(高考速递)2017年高考押题卷文科数学(2)(有答案)AlKPPP
- 格式:doc
- 大小:1.32 MB
- 文档页数:13
2017高考仿真卷·文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.( p)∧( q)C.( p)∧qD.p∧( q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元))的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A·x-ay-c=0与bx+sin B·y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V =,则球O的表面积是()正四棱锥P-ABCDA.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|P A|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·文科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以( p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以·2R2·R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y 仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k 满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知P A2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时P A=,AC=.所以该几何体的体积V=×1×.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n=解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解(1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c×=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解(1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40×0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40×0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),( A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB·DD1=×2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|P A|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|P A|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解(1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解(1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
2017年高考原创押题卷(二)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={-1,0,1,2},B =xy =2-x 2x +1,则A ∩B =( )A.{}0,1B.{}-1,0,1C.{}0,1,2D.{}-1,0,1,2 2.若z =1+i ,则2+iz -z的实部为( )A.12 B .1 C .-12D .-1 3.为估计椭圆x 24+y 2=1的面积,利用随机模拟的方法产生200个点(x ,y ),其中x ∈(0,2),y ∈(0,1),经统计有156个点落在椭圆x 24+y 2=1内,则由此可估计该椭圆的面积约为 ( )A .0.78B .1.56C .3.12D .6.24 4.已知△ABC 中,点D 为BC 的中点,若向量AB →=(1,2),|AC →|=1,则AD →·DC →=( ) A .1 B .2 C .-1 D .-25.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图21所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个相等的直角三角形和中间的那个小正方形组成,这一图形被称作“赵爽弦图”.若正方形ABCD 与正方形EFGH 的面积分别为25,1,则cos 2∠BAE = ( )A.725B.925C.1625D.2425图216.若函数f()x=x+abx2+c的图像如图22所示,则下列判断正确的是()图22A.a>0,b>0,c>0 B.a=0,b>0,c>0 C.a=0,b<0,c>0 D.a=0,b>0,c<0 7.已知某几何体的三视图如图23所示,则该几何体的表面积是()图23A .8+2πB .8+3πC .8+3+3πD .8+23+3π 8.若0<a <b <1,则a b ,b a ,log b a ,log 1a b 的大小关系为( )A .a b >b a >log b a >log 1a bB .b a >a b >log 1a b >log b aC .log b a >a b >b a >log 1a bD .log b a >b a >a b >log 1ab9.已知数列{}a n 满足a n =5n -2n ,且对任意n ∈N *,恒有a n ≤a k .执行如图24所示的程序框图,若输入的x 值依次为a k ,a k +1,a k +2,输出的y 值依次为12,12,12,则图中①处可填( )图24A .y =2x -2B .y =x 2+3x -16C .y =||2x +3+1D .y =x 2+7x -1210.已知点P 为圆C :x 2+y 2-2x -4y +a =0与抛物线D :x 2=4y 的一个公共点,若存在过点P 的直线l 与圆C 及抛物线D 都相切,则实数a 的值为( )A .2 B. 2 C .3 D .-511.如图25所示,在三棱锥A - BCD 中,△ACD 与△BCD 都是边长为2的正三角形,且平面ACD ⊥平面BCD ,则该三棱锥外接球的体积为( )图25A.16π3B.20π3C.323π27D.2015π2712.已知正数a ,b ,c ,d ,e 成等比数列,且1c +d -1a +b =2,则d +e 的最大值为( )A.39 B.33 C.239 D.13第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知等差数列{}a n 的公差d ≠0,若a 21+a 2=1,a 22+a 3=1,则a 1=________.14.若对任意实数k ,直线kx +y -2+a =0恒过双曲线C :y 2a 2-x 2=1(a >0)的一个焦点,则双曲线C的离心率是________.15.已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0表示的平面区域为D ,若存在(x 0,y 0)∈D ,使得y 0+1≥k (x 0+1),则实数k 的取值范围是________.16.已知f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x 2-ax ,x ≤0,若方程f ()x =x +a 有2个不同的实根,则实数a 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)如图26所示,在△ABC 中,cos 2A -C 2=14+sin A sin C ,BC =2,点E 为AC中点,边AC 的垂直平分线DE 与边AB 交于点D . (1)求角B 的大小; (2)若ED =62,求角A 的大小.图2618.(本小题满分12分)汽车尾气中含有一氧化碳(CO),碳氢化合物(HC)等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为35,问是否有95%的把握认为“对机动车强制报废标准是否了解与性别有关”?图27(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中CO 浓度的数据,并制成如图27所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中CO 浓度y %与使用年限t 线性相关,试确定y 关于t 的回归方程,并预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的多少倍. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(n =a +b +c +d )b ^=,a ^=-b ^t19.(本小题满分12分)如图28所示,PA 垂直于正方形ABCD 所在平面,点E 是线段PC 上一点,AB =3,BE =6,且BE ⊥PC.(1)试在AB 上找一点F ,使EF ∥平面PAD ,并求AFFB 的值;(2)求三棱锥P - BEF 的体积.图2820.(本小题满分12分)已知圆x 2+y 2-2x =0关于椭圆C :x 2a 2+y 2b2=1()a>b>0的一个焦点对称,且经过椭圆的一个顶点. (1)求椭圆C 的方程;(2)若直线l :y =kx +1与椭圆C 交于A ,B 两点,已知O 为坐标原点,以线段OA ,OB 为邻边作平行四边形OAPB ,若点P 在椭圆C 上,求k 的值及平行四边形OAPB 的面积.21.(本小题满分12分)已知函数f ()x =ln ()x +1+a ||x -1. (1)若当x ≥1时,f ()x +2a<0恒成立,求实数a 的取值范围;(2)讨论f ()x 的单调性.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.(本小题满分10分)选修4-4:坐标系与参数方程平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-1+22t ,y =22t(t ∈R ).以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=3. (1)求出直线l 的普通方程及曲线C 1的直角坐标方程;(2)若直线l 与曲线C 1交于A ,B 两点,点C 是曲线C 1上与A ,B 不重合的一点,求△ABC 面积的最大值.23.(本小题满分10分)选修4-5:不等式选讲 已知实数a ,b 满足a 2+4b 2=4. (1)求证:a 1+b 2≤2;(2)若对任意a ,b ∈R ,||x +1-||x -3≤ab 恒成立,求实数x 的取值范围.参考答案·数学(文科)2017年高考原创押题卷(二)1.A 2.A3.D [解析] 满足⎩⎪⎨⎪⎧0<x <2,0<y <1的点()x ,y 构成长为2,宽为1的长方形区域,面积为2,设椭圆与两正半轴围成的面积为S ,则S 2≈156200,所以椭圆的面积4S ≈156200×2×4=6.24,故选D.4.C [解析] 由点D 为BC 中点,得AD →·DC →=12(AB →+AC →)·12BC →=12()AB →+AC →·12(AC →-AB →)=14()AC →2-AB →2=14×()1-5=-1,故选C.5.A [解析] 由图可知a >b ,且a 2+b 2=25,()a -b 2=1,所以a =4,b =3,sin ∠BAE =ba 2+b 2=35,所以cos 2∠BAE =1-2sin 2∠BAE =1-2×⎝⎛⎭⎫352=725,故选A. 6.D [解析] 由f ()0=0可得a =0,所以选项A 不正确;若b >0,c >0,则bx 2+c >0恒成立,f ()x 的定义域是R ,与图像相矛盾,所以选项B 不正确;若b <0,c >0,当x >0时,由bx 2+c <0得x >-c b,即x >-cb时恒有f ()x <0,这与图像相矛盾,所以选项C 不正确.故选D. 7.D [解析] 由三视图可知该几何体是由一个半圆柱和一个三棱柱构成的组合体,其表面积由两个半圆,圆柱的半个侧面,棱柱的两个侧面及棱柱的两个底面组成,故该几何体的表面积S =π×12+π×1×2+2×2×2+2×12×3×2=8+23+3π,故选D.8.D [解析] 因为0<a <b <1,所以0<a b <b b <b a <1,log b a >log b b =1,log 1a b <0,所以log b a >b a >a b >log 1a b ,故选D.9.A [解析] 由a n =5n -2n 可得a n +1-a n =5-2n ,当n ≤2时,a n +1-a n >0,当n ≥3时,a n +1-a n <0,所以a n ≤a 3,即k =3,因为a 3=7,a 4=4,a 5=-7,所以输入的x 值依次为7,4,-7.当x =4或-7时,y =12,所以只需把x =7代入选项中各函数,得到y =12的就是正确选项.对于选项A ,当x =7时,y =2×7-2=12,故选A.10.C [解析] 由题意可知直线l 为圆C 及抛物线D 在点P 处的公切线,因为点P 在抛物线D 上,所以设点P ⎝⎛⎭⎫t ,t 24.由x 2=4y ,得y =x 24,y ′=x 2,所以直线l 的斜率k 1=t2,又圆心C 的坐标为()1,2,所以直线PC 的斜率k 2=t 24-2t -1=t 2-84()t -1,由k 1k 2=t 3-8t8t -8=-1,解得t =2,所以点P 的坐标为()2,1,代入方程x 2+y 2-2x -4y +a =0,得a =3,故选C.11.D [解析] 取CD 的中点E ,设三棱锥A - BCD 外接球的球心为O ,△ACD 与△BCD 外接圆的圆心分别为O 1,O 2,则O 1E =13AE =13×32×CD =33,则四边形OO 1EO 2是边长为33的正方形,所以三棱锥A - BCD 外接球的半径R =OC =OE 2+CE 2=()2O 1E 2+⎝⎛⎭⎫12CD 2=⎝⎛⎭⎫632+12=153,所以该三棱锥外接球的体积V =43πR 3=2015π27,故选D. 12.A [解析] 设该数列的公比为q ,则q >0,由1c +d -1a +b =2可得1c +d -q 2c +d =2,所以c +d =1-q 22.由c +d >0可得0<q <1,d +e =()c +d q =q -q 32.设f ()q =q -q 32,则f ′()q =1-3q 22,所以f ()q 在⎝⎛⎭⎫0,33上单调递增,在⎝⎛⎭⎫33,1上单调递减,所以f ()q ≤f ⎝⎛⎭⎫33=39,故选A.13.-1或2 [解析] a 21+a 2=1,a 22+a 3=1,两式相减得()a 2+a 1()a 2-a 1+a 3-a 2=0,即d ()a 2+a 1+d =0,因为d ≠0,所以a 2+a 1=-1,即a 2=-1-a 1,代入a 21+a 2=1,得a 21-a 1-2=0,解得a 1=-1或a 1=2.14.53 [解析] 直线kx +y -2+a =0恒过定点()0,2-a ,该点就是双曲线C 的一个焦点,所以a 2+1=()2-a 2,解得a =34,故双曲线C 的离心率e =a 2+1a 2=53.15.k ≤2 [解析] 不等式组表示的平面区域D 为图中阴影部分所示,其中A (0,1),B (1,0),C (2,3).由()x 0,y 0∈D ,y 0+1≥k (x 0+1),得y 0+1x 0+1≥k .y +1x +1表示点()x ,y ,(-1,-1)连线的斜率,数形结合,得12≤y +1x +1≤2,所以k ≤2.16.{a |a =-1或0≤a <1或a >1} [解析] 当直线y =x +a 与曲线y =ln x 相切时,设切点坐标为(t ,ln t ),则切线斜率k =(ln x )′x =t =1t = 1 ,所以t =1,切点为()1,0,代入y =x +a ,得a =-1.当x ≤0时,由f ()x =x +a ,得()x +1()x +a =0.①当a =-1时,ln x =x +a ()x >0有1个实根,此时()x +1()x +a =0()x ≤0有1个实根,满足条件;②当a <-1时,ln x =x +a ()x >0有2个实根,此时()x +1()x +a =0()x ≤0有1个实根,不满足条件;③当a >-1时,ln x =x +a ()x >0无实根,此时要使()x +1()x +a =0()x ≤0有2个实根,应有-a ≤0且-a ≠-1,即a ≥0且a ≠1.综上得实数a 的取值范围是{a |a =-1或0≤a <1或a >1}.17.解:(1)由cos 2A -C 2=14+sin A sin C ,得1+cos ()A -C 2=14+sin A sin C ,整理得cos ()A -C -2sin A sin C =-12,即cos ()A +C =-12,2分所以cos B =-cos(A +C )=12,又0<B <π,所以B =π3.5分(2)连接DC ,由DE 垂直平分边AC ,得AD =DC ,∠DCE =∠DAE ,所以CD =AD =DE sin A =62sin A .8分在△BCD 中,由BC sin ∠BDC =CD sin B 及∠BDC =2A ,得2sin 2A =CD sin π3,所以CD =3sin 2A ,10分所以62sin A =3sin 2A ,解得cos A =22.因为A 是三角形的内角,所以A =π4.12分18.解:(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件A ,1分 由已知得P (A )=b +35100=35,所以a =25,b =25,p =40,q =60.4分K 2的观测值k =100×(25×35-25×15)240×60×50×50≈4.167>3.841,5分故有95%的把握认为“对机动车强制报废标准是否了解与性别有关”.6分(2)由折线图中所给数据计算,得t =15×(2+4+6+8+10)=6,y =15×(0.2+0.2+0.4+0.6+0.7)=0.42,∑i =15()t i -t 2=16+4+0+4+16=40,∑i =15()t i -t ()y i -y =(-4)×(-0.22)+(-2)×(-0.22)+0×(-0.02)+2×0.18+4×0.28=2.8, 8分故b ^==2.840=0.07,a ^=-b ^t =0.42-0.07×6=0, 10分所以所求回归方程为y ^=0.07t.故预测该型号的汽车使用12年排放尾气中的CO 浓度为0.84%,因为使用4年排放尾气中的CO 浓度为0.2%,所以预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的4.2倍. 12分19.解:(1)如图所示,在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG.∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG . 3分又AG ⊂平面PAD ,FE ⊄平面PAD , ∴EF ∥平面PAD ,∴F 即为所求的点. 5分又PA ⊥平面ABCD ,∴PA ⊥BC ,又BC ⊥AB ,PA ∩AB =A ,∴BC ⊥平面PAB ,∴PB ⊥BC , ∴PC 2=BC 2+PB 2=BC 2+AB 2+PA 2.设PA =x ,则PB =9+x 2,PC =18+x 2,由PB ·BC =BE·PC ,得9+x 2×3=18+x 2× 6 , ∴x =3,即PA =3,∴PC =33,CE =3, ∴PE PC =23,∴AF AB =GE CD =PE PC =23,∴AFFB=2. 8分(2)三棱锥P - BEF 的体积就是三棱锥E-PBF 的体积,点C 到平面PBF 的距离BC =3,由PE PC =23,可得点E 到平面PBF 的距离为2. 10分∵△PBF 的面积S =12×BF ×PA =12×1×3=32,∴三棱锥P - BEF 的体积V =13×32×2=1.12分20.解:(1)圆x 2+y 2-2x =0关于圆心()1,0对称,与坐标轴的交点为()0,0,()2,0, 所以椭圆C 的一个焦点为()1,0,一个顶点为()2,0,所以a =2,c =1,b 2=a 2-12=3, 故椭圆C 的方程为x 24+y 23=1. 4分(2)联立⎩⎪⎨⎪⎧y =kx +1,3x 2+4y 2=12,得()3+4k 2x 2+8kx -8=0, 此时Δ=64k 2+32()3+4k 2>0. 6分设A ()x 1,y 1,B ()x 2,y 2,P ()x 0,y 0,则x 0=x 1+x 2=-8k 3+4k 2,y 0=y 1+y 2=k ()x 1+x 2+2=-8k 23+4k 2+2=63+4k 2.因为点P 在椭圆C 上,所以x 204+y 203=1,即16k 2()3+4k 22+12()3+4k 22=1,整理得k 2=14,k =±12. 9分点O 到直线l 的距离d =11+k2=255,||AB =1+k 2·()x 1+x 22-4x 1x 2=1+k 2·64k 2()3+4k 22-4×(-8)3+4k 2=46()1+k 2()2k 2+13+4k 2=352,所以△OAB 的面积S 1=12·d ·||AB =12×255×352=32, 所以平行四边形OAPB 的面积S 2=2S 1=3. 12分21.解:(1)当x ≥1时,f ()x +2a<0恒成立,即ln (x +1)+a ()x +1<0恒成立, 即a<-ln ()x +1x +1恒成立.设g ()x =-ln ()x +1x +1,则g′()x =ln ()x +1-1()x +12. 2分 令ln ()x +1-1=0,得x =e -1,所以g ()x 在(]1,e -1上单调递减,在(e -1,+∞)上单调递增, 所以g ()x ≥g ()e -1=-1e ,所以a<-1e ,即实数a 的取值范围是⎝⎛⎭⎫-∞,-1e . 5分 (2)函数f(x)的定义域为(-1,+∞).①当x ≥1时,f ()x =ln ()x +1+a ()x -1,f ′()x =1x +1+a ,由x ≥1可得a<1x +1+a ≤12+a.当a ≥0时,f′()x >0,f ()x 在[)1,+∞上单调递增;当12+a ≤0,即a ≤-12时,f′()x ≤0,f ()x 在[)1,+∞上单调递减;当-12<a<0时,由f′()x <0得x>-1-1a ,由f ′()x >0得1≤x<-1-1a ,所以f ()x 在⎝⎛⎭⎫-1-1a ,+∞上单调递减,在⎣⎡⎭⎫1,-1-1a 上单调递增.7分②当-1<x<1时,f ()x =ln ()x +1-a ()x -1,f ′()x =1x +1-a ,由-1<x<1可得1x +1-a>12-a.当12-a ≥0,即a ≤12时,f′()x >0,f ()x 在(-1,1)上单调递增;当12-a<0,即a>12时,由f′()x <0得-1+1a <x<1,由f′()x >0得-1<x<-1+1a , 所以f ()x 在⎝⎛⎭⎫-1+1a ,1上单调递减,在⎝⎛⎭⎫-1,-1+1a 上单调递增.9分 综上可得,当a ≤-12时,f ()x 在(-1,1)上单调递增,在[1,+∞)上单调递减;当-12<a<0时,f ()x 在-1,-1-1a 上单调递增,在-1-1a ,+∞上单调递减;当0≤a ≤12时,f ()x 在(-1,+∞)上单调递增;当a>12时,f ()x 在-1,-1+1a 上单调递增,在-1+1a,1上单调递减,在(1,+∞)上单调递增.12分22.解:(1)将⎩⎨⎧x =-1+22t ,y =22t消去t ,得直线l 的普通方程为x -y +1=0.2分由ρ2cos 2θ+4ρ2sin 2θ=3,得ρ2cos 2θ+3ρ2sin 2θ=3,把⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y 代入上式,得曲线C 1的直角坐标方程为x 2+3y 2=3,即x 23+y 2=1.4分(2)联立⎩⎪⎨⎪⎧x -y +1=0,x 23+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =-32,y =-12,不妨设A ()0,1,B ⎝⎛⎭⎫-32,-12, 所以||AB =⎝⎛⎭⎫0+322+⎝⎛⎭⎫1+122=322. 6分因为点C 是曲线C 1上一点,设C(3cos φ,sin φ),则点C 到直线l 的距离d =||3cos φ-sin φ+12=⎪⎪⎪⎪2cos ⎝⎛⎭⎫φ+π6+12≤32=322,8分当cos ⎝⎛⎭⎫φ+π6=1时取等号.所以△ABC 面积S =12·d ·||AB ≤12×322×322=94,即△ABC 面积的最大值为94.10分23.解:(1)证明:a1+b 2≤|a|1+b 2=2||a 4+4b 24≤a 2+4+4b 24=2.4分(2)由a 2+4b 2=4及a 2+4b 2≥24a 2b 2=4||ab ,可得||ab ≤1,所以ab ≥-1,当且仅当a =2,b =-22或a =-2,b =22时取等号.6分 因为对任意a ,b ∈R ,||x +1-||x -3≤ab 恒成立,所以||x +1-||x -3≤-1. 当x ≤-1时,||x +1-||x -3=-4,不等式||x +1-||x -3≤-1恒成立;当-1<x <3时,||x +1-||x -3=2x -2,由⎩⎪⎨⎪⎧-1<x <3,2x -2≤-1,得-1<x ≤12;当x ≥3时,||x +1-||x -3=4,不等式||x +1-||x -3≤-1不成立.9分 综上可得,实数x 的取值范围是xx ≤12.10分。
2017年普通高等学校招生全国统一考试模拟试题文科数学(Ⅱ)注意事项:1.本试题卷分为选择题和非选择题两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡和本试题卷上。
2.回答选择题时,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试题卷和草稿纸上无效。
3.回答非选择题时,用0.5毫米黑色墨水签字笔将答案按题号写在答题卡上。
写在本试题卷和草稿纸上无效。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则集合为()A. B. C. D.【答案】B【解析】由题意可得:,则集合为.本题选择B选项.2.若复数满足,则的值为()A. B. C. D.【答案】C【解析】分析:利用复数的运算法则化简复数,再由复数相等即可得出.详解:由,可得,即,可得,所以,所以,点睛:本题主要考查了复数的运算与复数相等的概念,着重考查了推理与计算能力,属于基础题.3.若,,则的值为()A. B. C. D.【答案】A【解析】∵,∴∈(,),又因为,∴故sinα=sin[()-]=sin()cos-cos()sin== ,故选A.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.4.抛掷一枚质地均匀的骰子两次,记事件两次的点数均为偶数且点数之差的绝对值为,则()A. B. C. D.【答案】A【解析】连续两次抛掷一枚骰子,记录向上的点数,基本事件总数n=6×6=36,两次的点数均为偶数且点数之差的绝对值为2包含的基本事件有:(2,4),(4,2), (4,6),(6,4),共有4个,∴两次的点数均为偶数且点数之差的绝对值为2的概率:.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()A. B. C. D.【答案】D【解析】由题意可得:,设双曲线的渐近线与轴的夹角为,双曲线的渐近线为,则,结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为.本题选择D选项.6.某几何体的三视图如图所示,若该几何体的体积为,则它的表面积是()A. B.C. D.【答案】A【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:由题意:,据此可知:,,,它的表面积是.本题选择A选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同.7.函数在区间的图象大致为()A. B.C. D.【答案】A【解析】分析:判断的奇偶性,在上的单调性,计算的值,结合选项即可得出答案.详解:设,当时,,当时,,即函数在上为单调递增函数,排除B;由当时,,排除D;因为,所以函数为非奇非偶函数,排除C,故选A.点睛:本题主要考查了函数图象的识别,其中解答中涉及到函数的单调性、函数的奇偶性和函数值的应用,试题有一定综合性,属于中档试题,着重考查了分析问题和解答问题的能力.8.已知函数,若,则为()A. B. C. D.【答案】D【解析】由题意可得:,解得:.本题选择D选项.9.执行如图的程序框图,若输入的,,,则输出的的值为()A. B. C. D.【答案】C【解析】依据流程图运行程序,首先初始化数值,x=0,y=1,n=1 ,进入循环体:x=n y=1,y==1,时满足条件y2≥x,执行n=n+1=2 ,进入第二次循环,x=n y=2,y==,时满足条件y2≥x,执行n=n+1=3 ,进入第三次循环,x=n y=2,y==,时不满足条件y2≥x,输出 .10.已知数列是首项为,公差为的等差数列,数列满足关系,数列的前项和为,则的值为()A. B. C. D.【答案】B【解析】由题意可得:,且:,两式做差可得:,则:,据此可得:.本题选择B选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.11.若函数在区间内单调递增,则实数的取值范围为()A. B. C. D.【答案】A【解析】很明显,且恒成立,即:由均值不等式的结论:,据此有:,解得:.本题选择A选项.12.已知函数的图象如图所示,令,则下列关于函数的说法中不正确的是()A. 函数图象的对称轴方程为B. 函数的最大值为C. 函数的图象上存在点,使得在点处的切线与直线:平行D. 方程的两个不同的解分别为,,则最小值为【答案】C【解析】,函数的周期,由函数的最值可得当时,,可得,函数的解析式 .则:令结合函数的解析式有,而,选项C错误,依据三角函数的性质考查其余选项正确.本题选择C选项.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.向量,,若向量,共线,且,则的值为__________.【答案】-8【解析】由题意可得:或,或 .则:14.已知点,,若圆上存在点使,则的最小值为__________.【答案】16【解析】【详解】圆的方程即:,设圆上的点P的坐标为,则:,计算可得:,,由正弦函数的性质有:,求解关于实数的不等式可得:,则的最小值为16.点睛:计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.15.设,满足约束条件,则的最大值为__________.【答案】【解析】绘制不等式组表示的平面区域,结合目标函数的几何意义可得目标函数在点处取得最大值.16.在平面五边形中,已知,,,,,,当五边形的面积时,则的取值范围为__________.【答案】【解析】【详解】由题意可设:,则:,则:当时,面积有最大值;当时,面积有最小值;结合二次函数的性质可得:的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角,,所对的边分别为,,,且.(1)求角;(2)若,的面积为,为的中点,求的长.【答案】(1).(2).【解析】【分析】(1)利用正弦定理把角的关系转化为,由余弦定理可得的值.(2)由可以得到,从而为等腰三角形,利用面积公式得到边长后用余弦定理计算的长.【详解】(1)由正弦定理,可化为,整理得到,即.又由余弦定理,得.因为,所以.(2)因为,所以为等腰三角形,且顶角.故,所以.在中,由余弦定理,得,解得.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.18.如图所示的几何体中,四边形为菱形,,,,,平面平面,,为的中点,为平面内任一点.(1)在平面内,过点是否存在直线使?如果不存在,请说明理由,如果存在,请说明作法;(2)过,,三点的平面将几何体截去三棱锥,求剩余几何体的体积.【答案】(1)见解析;(2)【解析】试题分析:(1)利用线面平行的判断定理结合题意可知点G存在;(2)利用题意将所要求解的多面体的体积进行分解可得几何体的体积.试题解析:(1)过点存在直线使,理由如下:由题可知为的中点,又为的中点,所以在中,有.若点在直线上,则直线即为所求作直线,所以有;若点不在直线上,在平面内,过点作直线,使,又,所以,即过点存在直线使.(2)连接,,则平面将几何体分成两部分:三棱锥与几何体(如图所示).因为平面平面,且交线为,又,所以平面.故为几何体的高.又四边形为菱形,,,,所以,所以.又,所以平面,所以,所以几何体的体积.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级名学生中随机抽取名学生进行测试,并将其成绩分为、、、、五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为的人数;(2)若等级、、、、分别对应分、分、分、分、分,学校要求当学生获得的等级成绩的平均分大于分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为的名学生(其中男生人,女生人)进行特殊的一对一帮扶培训,从按分层抽样抽取的人中任意抽取名,求恰好抽到名男生的概率.【答案】(1)该校学生获得成绩等级为的概率为,则该校高三年级学生获得成绩为的人数约有;(2)该校高三年级目前学生的“考前心理稳定整体”已过关;(3).【解析】试题分析:(1)利用题意首先求得该校学生获得成绩等级为的概率,然后求解人数约为448人;(2)利用平均分是数值可得该校高三年级目前学生的“考前心理稳定整体”已过关.(3)利用分层抽样的结论结合古典概型公式可得恰好抽到1名男生的概率为.试题解析:(1)从条形图中可知这100人中,有56名学生成绩等级为,故可以估计该校学生获得成绩等级为的概率为,则该校高三年级学生获得成绩等级为的人数约有.(2)这100名学生成绩的平均分为(分),因为,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)按分层抽样抽取的4人中有1名男生,3名女生,记男生为,3名女生分别为,,.从中抽取2人的所有情况为,,,,,,共6种情况,其中恰好抽到1名男生的有,,,共3种情况,故所求概率.点睛:两个防范一是在频率分布直方图中,小矩形的高表示频率/组距,而不是频率;二是利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.已知椭圆:的离心率为,且过点,动直线:交椭圆于不同的两点,,且(为坐标原点).(1)求椭圆的方程;(2)讨论是否为定值?若为定值,求出该定值,若不是请说明理由.【答案】(1);(2)2.【解析】试题分析:(1)由题意求得,,故所求的椭圆方程为.(2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得为定值. 试题解析:(1)由题意可知,所以,即,①又点在椭圆上,所以有,②由①②联立,解得,,故所求的椭圆方程为.(2)设,由,可知.联立方程组消去化简整理得,由,得,所以,,③又由题知,即,整理为.将③代入上式,得.化简整理得,从而得到.21.设函数.(1)试讨论函数的单调性;(2)如果且关于的方程有两解,,证明.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)求解函数的导函数,分类讨论可得:①若,则当时,数单调递减,当时,函数单调递增;②若,函数单调递增;③若,则当时,函数单调递减,当时,函数单调递增.(2)原问题即证明,构造新函数,结合新函数的性质和题意即可证得结论.试题解析:(1)由,可知.因为函数的定义域为,所以,①若,则当时,,函数单调递减,当时,,函数单调递增;②若,则当在内恒成立,函数单调递增;③若,则当时,,函数单调递减,当时,,函数单调递增.(2)要证,只需证.设,因为,所以为单调递增函数.所以只需证,即证,只需证.(*)又,,所以两式相减,并整理,得.把代入(*)式,得只需证,可化为.令,得只需证.令(),则,所以在其定义域上为增函数,所以.综上得原不等式成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,曲线:(为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线:.(1)试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;(2)当时,两曲线相交于,两点,求.【答案】(1)的取值范围为;(2).【解析】试题分析:(1)由题意计算可得曲线与化为直角坐标系中的普通方程为,;的取值范围是;(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得.试题解析:(1)曲线:消去参数可得普通方程为.曲线:,两边同乘.可得普通方程为.把代入曲线的普通方程得:,而对有,即,所以故当两曲线有公共点时,的取值范围为.(2)当时,曲线:,两曲线交点,所在直线方程为.曲线的圆心到直线的距离为,所以.23.已知函数.(1)在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集;(2)若函数的最小值记为,设,且有,试证明:.【答案】(1)解集为;(2)见解析见解析.【解析】试题分析:(1)将函数写成分段函数的形式解不等式可得解集为.(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件.试题解析:(1)因为所以作出图象如图所示,并从图可知满足不等式的解集为.(2)证明:由图可知函数的最小值为,即. 所以,从而,从而.当且仅当时,等号成立,即,时,有最小值,所以得证.。
2017届高考数学押题卷(二)文本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项 是符合题目要求的。
1.已知集合0y A y x ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则错误!未找到引用源。
( )A .{}|01x x ≤≤ B .{}|01x x << C .{}0 D ∅【答案】C【解析】根据题意可得,{}0A =,{}|10B x x x =><或,所以{}|01B x x =R ≤≤ð,所以A B =R ð{}0.故选C .2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( )A .第一、二象限B .第三、四象限C .实轴D .虚轴【答案】D【解析】设复数i z a b =+,(),a b ∈R ,因为1i 1z z -=+,所以i i 1z z +=-,所以(1)i a b +-i 1a b =+-,所以可得11a b b a +=⎧⎨-=-⎩,解得01a b =⎧⎨=⎩,所以i z =,所以复数z 在复平面内对应点()0,1在虚轴上.故选D .3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图像( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度【答案】D .【解析】cos 2sin 2sin 2236y x x x π⎛ππ⎫⎛⎫⎛⎫==+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图像向左平移3π个单位.故选D .4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( )A .519B .119C .14D .12【答案】C .【解析】因为有5人是与公司所需专业不对口,第二次选到与公司所需专业不对口有5种可能,有20人经过初试有20种可能,所以51204P ==.故选C .5.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d,公式为d =13,根据“开立圆术”的方法求球的体积为( )A .481πB .6πC .481D .61【答案】D【解析】根据公式d =23=,解得16V =.故选D .6.若变量,x y 满足不等式组120x x yx y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .9【答案】D【解析】如图:易知:共9个整数点.故选D .7.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( )A.2a B2C.2D.2【答案】D【解析】如图所示,该几何体是正方体的内接正三棱锥,所以三棱锥的棱长为,因此此几何体的表面积)2214sin602S=⨯⨯︒=.故选D.8.已知等差数列{}na的前n项和为Sn,且S2=4,S4=16,数列{}nb满足1n n nb a a+=+,则数列{}nb的前9和9T为()A.80 B.20 C.180 D.166【答案】C.【解析】设等差数列{}na的公差为d,因为1n n nb a a+=+,所以112n n nb a a+++=+,两式相减11212n n n n n nb b a a a a d++++-=+--=为常数,所以数列{}nb也为等差数列.因为{}na为等差数列,且S2=4,S4=16,所以11224b a a S=+==,3344212b a a S S=+=-=,所以等差数列{}nb的公差31242b bd-==,所以前n项和公式为()1442nn nT n-=+⨯222n n=+,所以9180T=.故选C.9.已知直线:21l y x=+与圆C:221x y+=交于两点A,B,不在圆上的一点()1,M m-,若MA 1MB ⋅=,则m 的值为( )A .1-,75B .1,75C .1,75-D .1-,75-【答案】A【解析】将直线l 的方程与圆C 的方程联立得22211y x x y =+⎧⎨+=⎩,化简得2540x x +=,解得x =0或45x =-,所以(0,1)A ,43(,)55B --,所以(1,1)MA m =- ,13(,)55MB m =-- ,根据MA 1MB ⋅= ,所以()131155m m ⎛⎫+---= ⎪⎝⎭,化简25270m m --=,解得175m =或21m =-.故选A . 10.已知函数()()22e xf x x x =-,关于()f x 的性质,有以下四个推断:①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数;③()f x 是奇函数;④函数()f x在x =其中推断正确的个数是( )A .0B .1C .2D .3 【答案】C【解析】根据题意可得,函数()f x 的定义域为(),-∞+∞,所以①为正确;因为()()()()2222e 2e 2e x x xf x x x x x '=-+-=-,当x <<()0f x '<,所以函数()f x在(为单调递减函数,当x <x >()0f x '>,在(,-∞,)+∞为单调递增函数,又22y x x =-在(),0-∞,()2,+∞上为正,在()0,2上为负,所以函数在x =上取得最小值,所以④正确,②错误.()()22e xf x x x --=+,可见()f x 是非奇非偶函数,所以③错误.故选C .11.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( )A.()0,2B.()1,6C.(D.()0,6【答案】A【解析】设()00,P x y,则00,x<因为2221c a b=-=,所以e==,10PF x=,20PF x=,则120PF PF x-=,因为00x<<,所以002x<<.故选A.12.已知正方体1111ABCD A B C D-的棱长为1,E为棱1CC的中点,F为棱1AA上的点,且满足1:1:2A F FA=,点F、B、E、G、H为面MBN过三点B、E、F的截面与正方体1111ABCD A BC D-在棱上的交点,则下列说法错误的是()A.HF//BEB.2BM=C.∠MBN的余弦值为D.△MBN的面积是【答案】C【解析】因为面11//AD BC面,且面1AD与面MBN的交线为FH,1BC面与面MBN的交线为BE,所以HF//BE,A正确;因为11//A F BB,且1:1:2A F FA=,所以111:1:2MA A B=,所以112MA=,所以132B M=,在Rt△1BB M中,BM=2=,所以B正确;在Rt△1BB N中,E为棱1CC的中点,所以1C为棱1NB上的中点,所以11C N=,在Rt△1C EN中,2EN==,所以BN;因为52MN==,在△BMN中,222cos2BM BN MNMBNBM BN+-∠==⋅,所以C错误;因为cos MBN∠=,所以sin MBN ∠=,所以BMN S ∆=12BM⨯sin 4BN MBN ⨯⨯∠=.所以D 正确.第Ⅱ卷本卷包括必考题和选考题两部分。
2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{1,2,3},{2,3,4}A B ==,则A B =U ( A )A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,2. (1)(2)i i ++=( B ) A.1i - B. 13i + C. 3i + D.33i +3. 函数()sin(2)3f x x π=+的最小正周期为( C )A.4πB.2πC. πD.2π4. 设非零向量a ,b 满足+=-b b a a 则( A )A. a ⊥bB. =b aC. a ∥b D . >b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是( C )A. 2+∞(,)B. 22(,)C. 2(1,)D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( B ) A. 90π B. 63π C. 42π D. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是( A ) A. -15 B.-9 C. 1 D 98. 函数2()ln(28)f x x x =-- 的单调递增区间是( D )A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( D ) A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩 C. 乙、丁可以知道对方的成绩 D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的1a =-,则输出的S=( B )A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( D )A.110B.15 C.310 D.25 12. 过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( C ) A.5 B.22 C.23 D.33二、填空题,本题共4小题,每小题5分,共20分. 13. 函数()2cos sin f x x x =+的最大值为5 .14. 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = 1215. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为14π 16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =3π三、解答题:共70分。
绝密★启封前2017高考押题金卷(全国卷Ⅱ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B I 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知i z i 32)33(-=⋅+(i 是虚数单位),那么复数z 对应的点位于复平面内的 (A )第一象限(B )第二象限(C )第三象限(D )第四象限3.若()()()()2,1,1,1,2//a b a b a mb ==-+-r r r r r r,则m =()A .12 B .2 C .-2 D .12- 4.甲、乙等4人在微信群中每人抢到一个红包,金额为三个1元,一个5元,则甲、乙的红包金额不相等的概率为() (A)14(B)12(C)13(D)345.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=()()A 7 ()B 5 ()C -5 ()D -76.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性均相同的是()A .ln(y x =B .2y x = C .tan y x =D .xy e =aaaa(7)若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m ≡,例如104(mod 6)≡,如图程序框图的算法源于我国古代《孙子算经》中的“孙子定理”的某一环节,执行该框图,输入2a =,3b =,5c =,则输出的N =()(A)6 (B)9 (C)12 (D)218.已知函数,且f (a )=-3,则f (6-a )=(A )-74(B )-54(C )-34(D )-149.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-310.四棱锥P ABCD -的三视图如图所示,其五个顶点都在同一球面上,若四棱锥P ABCD -的侧面积等于4(12),则该外接球的表面积是(A) 4π (B)12π (C)24π (D)36π11.直线l 过双曲线12222=-by a x 的右焦点,斜率k =2.若l 与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是()A .e >2B.1<e <3C.e >5D.1<e <512.已知函数2y x =的图象在点()200,x x 处的切线为l ,若l 也与函数ln y x =,)1,0(∈x 的图象相切,则0x 必满足()开始a,b,c输入0N =1N N =+0(mod )N a ≡0(mod )N b ≡1(mod )N c ≡N输出结束否否否是是A .012x <<0 B .012x <<1C .2220<<x D 0x <<第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。
2017年高考原创押题卷(二)数学(文科)时间:120分钟 满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={-1,0,1,2},B =xy =2-x 2x +1,则A ∩B =( )A.{}0,1B.{}-1,0,1C.{}0,1,2D.{}-1,0,1,2 2.若z =1+i ,则2+iz -z的实部为( )A.12 B .1 C .-12D .-1 3.为估计椭圆x 24+y 2=1的面积,利用随机模拟的方法产生200个点(x ,y ),其中x ∈(0,2),y ∈(0,1),经统计有156个点落在椭圆x 24+y 2=1内,则由此可估计该椭圆的面积约为 ( )A .0.78B .1.56C .3.12D .6.24 4.已知△ABC 中,点D 为BC 的中点,若向量AB →=(1,2),|AC →|=1,则AD →·DC →=( ) A .1 B .2 C .-1 D .-25.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图21所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个相等的直角三角形和中间的那个小正方形组成,这一图形被称作“赵爽弦图”.若正方形ABCD 与正方形EFGH 的面积分别为25,1,则cos 2∠BAE = ( )A.725B.925C.1625D.2425图216.若函数f ()x =x +abx 2+c的图像如图22所示,则下列判断正确的是( )图22A .a >0,b >0,c >0B .a =0,b >0,c >0C .a =0,b <0,c >0D .a =0,b >0,c <07.已知某几何体的三视图如图23所示,则该几何体的表面积是( )图23A .8+2πB .8+3πC .8+3+3πD .8+23+3π 8.若0<a <b <1,则a b ,b a ,log b a ,log 1a b 的大小关系为( )A .a b >b a >log b a >log 1a bB .b a >a b >log 1a b >log b aC .log b a >a b >b a >log 1a bD .log b a >b a >a b >log 1ab9.已知数列{}a n 满足a n =5n -2n ,且对任意n ∈N *,恒有a n ≤a k .执行如图24所示的程序框图,若输入的x 值依次为a k ,a k +1,a k +2,输出的y 值依次为12,12,12,则图中①处可填( )图24A .y =2x -2B .y =x 2+3x -16C .y =||2x +3+1D .y =x 2+7x -1210.已知点P 为圆C :x 2+y 2-2x -4y +a =0与抛物线D :x 2=4y 的一个公共点,若存在过点P 的直线l 与圆C 及抛物线D 都相切,则实数a 的值为( )A .2 B. 2 C .3 D .-511.如图25所示,在三棱锥A - BCD 中,△ACD 与△BCD 都是边长为2的正三角形,且平面ACD ⊥平面BCD ,则该三棱锥外接球的体积为( )图25A.16π3B.20π3C.323π27D.2015π2712.已知正数a ,b ,c ,d ,e 成等比数列,且1c +d -1a +b =2,则d +e 的最大值为( )A.39 B.33 C.239 D.13第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知等差数列{}a n 的公差d ≠0,若a 21+a 2=1,a 22+a 3=1,则a 1=________.14.若对任意实数k ,直线kx +y -2+a =0恒过双曲线C :y 2a 2-x 2=1(a >0)的一个焦点,则双曲线C 的离心率是________.15.已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0表示的平面区域为D ,若存在(x 0,y 0)∈D ,使得y 0+1≥k (x 0+1),则实数k的取值范围是________.16.已知f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x 2-ax ,x ≤0,若方程f ()x =x +a 有2个不同的实根,则实数a 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)如图26所示,在△ABC 中,cos 2A -C 2=14+sin A sin C ,BC =2,点E 为AC 中点,边AC 的垂直平分线DE 与边AB 交于点D . (1)求角B 的大小;(2)若ED =62,求角A 的大小.图2618.(本小题满分12分)汽车尾气中含有一氧化碳(CO),碳氢化合物(HC)等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:不了解 了解 总计 女性 a b 50 男性 15 35 50 总计pq100(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为35,问是否有95%的把握认为“对机动车强制报废标准是否了解与性别有关”?图27(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中CO 浓度的数据,并制成如图27所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中CO 浓度y %与使用年限t 线性相关,试确定y 关于t 的回归方程,并预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的多少倍. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(n =a +b +c +d )P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828b ^=,a ^=-b ^t19.(本小题满分12分)如图28所示,PA 垂直于正方形ABCD 所在平面,点E 是线段PC 上一点,AB =3,BE =6,且BE ⊥PC.(1)试在AB 上找一点F ,使EF ∥平面PAD ,并求AFFB 的值;(2)求三棱锥P - BEF 的体积.图2820.(本小题满分12分)已知圆x 2+y 2-2x =0关于椭圆C :x 2a 2+y 2b2=1()a>b>0的一个焦点对称,且经过椭圆的一个顶点.(1)求椭圆C 的方程;(2)若直线l :y =kx +1与椭圆C 交于A ,B 两点,已知O 为坐标原点,以线段OA ,OB 为邻边作平行四边形OAPB ,若点P 在椭圆C 上,求k 的值及平行四边形OAPB 的面积.21.(本小题满分12分)已知函数f ()x =ln ()x +1+a ||x -1. (1)若当x ≥1时,f ()x +2a<0恒成立,求实数a 的取值范围; (2)讨论f ()x 的单调性.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.(本小题满分10分)选修4-4:坐标系与参数方程平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-1+22t ,y =22t(t ∈R ).以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=3. (1)求出直线l 的普通方程及曲线C 1的直角坐标方程;(2)若直线l 与曲线C 1交于A ,B 两点,点C 是曲线C 1上与A ,B 不重合的一点,求△ABC 面积的最大值.23.(本小题满分10分)选修4-5:不等式选讲 已知实数a ,b 满足a 2+4b 2=4. (1)求证:a 1+b 2≤2;(2)若对任意a ,b ∈R ,||x +1-||x -3≤ab 恒成立,求实数x 的取值范围.参考答案·数学(文科)2017年高考原创押题卷(二)1.A 2.A3.D [解析] 满足⎩⎪⎨⎪⎧0<x <2,0<y <1的点()x ,y 构成长为2,宽为1的长方形区域,面积为2,设椭圆与两正半轴围成的面积为S ,则S 2≈156200,所以椭圆的面积4S ≈156200×2×4=6.24,故选D.4.C [解析] 由点D 为BC 中点,得AD →·DC →=12(AB →+AC →)·12BC →=12()AB →+AC →·12(AC →-AB →)=14()AC →2-AB →2=14×()1-5=-1,故选C. 5.A [解析] 由图可知a >b ,且a 2+b 2=25,()a -b 2=1,所以a =4,b =3,sin ∠BAE =b a 2+b 2=35,所以cos 2∠BAE =1-2sin 2∠BAE =1-2×⎝⎛⎭⎫352=725,故选A. 6.D [解析] 由f ()0=0可得a =0,所以选项A 不正确;若b >0,c >0,则bx 2+c >0恒成立,f ()x 的定义域是R ,与图像相矛盾,所以选项B 不正确;若b <0,c >0,当x >0时,由bx 2+c <0得x >-cb ,即x >-c b时恒有f ()x <0,这与图像相矛盾,所以选项C 不正确.故选D.7.D [解析] 由三视图可知该几何体是由一个半圆柱和一个三棱柱构成的组合体,其表面积由两个半圆,圆柱的半个侧面,棱柱的两个侧面及棱柱的两个底面组成,故该几何体的表面积S =π×12+π×1×2+2×2×2+2×12×3×2=8+23+3π,故选D.8.D [解析] 因为0<a <b <1,所以0<a b <b b <b a <1,log b a >log b b =1,log 1a b <0,所以log b a >b a >a b >log 1a b ,故选D.9.A [解析] 由a n =5n -2n 可得a n +1-a n =5-2n ,当n ≤2时,a n +1-a n >0,当n ≥3时,a n +1-a n <0,所以a n ≤a 3,即k =3,因为a 3=7,a 4=4,a 5=-7,所以输入的x 值依次为7,4,-7.当x =4或-7时,y =12,所以只需把x =7代入选项中各函数,得到y =12的就是正确选项.对于选项A ,当x =7时,y =2×7-2=12,故选A.10.C [解析] 由题意可知直线l 为圆C 及抛物线D 在点P 处的公切线,因为点P 在抛物线D 上,所以设点P ⎝⎛⎭⎫t ,t 24.由x 2=4y ,得y =x 24,y ′=x 2,所以直线l 的斜率k 1=t2,又圆心C 的坐标为()1,2,所以直线PC 的斜率k 2=t 24-2t -1=t 2-84()t -1,由k 1k 2=t 3-8t8t -8=-1,解得t =2,所以点P 的坐标为()2,1,代入方程x 2+y 2-2x -4y +a =0,得a =3,故选C.11.D [解析] 取CD 的中点E ,设三棱锥A - BCD 外接球的球心为O ,△ACD 与△BCD 外接圆的圆心分别为O 1,O 2,则O 1E =13AE =13×32×CD =33,则四边形OO 1EO 2是边长为33的正方形,所以三棱锥A - BCD外接球的半径R =OC =OE 2+CE 2=()2O 1E 2+⎝⎛⎭⎫12CD 2=⎝⎛⎭⎫632+12=153,所以该三棱锥外接球的体积V =43πR 3=2015π27,故选D.12.A [解析] 设该数列的公比为q ,则q >0,由1c +d -1a +b =2可得1c +d -q 2c +d =2,所以c +d =1-q 22.由c+d >0可得0<q <1,d +e =()c +d q =q -q 32.设f ()q =q -q 32,则f ′()q =1-3q 22,所以f ()q 在⎝⎛⎭⎫0,33上单调递增,在⎝⎛⎭⎫33,1上单调递减,所以f ()q ≤f ⎝⎛⎭⎫33=39,故选A.13.-1或2 [解析] a 21+a 2=1,a 22+a 3=1,两式相减得()a 2+a 1()a 2-a 1+a 3-a 2=0,即d ()a 2+a 1+d =0,因为d ≠0,所以a 2+a 1=-1,即a 2=-1-a 1,代入a 21+a 2=1,得a 21-a 1-2=0,解得a 1=-1或a 1=2. 14.53[解析] 直线kx +y -2+a =0恒过定点()0,2-a ,该点就是双曲线C 的一个焦点,所以a 2+1=()2-a 2,解得a =34,故双曲线C 的离心率e =a 2+1a 2=53.15.k ≤2 [解析] 不等式组表示的平面区域D 为图中阴影部分所示,其中A (0,1),B (1,0),C (2,3).由()x 0,y 0∈D ,y 0+1≥k (x 0+1),得y 0+1x 0+1≥k .y +1x +1表示点()x ,y ,(-1,-1)连线的斜率,数形结合,得12≤y +1x +1≤2,所以k ≤2.16.{a |a =-1或0≤a <1或a >1} [解析] 当直线y =x +a 与曲线y =ln x 相切时,设切点坐标为(t ,ln t ),则切线斜率k =(ln x )′x =t =1t = 1 ,所以t =1,切点为()1,0,代入y =x +a ,得a =-1.当x ≤0时,由f ()x =x+a ,得()x +1()x +a =0.①当a =-1时,ln x =x +a ()x >0有1个实根,此时()x +1()x +a =0()x ≤0有1个实根,满足条件;②当a <-1时,ln x =x +a ()x >0有2个实根,此时()x +1()x +a =0()x ≤0有1个实根,不满足条件;③当a >-1时,ln x =x +a ()x >0无实根,此时要使()x +1()x +a =0()x ≤0有2个实根,应有-a ≤0且-a ≠-1,即a ≥0且a ≠1.综上得实数a 的取值范围是{a |a =-1或0≤a <1或a >1}. 17.解:(1)由cos 2A -C 2=14+sin A sin C ,得1+cos ()A -C 2=14+sin A sin C ,整理得cos ()A -C -2sin A sin C =-12,即cos ()A +C =-12,2分所以cos B =-cos(A +C )=12,又0<B <π,所以B =π3.5分(2)连接DC ,由DE 垂直平分边AC ,得AD =DC ,∠DCE =∠DAE ,所以CD =AD =DE sin A =62sin A .8分在△BCD 中,由BC sin ∠BDC =CD sin B 及∠BDC =2A ,得2sin 2A =CD sin π3,所以CD =3sin 2A ,10分所以62sin A =3sin 2A ,解得cos A =22.因为A 是三角形的内角,所以A =π4.12分18.解:(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件A ,1分 由已知得P (A )=b +35100=35,所以a =25,b =25,p =40,q =60.4分K 2的观测值k =100×(25×35-25×15)240×60×50×50≈4.167>3.841,5分故有95%的把握认为“对机动车强制报废标准是否了解与性别有关”.6分(2)由折线图中所给数据计算,得t =15×(2+4+6+8+10)=6,y =15×(0.2+0.2+0.4+0.6+0.7)=0.42,∑i =15()t i -t 2=16+4+0+4+16=40,∑i =15()t i -t ()y i -y =(-4)×(-0.22)+(-2)×(-0.22)+0×(-0.02)+2×0.18+4×0.28=2.8, 8分故b ^==2.840=0.07,a ^=-b ^t =0.42-0.07×6=0, 10分所以所求回归方程为y ^=0.07t.故预测该型号的汽车使用12年排放尾气中的CO 浓度为0.84%,因为使用4年排放尾气中的CO 浓度为0.2%,所以预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的4.2倍. 12分19.解:(1)如图所示,在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG.∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG . 3分又AG ⊂平面PAD ,FE ⊄平面PAD , ∴EF ∥平面PAD ,∴F 即为所求的点. 5分又PA ⊥平面ABCD ,∴PA ⊥BC ,又BC ⊥AB ,PA ∩AB =A ,∴BC ⊥平面PAB ,∴PB ⊥BC , ∴PC 2=BC 2+PB 2=BC 2+AB 2+PA 2.设PA =x ,则PB =9+x 2,PC =18+x 2,由PB ·BC =BE·PC ,得9+x 2×3=18+x 2× 6 , ∴x =3,即PA =3,∴PC =33,CE =3, ∴PE PC =23,∴AF AB =GE CD =PE PC =23,∴AFFB=2. 8分(2)三棱锥P - BEF 的体积就是三棱锥E-PBF 的体积,点C 到平面PBF 的距离BC =3,由PE PC =23,可得点E 到平面PBF 的距离为2. 10分∵△PBF 的面积S =12×BF ×PA =12×1×3=32,∴三棱锥P - BEF 的体积V =13×32×2=1.12分20.解:(1)圆x 2+y 2-2x =0关于圆心()1,0对称,与坐标轴的交点为()0,0,()2,0, 所以椭圆C 的一个焦点为()1,0,一个顶点为()2,0,所以a =2,c =1,b 2=a 2-12=3, 故椭圆C 的方程为x 24+y 23=1. 4分(2)联立⎩⎪⎨⎪⎧y =kx +1,3x 2+4y 2=12,得()3+4k 2x 2+8kx -8=0, 此时Δ=64k 2+32()3+4k 2>0. 6分设A ()x 1,y 1,B ()x 2,y 2,P ()x 0,y 0,则x 0=x 1+x 2=-8k 3+4k 2,y 0=y 1+y 2=k ()x 1+x 2+2=-8k 23+4k 2+2=63+4k 2.因为点P 在椭圆C 上,所以x 204+y 23=1,即16k 2()3+4k 22+12()3+4k 22=1,整理得k 2=14,k =±12. 9分点O到直线l的距离d =11+k2=255,||AB =1+k 2·()x 1+x 22-4x 1x 2=1+k 2·64k 2()3+4k 22-4×(-8)3+4k 2=46()1+k 2()2k 2+13+4k 2=352,所以△OAB 的面积S 1=12·d ·||AB =12×255×352=32, 所以平行四边形OAPB 的面积S 2=2S 1=3. 12分21.解:(1)当x ≥1时,f ()x +2a<0恒成立,即ln (x +1)+a ()x +1<0恒成立, 即a<-ln ()x +1x +1恒成立.设g ()x =-ln ()x +1x +1,则g′()x =ln ()x +1-1()x +12. 2分令ln ()x +1-1=0,得x =e -1,所以g ()x 在(]1,e -1上单调递减,在(e -1,+∞)上单调递增,所以g ()x ≥g ()e -1=-1e ,所以a<-1e,即实数a 的取值范围是⎝⎛⎭⎫-∞,-1e . 5分 (2)函数f(x)的定义域为(-1,+∞).①当x ≥1时,f ()x =ln ()x +1+a ()x -1,f ′()x =1x +1+a , 由x ≥1可得a<1x +1+a ≤12+a. 当a ≥0时,f′()x >0,f ()x 在[)1,+∞上单调递增;当12+a ≤0,即a ≤-12时,f′()x ≤0,f ()x 在[)1,+∞上单调递减;当-12<a<0时,由f′()x <0得x>-1-1a ,由f ′()x >0得1≤x<-1-1a, 所以f ()x 在⎝⎛⎭⎫-1-1a ,+∞上单调递减,在⎣⎡⎭⎫1,-1-1a 上单调递增.7分 ②当-1<x<1时,f ()x =ln ()x +1-a ()x -1,f ′()x =1x +1-a ,由-1<x<1可得1x +1-a>12-a.当12-a ≥0,即a ≤12时,f′()x >0,f ()x 在(-1,1)上单调递增; 当12-a<0,即a>12时,由f′()x <0得-1+1a <x<1,由f′()x >0得-1<x<-1+1a, 所以f ()x 在⎝⎛⎭⎫-1+1a ,1上单调递减,在⎝⎛⎭⎫-1,-1+1a 上单调递增.9分 综上可得,当a ≤-12时,f ()x 在(-1,1)上单调递增,在[1,+∞)上单调递减;当-12<a<0时,f ()x 在-1,-1-1a 上单调递增,在-1-1a ,+∞上单调递减;当0≤a ≤12时,f ()x 在(-1,+∞)上单调递增;当a>12时,f ()x 在-1,-1+1a 上单调递增,在-1+1a ,1上单调递减,在(1,+∞)上单调递增.12分 22.解:(1)将⎩⎨⎧x =-1+22t ,y =22t消去t ,得直线l 的普通方程为x -y +1=0.2分 由ρ2cos 2θ+4ρ2sin 2θ=3,得ρ2cos 2θ+3ρ2sin 2θ=3,把⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y 代入上式,得曲线C 1的直角坐标方程为x 2+3y 2=3,即x 23+y 2=1.4分 (2)联立⎩⎪⎨⎪⎧x -y +1=0,x 23+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =-32,y =-12,不妨设A ()0,1,B ⎝⎛⎭⎫-32,-12, 所以||AB =⎝⎛⎭⎫0+322+⎝⎛⎭⎫1+122=322. 6分因为点C 是曲线C 1上一点,设C(3cos φ,sin φ),则点C 到直线l 的距离d =||3cos φ-sin φ+12=⎪⎪⎪⎪2cos ⎝⎛⎭⎫φ+π6+12≤32=322,8分 当cos ⎝⎛⎭⎫φ+π6=1时取等号.所以△ABC 面积S =12·d ·||AB ≤12×322×322=94, 即△ABC 面积的最大值为94.10分 23.解:(1)证明:a 1+b 2≤|a|1+b 2=2||a 4+4b 24≤a 2+4+4b 24=2.4分 (2)由a 2+4b 2=4及a 2+4b 2≥24a 2b 2=4||ab ,可得||ab ≤1,所以ab ≥-1,当且仅当a =2,b =-22或a =-2,b =22时取等号.6分因为对任意a ,b ∈R ,||x +1-||x -3≤ab 恒成立,所以||x +1-||x -3≤-1. 当x ≤-1时,||x +1-||x -3=-4,不等式||x +1-||x -3≤-1恒成立; 当-1<x <3时,||x +1-||x -3=2x -2,由⎩⎪⎨⎪⎧-1<x <3,2x -2≤-1,得-1<x ≤12;当x ≥3时,||x +1-||x -3=4,不等式||x +1-||x -3≤-1不成立.9分 综上可得,实数x 的取值范围是xx ≤12.10分。
2017高考文数预测密卷二本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知集合{}2|230A x x x =--≥,4|5B y y ⎧⎫=≥-⎨⎬⎩⎭,则R A C B I =( )A.{}|1x x ≤-B. {}|3x x ≥C. 5|4x x ⎧⎫<-⎨⎬⎩⎭D. 5|14x x ⎧⎫-≤<-⎨⎬⎩⎭2.若复数()12a iz a R i+=∈+为纯虚数,其中i 为虚数单位,则2017z =( ) A .i - B. i C.1 D.-13. 0000cos 45sin105sin135sin15-=( ) A. 3-B. 3C. 12-D. 124. 3m =是直线(3)20m x my ++-=与直线650mx y -+=垂直的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知正项数列{}n a 满足1*12()n n a a n N +=∈,则2017a =( )A. 20152B. 20162C. 20172D. 201826.我们可以用随机模拟的方法估计的值,如图程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生内的任何一个实数).若得到的π的近似值为3.126,则输出的结果为( )A. 512B. 521C. 520D. 5237.已知实数x,y满足1,21,3,yy xx y≥⎧⎪≥-⎨⎪+≤⎩则31z x y=++()A. 有最大值203B.有最小值203C.有最大值8,最小值203D.有最大值8,最小值58.已知双曲线C:22221(0,0)x ya ba b-=>>的右焦点为F,离心率为5,若以OF为直径的圆与双曲线C的一条渐近线相交于点M,且OMF∆的面积为16,则双曲线方程为()A.22125664x y+= B.2216416x y+= C.221164x y+= D.2214xy+=9.某几何体的三视图如图所示,则该几何体的侧面积与底面积之比为()A. 225217++B.74541++C.22521741+++D.25+10.数列{}n a 满足111,(1)(1)n n a na n a n n +==+++,数列cos n n b a n π=,设n S 为数列{}n b 的前n 项和,则27S =( )A. 351B. 406C. 378-D. 324- 11.已知函数322,0()69,0x f x x x x a x <⎧=⎨-+-+≥⎩,若存在()f x 图象上的相异两点,A B ,使得,A B 关于原点的对称点仍然落在()f x 图象上,则实数a =( ) A. 2- B. 2 C. 1D. 012.设点M 为圆C :222(5)(0)x y r r +-=>上一点,过点M 作圆C 的切线l 交抛物线214y x =于A ,B 两点,M 为线段AB 的中点,若这样的直线l 只有2条,则r 的取值范围是( )A. (0,2]B. (2,4]C. [4,5)D. (0,2][4,5)U第Ⅱ卷(13-21为必做题,22-23为选做题)二、填空题(本大题共4个小题,每小题5分,共20分。
文科数学试题 第1页(共4页) 文科数学试题 第2页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2017年高考原创押题预测卷02【新课标Ⅲ卷】文科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的). 1.若复数ii 2ix y =+-(),x y ∈R ,则x y -= ( ) A .15 B .15- C .35 D .35-2.已知集合{}220A x x x =+≤,(){}10B xx x =+>,则A B =( )A .∅B .()1,0-C .(]1,0-D .(]1,2-3.已知△ABC 中,点D 为BC 中点,若向量()()1,2,2,3AB AC ==,则AD DC ⋅=( ) A .2 B .4 C .2- D .4-4.若直线0bx ay -=()0,0a b >>的倾斜角为60,则双曲线22221x y a b-=的离心率为( )A .2B .3 C.5 D .55.若[],2,2x y ∈-,则224x y +≤的概率为 ( )A .14 B.12 C .π8 D.π46.若函数ππ()sin()(0,0,,)22f x A x A x =+>>-<<∈R ωϕωϕ的部分图象如图所示,则π3f ⎛⎫- ⎪⎝⎭= ( ) A .1 B.1- C .3 D.3-7.如图所示,棱长为1的正方形网格中画出的是某几何体的三视图,则该几何体的所有棱长的和为( ) A .12 B .4+45 C .8+46 D .4+838.若01a b <<<,则1,,log ,log ba b aa b a b 的大小关系为( )A .1log log ba b aab a b>>>B .1log log ab b ab a b a >>>C .1log log ba b aa ab b >>> D .1log log a b b aa b a b >>>9.如图所示,若程序框图输出的所有实数对(x ,y )所对应的点都在函数()bf x ax c x=++的图象上,则实数,,a b c 的值依次为( ) A .1,2,2- B .2,3-,2 C .59,3,22- D .311,,22-10.已知直线()0y t t =≠与曲线()220y p x p =>交于P ,Q 两点,若x 轴上存在关于原点对称的两点A ,B (P ,A 均在y 轴右侧),使得PA QB PQ +-恒为定值2,则p =( )A .1B .2C .3D .411.在三棱锥A BCD -中,1,AB AC ==2DB DC ==,3AD BC ==,则三棱锥A BCD -的外接球表面积为( )A .πB .7π4C .4πD .7π 12.已知()()321103f x x x ax a =-++>有两个不同的极值点()1212,x x x x <,则2121xx x +的取值范围是范围是( )A .()0,2B .()1,4C .1,22⎛⎫ ⎪⎝⎭D .()0,4第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分) 13.若()()2ln 1e4xaf x x =+-是偶函数,则数据3,6,8,a 的中位数是 . 14.成书于公元前1世纪左右的中国古代数学名著《周髀算经》曾记载有“勾股各自乘,并而开方除之”,用现代数学符号表示就是222a b c +=,可见当时就已经知道勾股定理.如果正整数,,a b c 满足222a b c +=,我们就把正整数,,a b c 叫做勾股数,下面给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,这几组勾股数有如下规律:第一个数是奇数m ,且第二个、第三个数都可以用含m 的代数式来表示,依此规律,当13m =时,得到的一组勾股数是 .文科数学试题 第3页(共4页) 文科数学试题 第4页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………15.已知不等式组1010330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩表示的平面区域为D ,若存在()00,x y D ∈,使得()0011y k x +=+,则实数k 的取值范围是 . 16.四边形ABCD 中22AD AB ==,CB CD ⊥,2BC CD BD +≥,则四边形ABCD 面积的取值范围为 .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知()12112n n n S na n a a a -=+-+++.(1)若{}n a 是等差数列,且15S =,218S =,求n a ; (2)若{}n a 是等比数列,且123,15S S ==,求n S .18.(本小题满分12分)烟花爆竹燃放时,产生大量烟尘等污染物,PM10的浓度瞬间可达到1000微克/立方米,PM2.5的浓度瞬间可达到400-500微克/立方米,使空气遭受重度污染,严重影响大气质量.从2017年春节起,河南省在县级以上的城市中全面禁售、禁燃烟花爆竹.该省某网络平台为了解县级以上城市居民对禁放烟花爆竹的态度,通过网络平台进行调查,随机从被调查者中抽取100人进行统计,并按年龄绘制如下表格,把年龄在[15,35) 和[35,75]内的人分别称为“青少年”和“中老年”,经统计,“青少年”与“中老年”的人数之比为9:11. (1)若按照分层抽样的方法从年龄在[)15,25和[)25,35内的人中抽出6人,再从这6人中抽出2人进行访谈,求这2人年龄至少有一个在[)25,35内的概率;(2)完成下面的2×2列联表,根据此统计结果能否有99%的把握认为“青少年”比“中老年”更支持禁放烟花爆竹?参考数据:20()P K k0.15 0.10 0.05 0.025 0.010 0.005 0.0010k2.0722.7063.8415.0246.6357.87910.828参考公式:19.(本小题满分12分)如图,P A 与四边形ABCD 所在平面垂直,且P A =BC =CD =BD ,AB =AD ,PD DC ⊥, (1)求证:AB BC ⊥; (2)若3PA =,E 为PC 的中点,求三棱锥E ABD -的体积.20.(本小题满分12分)已知圆2220x y x +-=关于椭圆C :22221x y a b+=()0a b >>的一个焦点对称,且经过椭圆的一个顶点.(1)求椭圆C 的方程;(2)若直线l :1y kx =+与椭圆C 相交于A 、B 两点,已知O 为坐标原点,以线段OA 、OB 为邻边作平行四边形OAPB ,若点P 在椭圆C 上,求k 的值及平行四边形OAPB 的面积. 21.(本小题满分12分)已知函数()()22ln f x x a x a x =-++,其中常数0a >.(1)讨论函数()f x 的单调性;(2)已知1a =,()f x 在()0x t t =>处的切线为()y g x =,求证:当()20x t t ⎛⎫--> ⎪ ⎪⎝⎭时,()()()0x t f x g x -->⎡⎤⎣⎦恒成立.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目题号涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程 平面直角坐标系xOy 中,直线l 的参数方程为212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为222cos24sin 3ρθρθ+=. (1)求出直线l 的普通方程及曲线1C 的直角坐标方程;(2)若直线l 与曲线1C 交于A ,B 两点,点C 是曲线1C 上与A ,B 不重合的一点,求△ABC 面积的最大值.23.(本小题满分10分)选修4-5:不等式选讲 已知()11f x x=+.(1)解不等式()()2f x f x >;(2)若101x <<,()()2132,x f x x f x ==,求证:2132211132x x x x x x -<-<-。
文 科 数 学(二)本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合0y A y x ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R I ð( )A .{}|01x x ≤≤B .{}|01x x <<C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图像( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度 4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( )A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d ,公式为3169d V =.如果球的半径为13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61 6.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB .23aC .236a D .223a8.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( ) A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA u u u r 1MB ⋅=u u u r,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e x f x x x =-,关于()f x 的性质,有以下四个推断: ①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数; ③()f x 是奇函数; ④函数()f x 在2x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( )A .()0,2B .()1,6C .()0,5D .()0,612.已知正方体1111ABCD A B C D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A B C D -在棱上的交点,则下列说法错误的是( ) A .HF //BE B .132BM =C .∠MBN 的余弦值为6565D .△MBN 的面积是614第Ⅱ卷本卷包括必考题和选考题两部分。
第13~21题为必考题,每个试题考生都必须作答。
第22~23题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.如图所示,在梯形ABCD 中,∠A =π2,2AB =,BC =2,32AD =点E 为AB 的中点,则CE BD ⋅=u u u r u u u r____________.14.执行如图所示的程序框图,若输出S 的值为____________.15.已知数列{}n a 为1,3,7,15,31,,21n-L ,数列{}n b 满足11b =,1n n n b a a -=-,则数列1n b ⎧⎫⎨⎬⎩⎭前1n -项和1n S -为____________.16.如图:已知ABC △,15AC =,M 在AB 边上,且313CM =,313cos ACM ∠=,25sin α=,(α为锐角),则ABC △的面积为_________.三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足222cos cos sin sin sin B C A A B --=-,()()sin cos A B A B -=+.(1)求角A 、B 、C ; (2)若2a =ABC 的边长b 的值及三角形ABC 的面积.18.(本小题满分12分)2017年4月1日,中共中央、国务院决定设立的国家级新区——雄安新区.雄安新区建立后,在该区某街道临近的A 路口和B 路口的车流量变化情况,如表所示:A 路口车流量x (百辆) 0.2 0.5 0.8 0.9 1.1B 路口车流量y (百辆)0.230.220.511.5(1)求前5天通过路口车流量的平均值和通过路口的车流量的方差,(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A 路口测得车流量为3百辆时,你能估计这一天B 路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:()()()127niii nii x x y y bx x ==--=-∑∑$,$ay bx =-$,)19.(本小题满分12分)如图所示,直棱柱1111ABCD A B C D -,底面ABCD 是平行四边形, 1113AA AB B D ===,2BC =,E 是边11B C 的中点,F 是边1CC 上的动点,(1)当1C F BC =时,求证:BF ⊥平面1D EF ; (2)若BE EF ⊥,求三棱锥1B D EF -体积.20.(本小题满分12分)设椭圆C :()222210x y a b a b+=>>的左顶点为()2,0-,且椭圆C 与直线632y x =+相切.(1)求椭圆的标准方程;(2)过点()0,1P 的动直线与椭圆C 交于A ,B 两点,设O 为坐标原点,是否存在常数λ,使得7OA OB PA PB λ⋅+⋅=-u u u r u u u r u u u r u u u r?请说明理由.21.(本小题满分12分)设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()()e,e f 处的切线方程;(2)当1x ≥时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.(本小题满分10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的极坐标方程为3cos sin 60ρθρθ+-=,圆C 的参数方程为515x y αα⎧=⎪⎨=+⎪⎩,(1)求直线l 和圆C 的直角坐标系方程; (2)若相交,求出直线被圆所截得的弦长.23.(本小题满分10分)已知点(),P a b 在圆C :22x y x y +=+()(),0,x y ∈+∞上,(1)求11a b+的最小值; (2)是否存在a ,b ,满足()()114a b ++=?如果存在,请说明理由.文科数学(二)答案第I 卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【答案】C【解析】根据题意可得,{}0A =,{}|10B x x x =><或,所以{}|01B x x =R ≤≤ð,所以A B =R I ð{}0.故选C . 2.【答案】D【解析】设复数i z a b =+,(),a b ∈R ,因为1i 1z z -=+,所以i i 1z z +=-,所以(1)i a b +-i 1a b =+-,所以可得11a b b a +=⎧⎨-=-⎩,解得01a b =⎧⎨=⎩,所以i z =,所以复数z 在复平面内对应点()0,1在虚轴上.故选D .3.【答案】D .【解析】cos 2sin 2sin 2236y x x x π⎛ππ⎫⎛⎫⎛⎫==+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图像向左平移3π个单位.故选D . 4.【答案】C .【解析】因为有5人是与公司所需专业不对口,第二次选到与公司所需专业不对口有5种可能,有20人经过初试有20种可能,所以51204P ==.故选C . 5.【答案】D 【解析】根据公式3169d V =321639V =16V =.故选D . 6.【答案】D 【解析】如图:易知:共9个整数点.故选D . 7.【答案】D 【解析】如图所示,该几何体是正方体的内接正三棱锥,所以三棱锥的棱长为2a ,因此此几何体的表面积)22142sin 60232S a a =⨯⨯︒=.故选D .8.【答案】C .【解析】设等差数列{}n a 的公差为d ,因为1n n n b a a +=+,所以112n n n b a a +++=+,两式相减11212n n n n n n b b a a a a d ++++-=+--=为常数,所以数列{}n b 也为等差数列.因为{}n a 为等差数列,且S 2=4,S 4=16,所以11224b a a S =+==,3344212b a a S S =+=-=,所以等差数列{}n b 的公差31242b b d -==,所以前n 项和公式为()1442n n n T n -=+⨯ 222n n =+,所以9180T =.故选C . 9.【答案】A【解析】将直线l 的方程与圆C 的方程联立得22211y x x y =+⎧⎨+=⎩,化简得2540x x +=,解得x =0或45x =-,所以(0,1)A ,43(,)55B --,所以(1,1)MA m =-u u u r ,13(,)55MB m =--u u u r ,根据MA u u u r 1MB ⋅=u u u r ,所以()131155m m ⎛⎫+---= ⎪⎝⎭,化简25270m m --=,解得175m =或21m =-.故选A . 10.【答案】C【解析】根据题意可得,函数()f x 的定义域为(),-∞+∞,所以①为正确;因为()()()()2222e 2e 2e x x x f x x x x x '=-+-=-,当22x -<<时,()0f x '<,所以函数()f x 在(2,2-为单调递减函数,当2x <-2x >()0f x '>,在(,2-∞,)2,+∞为单调递增函数,又22y x x =-在(),0-∞,()2,+∞上为正,在()0,2上为负,所以函数在x =所以④正确,②错误.()()22e x f x x x --=+,可见()f x 是非奇非偶函数,所以③错误.故选C . 11.【答案】A【解析】设()00,P x y,则00x << 因为2221c a b =-=,所以5e ==,105PF x =,20PF =,则120PF PF x -=,因为00x <<002x <<.故选A . 12.【答案】C【解析】因为面11//AD BC 面,且面1AD 与面MBN 的交线为FH ,1BC 面与面MBN 的交线为BE ,所以HF //BE ,A 正确;因为11//A F BB ,且1:1:2A F FA =,所以111:1:2MA A B =,所以112MA =,所以132B M =,在Rt △1BB M中,BM ==,所以B 正确;在Rt △1BB N 中,E 为棱1CC 的中点,所以1C 为棱1NB 上的中点,所以11C N =,在Rt △1C EN中,2EN ==,所以BN =因为52MN ==,在△BMN 中,222cos 2BM BN MN MBN BM BN +-∠==⋅所以C 错误;因为cos MBN ∠=,所以sin MBN ∠=,所以BMN S ∆=12BM⨯sin BN MBN ⨯⨯∠=D 正确. 第Ⅱ卷本卷包括必考题和选考题两部分。