0), A2(1,1), A3(-1,1), A4(-1,-1)

第2周期点的坐标为:A1(2,-1), A2(2,2), A3(-2,2), A4(-2,-2)

第3周期点的坐标为:A1(3,-2), A2(3,3), A3(-3,3), A4(-3,-3)

第n周期点的坐标为:A1(n,-(n-1)), A2(n,n), A3(-n,n), A4(-n,-n)

因为2007÷4=501…3,所以A2007的坐标与第502周期的点A3的坐标相同,即(-502,502) 解法2:由图形以可知各个点(除A1点和第四象限内的点外)都位于象限的角平分线上,位于第一象限点的坐标依次为A2(1,1) A6(2,2) A10(3,3)…A4n﹣2(n,n)。

因为第一象限角平分线的点对应的字母的下标是2,6,10,14,即4n﹣2(n是自然数,n是点的横坐标的绝对值);

同理第二象限内点的下标是4n﹣1(n是自然数,n是点的横坐标的绝对值);

第三象限是4n(n是自然数,n是点的横坐标的绝对值);

第四象限是1+4n(n是自然数,n是点的横坐标的绝对值);

因为2007÷4=501…3,所以A2007位于第二象限。2007=4n﹣1则n=502,

故点A2007在第二象限的角平分线上,即坐标为(﹣502,502).

11、如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米

到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方

向走15米到达A5点、按如此规律走下去,当机器人走到A6,A108点D的坐标各是多少。

解法1:观察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。

设每个周期均由点A1,A2,A3,A4组成。

第1周期点的坐标为:A1(3,0), A2(3,6), A3(-6,6), A4(-6,-6) 第2周期点的坐标为:A1(9,-6), A2(9,12), A3(-12,12), A4(-12,-12) 第3周期点的坐标为:A1(15,-12), A2(15,18), A3(-18,18), A4(-18,-18) 第n周期点的坐标为:A1(6n-3,-(6n-6)),A2(6n-3,6n), A3(-6n,6n), A4(-6n,-6n) 因为6÷4=1…2,所以A6的坐标,与第2周期的点A2的坐标相同,即(9,12)

因为108÷4=27,所以A108的坐标与第27周期的点A4的坐标相同,(-6×27, -6×27) 解法2:根据题意可知,A1A2=3,A2A3=6,A3A4=8,A4A5=15,当机器人走到A6点时,A5A6=18米,点A6的坐标是(9,12);

12、(2013?兰州)如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为().

解:∵点A(﹣3,0)、B(0,4),∴AB==5,

由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).

12.(2013?聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为()

解:由图可知,n=1时,4×1+1=5,点A5(2,1),

n=2时,4×2+1=9,点A9(4,1),

n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).

13.(2013?湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,求点A3和 A92的坐标分别是多少,.

解法1:观察图象,点A1、A2、A3、每3个点,图形为一个循环周期。

根据计算A3的坐标是(0,﹣1)

设每个周期均由点A1,A2,A3,组成。

第1周期点的坐标为:A1(-1,-1), A2(1,-1), A3(0, ﹣1)

第2周期点的坐标为:A1(-2,-2), A2(2,-2), A3(0, )

第3周期点的坐标为:A1(-3,-3), A2(3,-3), A3(0, +1)

第n周期点的坐标为:A1(-n,-n), A2(n,-n), A3(0, +n-2),

因为3÷3=1,所以A3的坐标与第1周期的点A3的坐标相同,即(0, ﹣1)

因为92÷3=30…2,所以A92的坐标与第31周期的点A2的坐标相同,即(31, -31) 解法2:∵△A1A2A3的边长为2,∴△A1A2A3的高线为2×=,

∵A1A2与x轴相距1个单位,∴A3O=﹣1,∴A3的坐标是(0,﹣1);

∵92÷3=30…2,∴A92是第31个等边三角形的初中第四象限的顶点,

第31个等边三角形边长为2×31=62,

∴点A92的横坐标为×62=31,∵边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,∴点A92的纵坐标为﹣31,∴点A92的坐标为(31,﹣31).

14、如图是某同学在课外设计的一款软件,蓝精灵从O点第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5 ___ .到达A2n后,要向____方向跳____个单位落到A2n+1.

解:∵蓝精灵从O点第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到

A3(4,2),第四跳落到A4(4,6),

∴蓝精灵先向右跳动,再向上跳动,每次跳动距离为次数+1,即可得出:

第五跳落到A5(9,6),到达A2n后,要向右方向跳(2n+1)个单位落到A2n+1.

17.(2012?莱芜)将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在那条射线上.

解:如图所示:

点名称射线名称

AB A1 A3 A10 A12 A17 A19 A26 A28 …

CD A2 A4 A9 A11 A18 A20 A25 A27 …

BC A5 A7 A14 A16 A21 A23 A30 A32 …

DA A6 A8 A13 A15 A22 A24 A29 A31 …

根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环,

因为2012=16×125+12,所以点A2012所在的射线和点 A12所在的直线一样.

因为点A2012所在的射线是射线AB,所以点A2012在射线AB上,故答案为:AB.

18、(2011?钦州)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是_________ .

解法1:观察图象,每4个点,图形为一个循环周期。

设每个周期均由点P1,P2,P3,P4组成。

第1周期点的坐标为:P1(1,1), P2(2,0), P3(3, 2), P4(4,0)

第2周期点的坐标为:P1(5,1), P2(6,0), P3(7, 2), P4(8,0)

第3周期点的坐标为:P1(9,1), P2(10,0), P3(11, 2), P4(12,0)

第n周期点的坐标为:P1(4n-3,1), P2(4n-2,0), P3(4n-1, 2),P4(4n,0)

因为2011÷4=502…3,所以P2011的坐标与第503周期的点P3的坐标相同(503×4-1, 2),即(2011,2)

解法2、根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动

到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),

∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,

∴横坐标为运动次数,经过第2011次运动后,动点P的横坐标为2011,纵坐标为1,0,

2,0,每4次一轮,

∴经过第2011次运动后,动点P的纵坐标为:2011÷4=502余3,故纵坐标为四个数中

第三个,即为2,∴经过第2011次运动后,动点P的坐标是:(2011,2)

19、将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是_________ .

解:第1排的第一个数为1,

第2排的第一个数为2,即2=1+1

第3排的第一个数为4,即4=1+1+2

第4排的第一个数为7,即7=1+1+2+3

第n排的第一个数为1+1+2+3+…+n-1=1+n(n-1)/2

将7带入上式得1+n(n-1)/2=1+7×3=22,所以第七排的第二个数是23,即(7,2)

表示的实数是23.

20、(2011?锦州)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1

(﹣1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100

次跳动至点A100的坐标是()。点A第103次跳动至点A103的坐标是()

解法1:观察图象,点A1、A2每2个点,图形为一个循环周期。

设每个周期均由点A1,A2组成。

第1周期点的坐标为:A1(-1,1), A2(2,1)

第2周期点的坐标为:A1(-2,2), A2(3,2)

第3周期点的坐标为:A1(-3,3), A2(4,3)

第n周期点的坐标为:A1(-n,n), A2(n+1,n),

因为103÷2=51…1,所以P2011的坐标与第52周期的点A1的坐标相同,即(-52,52)

解法2

:(1)观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐

标是次数的一半,即第n次跳至点的坐标为

1,

22

n n

??

+

?

??.第2次跳动至点的坐标是A2(2,1),

第4次跳动至点的坐标是A4(3,2),第6次跳动至点的坐标是A6(4,3),第8次跳动至点的坐标是A8(5,4),

第n次跳动至点的坐标是An

1,

22

n n

??

+

?

??,∴第100次跳动至点的坐标是(51,50).

(2)观察发现,第奇数次跳动至点的坐标,横坐标是次数加上1的一半,纵坐标是横坐

标的相反数,即第n次跳动至点A n的坐标为

11

,

22

n n

++??-

???

第1次跳动至点的坐标是A1(-1,1),第3次跳动至点的坐标是A3(-2,2),第5次跳动至点的坐标是A5(-3,3),第7次跳动至点的坐标是A7(-4,4),

第n次跳动至点的坐标是

11

,

22

n n

++

??

-

?

??,

∴第103次跳动至点的坐标是(-52,52).

21、(2008?泰安)如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2008次,点P依次落在点P1,P2,P3…P2008的位置,则点P2008, P2007的横坐标分别为为( )()

解法1:观察图象,点P1、P2、P3每3个点,图形为一个循环周期。

设每个周期均由点P1、P2、P3组成。

第1周期点的坐标为:P1(1,0), P2(1,0), P3(2.5,y)

第2周期点的坐标为:P1(4,0), P2(4,0), P3(5.5,y)

第3周期点的坐标为:P1(7,0), P2(7,0), P3(8.5,y)

第n周期点的坐标为:P1(3n-2,0), P2(3n-2,0), P3(3n-1+0.5,y)

因为2008÷3=669…1,所以P208的坐标与第670周期的点P1的坐标相同,

(3×670-2,0),即(2008,0)所以横坐标为2008

因为2007÷3=669,所以P2007的坐标与第669周期的点P3的坐标相同,

(3×669-1+0.5,y),即(2006.5,y)所以横坐标为2006.5

解法2:观察图形结合翻转的方法可以得出

P1、P2的横坐标是1,P3的横坐标是2.5,

P4、P5的横坐标是4,P6的横坐标是5.5

…依此类推下去,能被3整除的数的坐标是概数减去0.5即为该点的横坐标。

P2005、P2006的横坐标是2005,P2007的横坐标是2006.5,

P2008、P2009的横坐标就是2008.故答案为2008.

2007÷3=667,能被3整除,所以P2007的横坐标为2006.5

其实,关键是确定P2008对应的是P4这样的偶数点还是对应的P8这样的偶数点,可以先观察P3、P6、P9的可以发现3个一循环。由2008÷3=669…1即在第669个循环后面,所以应该是类似P4这样的偶数点,它们的特点是点P4对应的横坐标是4,所以点P2008对应的横坐标是2008

22、(2006?绍兴)如图,将边长为1的正方形OAPB沿z轴正方向连续翻转2006次,点P依次落在点P1,P2,P3,P4,…,P2006的位置,则P2006的横坐标x2006是多少?P2012的横坐标又是多少

解法1:观察图象,点P1、P2、P3、P4每4个点,图形为一个循环周期。

设每个周期均由点P1、P2、P3、P4组成。

第1周期点的坐标为:P1(1,1), P2(2,0), P3(2,0), P4(3,1)

第2周期点的坐标为:P1(5,1), P2(6,0), P3(6,0), P4(7,1)

第3周期点的坐标为:P1(9,1), P2(10,0), P3(10,0), P4(11,1)

第n周期点的坐标为:P1(4n-3,0),P2(4n-2,0), P3(4n-2,0), P4(4n-1,1)

因为2006÷4=501…2,所以P2006的坐标与第502周期的点P2的坐标相同,

(4×502-2,0),即(2006,0)所以横坐标为2006.

因为2012÷4=503,所以P2012的坐标与第503周期的点P4的坐标相同,

(4×503-1,1),即(2011,1)所以横坐标为2011

解法2:从P到P4要翻转4次,横坐标刚好加4,

∵2006÷4=501…2,

∴501×4﹣1=2003,(之所以减1,是因为p点的起始点的横坐标为-1)

由上式可知,P2006的位置是正方形完成了501次翻转后,还要再翻两次,即完成类似从P到P2的过程,横坐标加3,即2003+3=2006

则P2006的横坐标x2006=2006.故答案为:2006

∵2012÷4=503,即正方形刚好完成了503次翻转

因为每4个一循环,可以判断P2012在503次循环后与P4的一致,坐标应该是2012-1=2011∴P2012的横坐标x2012=2011.

23、(2012山东德州中考,16,4,)如图,在一单位为

1的方格纸上,△123

A A A,△

345

A A A,△

567

A A A,……,

都是斜边在x轴上、斜边长分别为2,4,6,……的等

腰直角三角形.若△123

A A A的顶点坐标分别为

1

A (2,

0),2A (1,-1),3A (0,0),则依图中所示规律,2012

A

的坐标为()

解法1:观察图象,点A1、A2、A3、A4每4个点,

图形为一个循环周期。

设每个周期均由点A1、A2、A3、A4组成。

第1周期点的坐标为:A1(2,0), A2(1,-1), A3(0,0), A4(2,2)

第2周期点的坐标为:A1(4,0), A2(1,-3), A3(-2,0), A4(2,4)

第3周期点的坐标为:A1(6,0), A2(1,-5), A3(-4,0), A4(2,6)

第n周期点的坐标为:A1(2n,0), A2(1,-(2n-1)), A3(-(2n-2),0), A4(2,2n)

因为2012÷4=503,所以P2012的坐标与第503周期的点P4的坐标相同,(2,2x503)

即(2,1006)

解法2:画出图像可找到规律,下标为4n(n为非负整数)的A点横坐标为2,纵坐标为

2n,则2012

A的坐标为(2,1006).

24、如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点

P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,

第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依

此规律跳动下去,点P第100次跳动至点P99,P100,P2009的坐标分别是多少.

解法1:观察图象,点P1、P2、P3、P4每4个点,图形为一个循环周期。

设每个周期均由点P1、P2、P3、P4组成。

第1周期点的坐标为:P1(1,1), P2(-1,1), P3(-1,2), P4(2,2)

第2周期点的坐标为:P1(2,3), P2(-2,3), P3(-2,4), P4(3,4)

第3周期点的坐标为:P1(3,5), P2(-3,5), P3(-3,6), P4(4,6)

第n周期点的坐标为:P1(n,2n-1),P2(-n,2n-1), P3(-n,2n), P4(n+1,2n)

因为99÷4=24…3,所以P99坐标与第25周期点P3的坐标相同(-25,2×25)即(-25,50)

A8

A7

A6

A4

A2

A1

A5

A3x

y

O

100÷4=25,所以P100的坐标与第25周期的点P4的坐标相同(25+1,2×25)即(26,50)2009÷4=502…1,所以P2009坐标与第503周期点P1的坐标相同(503,2×503-1)即(503,1005)

解法2:经过观察可得:以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;

其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依次类推可得到:Pn的横坐标为n÷4+1.故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).

25.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是多少。

解:由平行四边形的性质,可知D点的纵坐标一定是5;

又由C点相对于B点横坐标移动了1﹣(﹣3)=4,故可得点D横坐标为﹣2+4=2,

即顶点C的坐标(2,5).

26.(2005?济宁)如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…

已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5,B5的坐标分别是多少.

解:A、A1、A2…An都在平行于X轴的直线上,纵坐标都相等,所以A5的纵坐标是3;这些点的横坐标有一定的规律:An=2n.因而点A5的横坐标是25=32;

B、B1、B2…Bn都在x轴上,B5的纵坐标是0;

这些点的横坐标也有一定的规律:Bn=2n+1,因而点B5的横坐标是B5=25+1=64.

∴点A5的坐标是(32,3),点B5的坐标是(64,0).

27、(2013?湖州一模)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,3),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当点B的横坐标为3n(n为正整数)时,m= (用含n的代数式表示).

根据题意,分别找出n=1、2、3、4时的整点的个数,不难发现n增加1,整点的个数增加3,然后写出横坐标为3n时的表达式即可.

解:如图,n=1,即点B的横坐标为3时,整点个数为1,

n=2,即点B的横坐标为6时,整点个数为4,

n=3,即点B的横坐标为9时,整点个数为7,

n=4,即点B的横坐标为12时,整点个数为10,

所以,点B的坐标为3n时,整点个数为3n-2.

28、(2013?抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(-1,-1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,-2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标是

分析:根据对称依次作出对称点,便不难发现,点P6与点P重合,也就是每6次对称为一个循环组循环,用2013除以6,根据商和余数的情况确定点P2013的位置,然后写出坐标即可.

解:如图所示,点P6与点P重合,∵2013÷6=335…3,

∴点P2013是第336循环组的第3个点,与点P3重合,∴点P2013的坐标为(2,

-4).

29、如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把

一条长为2013个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,

并按A-B-C-D-A-…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是

解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),

∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,

∴绕四边形ABCD一周的细线长度为2+3+2+3=10,

2013÷10=201…3,

∴细线另一端在绕四边形第202圈的第3个单位长度的位置,

14.(2013?东营)如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l

于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过

点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2013的坐标为(0,42013)

或(0,24026)(注:以上两答案任选一个都对).

分析:根据所给直线解析式可得l与x轴的夹角,进而根据所给条件依次得到点A1,A2的坐标,通过相应规律得到A2013坐标即可.

解答:

解:∵直线l的解析式为;y=x,∴l与x轴的夹角为30°,

∵AB∥x轴,∴∠ABO=30°,

∵OA=1,∴AB=,

∵A1B⊥l,∴∠ABA1=60°,

∴AA1=3,∴A1O(0,4),

同理可得A2(0,16),

∴A2013纵坐标为:42013,

∴A2013(0,42013).

故答案为:(0,42013).

点评:本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.16.(2012?威海)如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,

A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…

按此规律,点A2012的坐标为(503﹣503,503+503).

分析:过点A1作A1B⊥x轴,作A1C∥x轴A2C∥y轴,相交于点C,然后求出点A1的坐标,以及A1C、A2C的长度,并出A2、A3、A4、A5、A6的坐标,然后总结出点的坐标的变化规律,

再把2012代入规律进行计算即可得解.

解答:解:如图,过点A1作A1B⊥x轴,作A1C∥x轴A2C∥y轴,相交于点C,

∵OA1=1,OA1与x轴的夹角为30°,

∴OB=OA1?cos30°=1×=,

A1B=OA1?sin30°=1×=,

∴点A1的坐标为(,),

∵A2A1⊥OA1,OA1与x轴的夹角为30°,

∴∠OA1C=30°,∠A2A1C=90°﹣30°=60°,

∴∠A1A2C=90°﹣60°=30°,

同理可求:A2C=OB=,A1C=A1B=,

所以,点A2的坐标为(﹣,+),

点A3的坐标为(﹣+,++),即(﹣,+1),

点A4的坐标为(﹣﹣,+1+),即(﹣1,+1),

点A5的坐标为(﹣1+,+1+),即(﹣1,+),

点A6的坐标为(﹣1﹣,++),即(﹣,+),

…,

当n为奇数时,点An的坐标为(﹣,+),

当n为偶数时,点An的坐标为(﹣,+),

所以,当n=2012时,﹣=503﹣503,+=503+503,

点A2012的坐标为(503﹣503,503+503).

故答案为:(503﹣503,503+503).

21.(2011?鞍山)如图,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐

标原点,且一组对边与x轴平行,它们的顶点依次用A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、

A12…表示,那么顶点A62的坐标是(﹣11,﹣11).

分析:

=10余2,顶点A62所在的正六边形的边长为(10+1)×2=22,顶点A62在第三象限,继而即可得出答案.

解答:

解:∵=10余2,

∴顶点A62所在的正六边形的边长为(10+1)×2=22,

且顶点A62在第三象限,

其横坐标为﹣=﹣11,纵坐标为﹣=﹣11,

故顶点A62的坐标是(﹣11,﹣11).

故答案为:(﹣11,﹣11).

22.(2009?德州)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…

和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐

标是(2n﹣1,2n﹣1).

分析:先求出直线解析式,再寻找规律求解.

解答:解:把A1(0,1),A2(1,2)代入y=kx+b可得y=x+1.可知An的纵坐标总比横坐标多1.由图易知图中所有的三角形的等腰直角三角形,所以B1(1,1),B2(1+2,2),B3(1+2+4,4),

Bn纵坐标为2n﹣1.

观察图可知Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标.

∴Bn+1纵坐标为2n,则An+1的纵坐标为2n,An+1的横坐标为2n﹣1,则Bn的横坐标为2n﹣1.

则Bn的坐标是(2n﹣1,2n﹣1).

24.(2008?内江)如图,当四边形PABN的周长最小时,a= .

分析:因为AB,PN的长度都是固定的,所以求出PA+NB的长度就行了.问题就是PA+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确

定N点位置,此时PA+NB最短.

设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.

解答:解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),

作B′关于x轴的对称点B″,根据作法知点B″(2,1),

设直线AB″的解析式为y=kx+b,

则,解得k=4,b=﹣7.

∴y=4x﹣7.当y=0时,x=,即P(,0),a=.

故答案填:.

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

因式分解分类练习经典全面

因式分解练习题(提取公因式) 专项训练一:确定下列各多项式的公因式。 1、ay ax + 2、36mx my - 3、2410a ab + 4、2155a a + 5、22x y xy - 6、22129xyz x y - 7、()()m x y n x y -+- 8、()()2 x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。 1、22____()R r R r ππ+=+ 2、222(______)R r πππ+= 3、2222121211 ___()22 gt gt t t +=+ 4、2215255(_______)a ab a += 专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。 1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()2 2___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。 1、nx ny - 2、2a ab + 3、3246x x - 4、282m n mn + 5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+ 8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+ 11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +- 13、3222315520x y x y x y +- 14、432163256x x x --+ 专项训练五:把下列各式分解因式。 1、()()x a b y a b +-+ 2、5()2()x x y y x y -+- 3、6()4()q p q p p q +-+ 4、()()()()m n P q m n p q ++-+- 5、2()()a a b a b -+- 6、2()()x x y y x y --- 7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+ 9、()()p x y q y x --- 10、(3)2(3)m a a -+- 11、()()()a b a b b a +--+ 12、()()()a x a b a x c x a -+---

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

整式的加减乘除及因式分解中考总复习(知识点复习+中考真题题型分类练习)

整式的加减、乘除及因式分解 整式加减 一、知识点回顾 1、单项式:由数与字母的乘积组成的代数式称为单项式。补充:单独一个数或一个字母也是单项式,如a ,5……单项式系数和次数:系数:次数: 2、多项式:几个单项式的和叫做多项式。在多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项。多项式里次数最高项的次数,就是这个多项式的次数。例如,多项式3x-2最高的项就是一次项3x ,这个多项式的次数是1,它是一次二项式 4、整式的概念:单项式与多项式统称整式 二、整式的加减 1、同类项:所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。 合并同类项:把多项式中同类项合并在一起,叫做合并同类项。合并同类项时,把同类 项的系数相加,字母和字母的指数保持不变。 2、去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号. 3、整式加减的运算法则 (1)如果有括号,那么先去括号。 (2)如果有同类项,再合并同类项。 整式乘除及因式分解 一、幂的运算: 1、同底数幂的乘法法则:n m n m a a a +=?(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。 2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。如:10253)3(=- 幂的乘方法则可以逆用:即m n n m m n a a a )()(== 如:23326)4()4(4== 3、积的乘方法则:n n n b a ab =)((n 是正整数)。积的乘方,等于各因数乘方的积。 4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m 同底数幂相除,底数不变,指数相减。 5、零指数;10=a ,即任何不等于零的数的零次方等于1。 二、单项式、多项式的乘法运算:

(完整版)因式分解培优题(超全面、详细分类)

因式分解专题培优 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 因式分解的一般方法及考虑顺序: 1、基本方法:提公因式法、公式法、十字相乘法、分组分解法. 2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法. 3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法. 一、运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例题1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7.

高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件 题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判 断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、 二次不等式的关系 题型2-12 二次方程的实根分布及 条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指 数不等式 题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对 数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所 在区间 题型2-25 利用函数的零点确定参 数的取值范围 题型2-26 方程根的个数与函数零 点的存在性问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关 系判断图像 题型3-4 利用导数求函数的单调性 和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或 不单调,求参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的

因式分解题型分类解析

因式分解 一、因式分解的概念: 因式分解(分解因式):把一个多项式化为几个整式()的形式。 二、因式分解的方法: 1、提公因式法: (1)公因式的构成一般情况下有三部分: ①系数一各项系数的最大公约数; ②字母——各项含有的相同字母; ③指数——相同字母的最低次数; (2)提公因式法的步骤: 第一步是找出公因式; 第二步是提取公因式并确定另一因式。 (3)注意:①提取完公因式后,看另一个因式的项数与原多项式的项数是否一致,可用来检验是否漏项; ②提取公因式后各因式应该是最简形式,即分解到“底”; ③如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。 2、公式法: 运用公式法分解因式的实质是:把整式中的乘法公式反过来使用; 常用的公式: ①平方差公式: a2-b2= ②完全平方公式: a2+2ab+b2= a2-2ab+b2= 3、十字相乘法:x2+(a+b)x+ab= 特点:(1)二次项系数是1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。

一、按知识点: 题型一: 概念的理解: 例1、下列由左到右的变形,哪些是因式分解?哪些不是?请说出理由。 (1)、()ay ax y x a +=+ (2)、()()()1121222-+++=-++y y y x x y xy x (3)、)3)(3(92-+=-x x a a ax (4)、2 22 )1(12x x x x +=++ (5)、a a a a ??=223 例3、下列各式中能用平方差公式分解因式的是( ) ①2 2 b a -- ②2 242b a - ③42 2--y x ④192 2+-b a ⑤ 22)()(x y y x -+- ⑥14-x

复数高考题型归类

复数高考题型归类解析 一、基本运算型 二、基本概念型 三、复数相等型 四、复数的几何意义型 练习: 1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值 范围是[ ] A.() 22,22 - B.(-2,2) C.(-1,1) D.(3,3 - 2.在平行四边形OABC中,顶点O,A,C分别表示0,3 +2i,-2+4i.则对角线CA → 所表示的复数的模为; 3.已知复数z1=i(1-i)2,|z|=1|z-z1|的取值范围 是;

五、技巧运算型 六、知识交汇型 七、轨迹方程型 练习: 1.已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A .1个圆 B.线段 C.2个点 D.2个圆 2.如果复数z 满足|z +2i|+|z -2i|=4,那么|z +i +1|的最小值是( ) A.1 B. 2 C.2 D. 5 3.若|z -2|=|z +2|,则|z -1|的最小值是 .

复数高考题型归类解析 一、基本运算型 二、基本概念型 三、复数相等型 四、复数的几何意义型 练习: 1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值 范围是[ ] A.() 22,22 - B.(-2,2) C.(-1,1) D.(3,3 - 2.在平行四边形OABC中,顶点O,A,C分别表示0,3 +2i,-2+4i.则对角线CA → 所表示的复数的模为; 3.已知复数z1=i(1-i)2,|z|=1,则|z-z1|的最大值. 五、技巧运算型 六、知识交汇型

七、轨迹方程型 已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A.1个圆 B.线段 C.2个点 D.2个圆 答案 A 解析 由题意可知(|z |-3)(|z |+1)=0, 即|z |=3或|z |=-1. ∵|z |≥0,∴|z |=3. ∴复数z 对应的轨迹是1个圆. 5.如果复数z 满足|z +2i|+|z -2i|=4,那么|z +i +1|的最 小值是( ) A.1 B. 2 C.2 D. 5 答案 A 解析 设复数-2i,2i ,-(1+i)在复平面内对应的点分别为Z 1,Z 2,Z 3,因为|z +2i|+|z -2i|=4,Z 1Z 2=4,所以复数z 的几何意义为线段Z 1Z 2,如图所示,问题转化为:动点Z 在线段Z 1Z 2上移动,求ZZ 3的最小值. 因此作Z 3Z 0⊥Z 1Z 2于Z 0,则Z 3与Z 0的距离即为所求的最小值,Z 0Z 3=1.故选A. 8.若|z -2|=|z +2|,则|z -1|的最小值是 . 答案 1 解析 由|z -2|=|z +2|,知z 对应点的轨迹是到(2,0)与到(-2,0)距离相等的点,即虚轴.|z -1|表示z 对应的点与(1,0)的距离.∴|z -1|min =1. 12.集合M ={z ||z -1|≤1,z ∈C },N ={z ||z -1-i|=|z -2|,z ∈C },集合P =M ∩N . (1)指出集合P 在复平面上所表示的图形; (2)求集合P 中复数模的最大值和最小值. 解 (1)由|z -1|≤1可知,集合M 在复平面内所对应的点集是以点E (1,0)为圆心,以1为半径的圆的内部及边界;由|z -1-i|=|z -2|可知,集合N 在复平面内所对应点集是以点(1,1)和(2,0)为端点的线段的垂直平分线l ,因此集合P 是圆面截直线l 所得的一条线段AB ,如 图所示.

2021年高考文科数学《集合与简易逻辑》题型归纳与训练(有解析答案)

2021年高考文科数学《集合与简易逻辑》题型归纳与训练 【题型归纳】 题型一 集合的交并补运算 例1 :已知集合{0,2}=A ,{21012}=--, ,,,B ,则A B =( ) A .{0,2} B .{1,2} C .{0} D .{21012}--, ,,, 【答案】A 【解析】由题意{0,2}A B =,故选A . 【易错点】交并不分 【思维点拨】概念的应用 例2已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{3} B .{5} C .{3,5} D .{}1,2,3,4,5,7 【答案】C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =,故选C . 【易错点】交并不分 【思维点拨】概念的应用 题型二 集合的交并补与不等式结合 例3:已知集合{|2}A x x =<,{320}B x =->,则( ) A .3{|}2A B x x =< B .A B =? C .3 {|}2 A B x x =< D .A B =R 【答案】A 【解析】∵3{|}2 B x x =<,∴3 {|}2 A B x x =<, 选A . 【易错点】不等式解错 【思维点拨】掌握常规不等式的解答 例4:设集合2 {|}M x x x ==,{|lg 0}N x x =≤,则M N =( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]

2 【答案】A 【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N =[0,1]. 【易错点】方程解错,对数不等式不会解答 【思维点拨】基本函数和方程思想的掌握 题型三 四种命题的基本考查 例5:设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是 A .若方程20x x m +-=有实根,则0m > B .若方程20x x m +-=有实根,则 0m ≤ C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤ 【答案】D 【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D . 【易错点】概念混淆 【思维点拨】加强对四种命题的强化 题型四 充要条件的判断 例6:设x ∈R ,则“38x >”是“||2x >” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】由38x >,得2x >,由||2x >,得2x >或2x <-,故“3 8x >”是“||2x >” 的充分而不必要条件,故选A . 【易错点】解不等式 【思维点拨】加强部分不等式的解答 例7:设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B

因式分解分类练习题(经典全面)

因式分解练习题(提取公因式) 平昌县得胜中学 任 璟(编) 专项训练一:确定下列各多项式的公因式。 1、ay ax + 2、36mx my - 3、2410a ab + 4、2 155a a + 5、2 2 x y xy - 6、2 2 129xyz x y - 7、()()m x y n x y -+- 8、()()2 x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。 1、22____()R r R r ππ+=+ 2、222(______)R r πππ+= 3、2222121211 ___()22 gt gt t t +=+ 4、2215255(_______)a ab a += 专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。 1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()2 2___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121 () ___() ()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。 1、nx ny - 2、2a ab + 3、3246x x - 4、282m n mn + 5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+ 8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+ 11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +- 13、3222315520x y x y x y +- 14、432163256x x x --+ 专项训练五:把下列各式分解因式。 1、()()x a b y a b +-+ 2、5()2()x x y y x y -+- 3、6()4()q p q p p q +-+ 4、()()()()m n P q m n p q ++-+- 5、2()()a a b a b -+- 6、2()()x x y y x y --- 7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+ 9、()()p x y q y x --- 10、(3)2(3)m a a -+- 11、()()()a b a b b a +--+ 12、()()()a x a b a x c x a -+---

高中数学集合总结+题型分类+完美解析

集合 【知识清单】 1.性质:确定性、互易性、无序性. 2.元素和集合的关系:属于“∈”、不属于“?”. 3.集合和集合的关系:子集(包含于“?”)、真子集(真包含于“≠ ?”). 4.集合子集个数=n 2;真子集个数=12-n . 5.交集:{}B x A x x B A ∈∈=且| 并集:{}B x A x x B A ∈∈=或| 补集:{}A x U x x A C U ?∈=且| 6.空集是任何非空集合的真子集;是任何集合的子集. 题型一、集合概念 解决此类型题要注意以下两点: ①要时刻不忘运用集合的性质,用的最多的就是互易性; ②元素与集合的对应,如数对应数集,点对应点集. 【No.1 定义&性质】 1.下列命题中正确的个数是( ) ①方程022=++-y x 的解集为{}2,2- ②集合{} R x x y y ∈-=,1|2 与{}R x x y y ∈-=,1|的公共元素所组成的集合是{}1,0 ③集合{}01|<-x x 与集合{}R a a x x ∈>,|没有公共元素 A.0 B.1 C.2 D.3 分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构 成的集合,而是x 和y 的值的集合,也就是一个点. 答案:A

详解:在①中方程022=++-y x 等价于? ??=+=-020 2y x ,即???-==22y x 。因此解集应为 (){}2,2-,错误; 在②中,由于集合{} R x x y y ∈-=,1|2的元素是y ,所以当R x ∈时,112-≥-=x y .同理, {}R x x y y ∈-=,1|中R y ∈,错误; 在③中,集合{}01|<-x x 即1,|,画出数轴便可知这两个集合可能有公共的元素,错误.故选A. 2.下列命题中, (1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素; (2)如果集合A 是集合B 的子集,则集合A 的元素少于集合B 的元素; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素; (4)如果集合A 是集合B 的子集,则集合A 和B 不可能相等. 错误的命题的个数是( ) A .0 B .1 C .2 D .3 分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N 的子集,那么M 中的元素个数要小于或等于N 中元素的个数;如果集合M 是集合N 的真子集,那么M 中的元素个数要小于N 中元素的个数. 答案:C 详解:(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素,故(1)正确; (2)如果集合A 是集合B 的子集,则集合A 的元素少于或等于集合的B 元素,故(2)不 正确; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素,故(3)正确; (4)如果集合A 是集合B 的子集,则集合A 和B 可能相等,故(4)不正确.故选C . 3.设P 、Q 为两个非空实数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合Q P +中的元素是b a +,其中P a ∈,Q b ∈,则Q P +中元素的个数是( ) A.9 B.8 C.7 D.6 分析:因为P a ∈,Q b ∈,所以Q P +中的元素b a +是P 中的元素和Q 中元素两两相加而得出的,最后得出的集合还要考虑集合的互易性. 答案:B 详解:当0=a 时,b 依次取1,2,6,得b a +的值分别为1,2,6; 当2=a 时,b 依次取1,2,6,得b a +的值分别3,4,8; 当5=a 时,b 依次取1,2,6,得b a +的值分别6,7,11;

因式分解题型分类

《因式分解》知识演练 分解因式【考点演练】 1、下列各式从左到右的变形中,是因式分解的为 1、bx ax b a x -=-)( 2、222)1)(1(1y x x y x ++-=+- 3、)1)(1(12-+=-x x x 4、c b a x c bx ax ++=++)( 5、12a 2b =3a ·4ab 6、(x +3)(x -3)=x 2-9 7、4x 2+8x -1=4x (x +2)-1 8、2 1ax -2 1ay =21a (x -y ) 9、(a +3)(a -3)=a 2-9 10、x 2+x -5=(x -2)(x +3)+1 11、x 2+1=x (x +x 1 ) 12、z yz z y z z y yz +-=+-)2(2242 2、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是( ) A 、46-b B 、64b - C 、46+b D 、46--b 3、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( ) A 、1,3-==c b B 、2,6=-=c b C 、4,6-=-=c b D 、6,4-=-=c b 4、若 , ),4)(3(2==-+=++b a x x b ax x 则 5、若x+5,x-3都是多项式152--kx x 的因式,则k=_________. 提公因式法【考点演练】 1、322236129xy y x y x -+中各项的公因式是__________。 2、将多项式3222231236b a b a b a +--分解因式时,应提取的公因式是( ) A 、ab 3- B 、223b a - C 、b a 23- D 、333b a - 3、下列各式分解正确的是( ) A 、)34(391222xy xyz y x xyz -=- B 、)1(333322+-=+-a a y y ay y a C 、)(2z y x x xz xy x -+-=-+- D 、)5(522a a b b ab b a +=-+ 4、下列各式的因式分解中正确的是( ) A 、 -a 2+ab -ac = -a (a +b -c ) B 、9xyz -6x 2y 2=3xyz (3-2xy ) C 、3a 2x -6bx +3x =3x (a 2-2b ) D 、 21xy 2+21x 2y =2 1 xy (x +y ) 5、下列各式从左到右的变形错误的是( ) A 、 22)()(y x x y -=- B 、)(b a b a +-=-- C 、33)()(a b b a --=- D 、)(n m n m +-=+- 6、m 2(a -2)+m (2-a )分解因式等于( ) A 、(a -2)(m 2+m ) B 、(a -2)(m 2-m ) C 、 m (a -2)(m -1) D 、m (a -2)(m+1)

高中数学主要题型与方法归纳

高中数学重点题型与思维方法归纳 一、集合、逻辑、函数、导数、定积分 1.集合的运算——①图示法P1 9;②验证法P111;③空集分类法P2 14;④转化法P14 2.子集(元素)个数——①列举法;②2n法P1 6;③转化法P125 8 3.充分必要条件——①大小法(小充分,大必要)P3 1;②推导法(推出充分被推必要互推充要)P3 3 4.命题的否定——①结论否定法;②全特互化法)P3 4 5.求定义域——①有意义法(具体函数或实际问题)P6 12;②整体不变法(抽象函数)P5 5 6.求值域——①图象法;②单调性法P5 8、P7 8;③反函数法;④分离常数法P12 13(1); ⑤配方法P10 13;⑥最值法 7.求最值——①函数值域法P7 8、P21 8、P86 13;②均值不等式法P11 4;③线性规划法; ④导数法P103 6;⑤转化法(立体与平面、同侧与异侧P67 5、P73 7、相离与相切P101 11) 8.求解析式——①换元法;②待定系数法P10 13(1);③构造方程法P6 13;④化归法P22 13 9.画图——①特殊点法P15 9;②变换图象法P15 8、P27 7;③假设验证法P15 6; ④奇偶分析法P15 9;⑤导数法(原增导在上,原减导在下)P103 3 10.零点或交点——①图象法P9 8;②零点交点转化法P18 11;③韦达定理法P17 8; ④解方程法P17 1、P17 10;⑤估算法P17 5;⑥导数法 11.一元二次方程根的分布——①图象法P67 9;②判别韦达法P9 9 12.单调性问题——①图象法P7 9;②复合法(同增异减)P9 11;③定义法; ④导数法P12 13、P101 10、P103 5、P103 9;⑤性质法 13.奇偶性问题——①特殊值法P7 6;②定义法P16 14(1);③化半法P8 13;④图象法P21 12 14.周期性问题——①图象法;②定义法P7 7;③三角公式法 15.对数计算——①逆运算转化法P13 3、P21 9;②化同法P13 5;③换底法 16.函数的应用——①列式法P19 4;②建模法P20 14、P64 14;图表法 17.求导数——①定义法P103 1;②公式法P101 2 18.求切线方程——①△=0法;②导数法P102 13、P104 11;③距离法(适用于圆) 19.求极值——①图象法P103 2;②导数法(左正右负极大值,左负右正极小值)P104 10、P104 13 20.求定积分或曲线围成面积——①图象法P105 11;②积分公式法P105 5;③概率法 二、三角函数、平面向量 1.三角函数符号(或角的象限)——①单位圆法P23 7;②πk2法P23 5 Rt法P25 2;②同角公式法 2.三角函数知一求余——①? 3.三角化简求值——①化切法P25 9;②化弦法;③1的代换P24 13;④和积互化P25 4; ⑤公式法P29 10;⑥换角法P30 13;⑦转化法(化同角、化同名、化同次)P25 8、P28 14 4.对称问题——①图象P21 12;②整体不变法;③公式法;④验证法P28 12 5.解三角形——①正弦定理P33 8;②余弦定理P33 9;③化边法P34 13;④化角法 6.平面向量的运算——①图解法P35 10、P97 9;②公式法P41 3;③坐标法P37 1、P41 10 7.向量平行(共线)问题——①成比例法P37 2;②公式法P35 2、P73 11、P99 7、12 8.向量垂直问题——①几何法P39 10;②公式法P39 7、P96 14 9.求夹角——①几何法P37 5;②公式法P41 11 10.求长度(模)——①平方法P37 9;②解三角形法P41 2

初中因式分解典型例题汇总(附答案)

初中因式分解典型例题汇总 例 1 多项式x +ax+b因式分解为(x+1)(x-2),求a+b的值. 分析 根据因式分解的概念可知因式分解是一种恒等变形,而恒等式 中的对应项系数是相等的,从而可以求出 a 和 b,于是问题便得到解 决. 解
2 2
由题意得:x +ax+b=(x+1)(x-2),所以
2
2
x +ax+b=x -x-2, 从而得出 a=-1,b=-2, 所以 a+b=(-1)+(-2)=-3. 点评 “恒等式中的对应项系数相等”这一知识是求待定系数的一种 重要方法. 例2 分析 解 点评 因式分解 6a b+4ab -2ab. 此多项式的各项都有因式 2ab,提取 2ab 即可. 6a b+4ab -2ab=2ab(3a+2b-1). 用“提公因式法”分解因式,操作时应注意这样几个问题:首
2 2 2 2
先, 所提公因式应是各项系数的最大公约数与相同字母最低次幂的乘 积,即提取的公因式应是多项式各项的最高公因式,否则达不到因式 分解的要求;其次,用“提公因式法”分解因式,所得结果应是:最 高公因式与原多项式各项分别除以最高公因式所得商式的乘积. 如果 原多项式中的某一项恰是最高公因式,则商式为 1,这个 1 千万不能

丢掉. 本例题中,各项的公因式有 2,a,b,2a,2b,ab,2ab等.其中 2ab 是它们的最高公因式,故提取 2ab.作为因式分解后的一个因式,另 一个因式则是分别用 6a b,4ab 和-2ab除以 2ab所得的商式代数和, 其中-2ab÷2ab=-1,这个-1 不能丢. 例3 分析 因式分解 m(x+y)+n(x+y)-x-y. 将-x-y 变形为-(x+y),于是多项式中各项都有公因式 x+y,提
2 2
取 x+y 即可. 解 m(x+y)+n(x+y)-x-y
=m(x+y)+n(x+y)-(x+y) =(x+y)(m+n-1). 点评 例4 分析
3
注意添、去括号法则. 因式分解 64x -1. 64x 可变形为(8x ) ,或变形为(4x ) ,而 1 既可看作 1 ,也可
6 3 2 2 3 2 6
看作 1 ,这样,本题可先用平方差公式分解,也可先用立方差公式分 解. 解
6
方法一
3 2
64x -1=(8x ) -1 =(8x +1)(8x -1) =[(2x) +1][(2x) -1] =(2x+1)(4x -2x+1)(2x-1)(4x +2x+1) 方法二
2 2 3 3 3 3

高中数学《集合》知识点归纳及题型练习

高中数学《集合》知识点归纳及题型练习 【知识点】 1.集合的三个特性:确定性,互异性,无序性 2.自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。 3.集合的三种表示方法:列举法,描述法,文氏图。 4.集合的分类:有限集,无限集,空集 5.子集:若a A ∈,则a B ∈,称为A 是B 的子集,记作:A B ?或B A ?, 读作:“集合A 包含于集合B ”或“集合B 包含集合A ”。 6.真子集:若A B ?且B A ?,则称集合A 与集合B 相等,记作:A B =; 若A B ?且A B ≠,则称集合A 是集合B 的真子集,记作: 【注意】空集φ是任何集合的真子集。 一个集合的子集个数为2n ,真子集个数为21n -,非空真子集个数为22n -。 7.补集:已知A U ?,由所有属于U 但不属于A 中的元素组成的集合称为A 的补 集,记作:U A e, 读作:A 在U 中的补集。即:{|,}U A x x U x A =∈?且e 8.交集:由两个集合中的公共元素组成的集合,即:{|}A B x x A x B =∈∈,且 9.并集:由两个集合中的所有元素组成的集合,即:{|}A B x x A x B =∈∈,或 10.集合的包含关系:A B ??A B A A B B =?= 题型1.集合性质的应用 1.判断能否构成集合:【根据集合的确定性】 (1)我国的所有直辖市; (2)我校的所有大树; (3)深圳机场学校的所有优秀学生; (4)深圳市的全体中学生; (5)不等式220x x ->的所有实数解; (6)所有的正三角形。 2.用,∈?填空:2 N , , -3 Z , , R ; 已知2{|20}A x x x =--=,则1 A ,2 A ,-1 A ,-2 A 。

《因式分解》常见题型例析

《因式分解》常见题型例析 因式分解是中学数学的重要内容之一,是学习分式、根式、和一元二次方程的重要基础,是解决许多数学问题的重要“工具”,也是各级考试的一个热点,现将关于这部分知识的常见题型介绍如下。 题型一:分解因式的意义 例1 下列从左到右的变形是分解因式的是( ) (A )(x -4)(x+4)=x 2-16 (B)x 2-y 2+2=(x+y)(x -y)+2 (C)2ab+2ac=2a(b+c) (D)(x -1)(x -2)=(x -2)(x -1). 练习:下面由左边到右边的变形中,是分解因式的是( ). (A)a(x -y)=ax -ay (B)x 2-2x+4=(x -1)2+3 (C)8x 2-4x=4x·2x (D)y 2-y+41=(y -2 1)2 题型二、直接提公因式分解 例2 分解因式2a(b -c)-3c(b -c). 练习:分解因式: (2x -3y)(a+b)+(a+b)(3x -2y). 题型三、直接利用公式因式分解 例3、分解因式:a 2-1=_______. 练习:分解因式:224x y =________. 题型四、提公因式后再用公式 例4、把a 3-ab 2分解因式的正确结果是( ) A 、(a+ab)(a -ab) B 、a (a 2-b 2) C 、a(a+b)(a -b) D 、a(a -b)2

练习∶分解因式:244x y xy y -+=_________. 题型五、利用因式分解进行数字计算 例5、计算:2-22-23-……-218-219+220, 练习:算式22222222+++可化为( ) A .42 B .28 C .82 D .162 题型六、利用因式分解求值 例6、若非零实数a 、b 满足4a 2+b 2=4ab ,则b a =___________. 练习:已知:x 2+4y 2-4x -4y+5=0,求:x -y 的值。 例7、已知:x+y=1,求222 121y xy x ++的值。 练习:已知a+b=13,ab=40,求a 2b+ab 2的值。 例8、已知:多项式222541y mxy x ++是一个完全平方式,求m 的值。 练习:已知:x 2+2(m -3)x+16是一个完全平方式,求m 的值。 题型七、利用因式分解求解整除问题 例9、设n 为整数.求证:(2n+1)2-25能被4整除。 练习:证明:817-279-913能被45整除。(提示:原式=(34)7- (33)9-(32)13=326(32-3-1)=45×324)。 题型八、利用因式分解求解矩形、正方形问题 例10、已知矩形的面积为6m 2+60m+150(m>0),长与宽的比为3:2,求这个矩形的周长。 练习:已知:一正方形的面积为:9x 2+12xy+4y 2,且x>0,y>0,求该正方形的周长。

相关主题
文本预览
相关文档 最新文档