《式与方程》习题精选
- 格式:doc
- 大小:185.50 KB
- 文档页数:3
小学毕业总复习(三)——式与方程知识试题精选一、填空题。
1. 学校买来a 个足球,每个b 元;又买来9个篮球,每个45元。
ab 表示( );ab+9×45表示( )。
2. 一本故事书有a 页,小华每天看8页,看了b 天,还剩( )页未看。
3. 如果a=3b (a 、b 都是不为0的自然数),那么a 和b 的最大公约数是( ),最小公倍数是( )。
4. 摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n 个正方形需要( )根小棒。
5. 小红比小刚多a 元,那么小红给小刚( )元,两人的钱数相等。
6. m 千克油菜子可以榨出n 千克菜子油,每榨出1千克菜子油需要( )千克油菜子,1千克油菜子可以榨出( )千克菜子油。
7. 列式表示下面各数。
⑴比80大x 的数是( );⑵一件衬衣a 元,一件毛衣的价格比它的3倍少b 元,毛衣的价格是( )元;⑶b 的4倍与c 的和是( )。
8. M 与N 是两种相关联的量,a 、b 、c 、d (都不为0)是它们其中的两组相对应的值。
如下表: M a b ……N c d ……⑴如果a:c=b:d ,那么M 、N 成( )比例;⑵如果a ×c=b ×d ,那么M 、N 成( )比例。
9. 若a :b=2:3,b :c=1:2,且a +b +c=66,则a=( ),b=( )。
10. 用含字母的式子表示“比a 的2倍多8的数”是( )。
当a=1.2时,这个式子的值是( )。
11. 如果y=x8,那么x 和y 成( )比例,比值是( )。
12. 7.5:1.5化成最简整数比是( ),比值是( )。
13. 一个自然保护区天鹅和丹顶鹤数量的比是4:1。
已知丹顶鹤和天鹅共105只,天鹅有( )只。
14. 五年级向希望工程捐款x 元,比四年级多45元,四年级和五年级共捐款多少元?列式为( )。
15. 一堆化肥共6吨,按1:3:4分给甲、乙、丙三个村,甲村分得这堆化肥的)() (,乙村分得( )吨。
2019中考数学专题练习-算式与方程(含解析)一、单选题1.下列说法中:①相反数等于本身的数只有0;②绝对值等于本身的数是正数;③﹣的系数是3;④将式子x﹣2=﹣y变形得:x﹣y=3;⑤若,则4a=7b;⑥几个有理数的积是正数,则负因数的个数一定是偶数,错误的有()个.A. 2B. 3C. 4D. 52.下列方程为一元一次方程的是()A. y+3=0B. x+2y=3C. x2=2xD. +y=23.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=144.下列结论不正确的是()A. 已知a=b,则a2=b2B. 已知a=b,m为任意有理数,则ma=mbC. 已知ma=mb,m为任意有理数,则a=bD. 已知ax=b,且a≠0,则x=5.下列方程中,解为x=4的方程是( )A. x-1=4B. 4x=1C. 4x-1=3x+3D. (x-1)=16.下列方程中,解为x=1的是()A. 2x=x+3B. 1﹣2x=1C. =1D. -=27.运用等式性质进行的变形,不正确的是()A. 如果a=b,那么a﹣c=b﹣cB. 如果a=b,那么a+c=b+cC. 如果a=b,那么D. 如果a=b,那么ac=bc8.运用等式性质进行的变形,正确的是()A. 若a=b,则a+c=b﹣cB. 若x=y,则C. 若,则x=yD. 若a2=3a,则a=39.关于x的方程mx2﹣4x+4=0有解,则m的取值为()A. m≥1B. m≤1C. m≥1且m≠0D. m≤1且m≠010.若x=5是关于x的方程2x+3m﹣1=0的解,则m的值为()A. 0B. ﹣1C. ﹣2D. ﹣311.把方程x=1变形为x=2,其依据是()A. 等式的两边同时乘以B. 等式的两边同时除以C. 等式的两边同时减去D. 等式的两边同时加上12.运用等式的基本性质进行变形,正确的是()A. 如果a=b,那么a+c=b﹣cB. 如果6+a=b﹣6,那么a=bC. 如果a=b,那么a×3=b÷3D. 如果3a=3b,那么a=b13.已知x=3是4x+3a=6的解,则a的值为()A. -2B. -1C. 1D. 214.下列运用等式的性质,变形不正确的是()A. 若x=y,则x﹣5=y﹣5B. 若a=b,则ac=bcC. 若x=y,则x+a=y+aD. 若x=y,则=二、填空题15.已知方程的解也是方程|3x﹣2|=b的解,则b=________.16.方程是关于x的一元一次方程,则=________17.2x+1=5的解也是关于x的方程3x﹣a=4的解,则a=________.18.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为________.19.关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,则方程的解为 ________20.如图所示,两个天平都平衡,则与3个球体相等质量的正方体的个数为________.21.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y﹣= y﹣▌,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,于是很快补好了这个常数,你能补出这个常数是多少吗?它应是________.三、计算题22.等式y=ax3+bx+c中,当x=0时,y=3;当x=﹣1时,y=5;求当x=1时,y的值.23.列等式:x的2倍与10的和等于18.24.已知关于x的方程x﹣= 的解是非负数,m是正整数,求m的值.25.已知关于x的方程与方程3(x﹣2)=4x﹣5的解相同,求a的值.26.如果方程5(x﹣3)=4x﹣10的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,求a 的值.27.利用等式的性质解方程:3x﹣6=﹣31﹣2x.四、综合题28.某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某假期该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购满100元返购物券30元(销售不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说出他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?29.根据等式和不等式的性质,可以得到:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a ﹣b<0,则a<b.这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式5m2﹣4m+2与4m2﹣4m﹣7的值之间的大小关系;(2)已知A=5m2﹣4(m﹣),B=7(m2﹣m)+3,请你运用前面介绍的方法比较代数式A与B的大小.答案解析部分一、单选题1.下列说法中:①相反数等于本身的数只有0;②绝对值等于本身的数是正数;③﹣的系数是3;④将式子x﹣2=﹣y变形得:x﹣y=3;⑤若,则4a=7b;⑥几个有理数的积是正数,则负因数的个数一定是偶数,错误的有()个.A. 2B. 3C. 4D. 5【答案】C【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,单项式,等式的性质,有理数的乘法【解析】【解答】解:相反数等于本身的数只有0,所以①的所法正确;绝对值等于本身的数是正数或0,所以②的说法错误;﹣的系数是﹣,所以③的说法错误;将式子x﹣2=﹣y变形得:x+y=2,所以④的说法错误;若,则7a=4b,所以⑤的说法错误;几个有理数的积是正数,则负因数的个数一定是偶数,所以⑥的说法正确.故选C.【分析】根据相反数等于它本身的数只有0;绝对值等于它本身的数是非负数;单项式的系数是单项式前面的数字因数;若=,则ac=bd;等式的基本性质;几个不等于0的数相乘,负因数的个数是奇数个时,积为负,负因数的个数是偶数个时,积为正。
六下专项复习三——式与方程一、填一填1、已知A=6n,B=9n(n为大于0的自然数),则A与B的最大公因数是(),最小公倍数是()。
2、一张长方形纸,剪去一个长a厘米、宽3厘米的长方形后变成一个正方形(如图,单位:厘米)。
则原来长方形的周长是()厘米,面积是()厘米。
3、2m-1表示五个连续奇数中间的那个数,在这五个奇数中,最大的一个数是(),最小的一个数是()。
4、六年级一班有a盒粉笔,每盒20根,用去80根后,此时粉笔还剩()根,也可以说还剩()盒。
5、鞋的尺码通常用“码”和“厘米”作单位,它们之间的换算关系是b=2a-10(b 表示码数,a表示厘米数).乐乐的鞋长23.5厘米,则他要穿()码的鞋;若乐乐的爸爸穿42码的鞋,则他的爸爸鞋长()厘米。
6、每年的4月23日是“世界读书日”,学校开展了“读书漂流”活动。
小力看一本书,看了a天,平均每天看25页,还剩21页没看,这本书的总页数用含有书名《寓言故事》《历史故事》《童话故事》页数286 175 1967、某电影院的后一排比前一排多2个座位,如果m表示第1排的座位数,那么m+12表示第()排的座位数。
8、如果n是一个质数,那么以n为分母的真分数有()个。
9、如果x=5是方程ax-3=17的解,那么方程ay+8=30的解是()。
10、如图,用火柴棒摆正方形。
照这样摆下去,摆n个正方形要()根火柴棒。
当n=50时,要()根火柴棒;现在有400根火柴棒,一共可以摆()个正方形。
11、x=()。
12、甲仓库的存粮量是乙仓库的4倍,若从甲仓库运36吨粮食到乙仓库,则两个仓库的存粮量正好相等。
原来甲仓库存粮()吨,乙仓库存粮()吨。
13、现在有若干个圆环,它们的外直径都是5厘米,环宽都是5毫米,将它们扣在一起(如图)拉紧后测量总长度,并记录如下:像这样,10个圆环拉紧后的总长度是()厘米,n个圆环拉紧后的总长度是()厘米。
14、张老师去买体育器材,带去的钱如果买5个同样的足球,那么还剩下180元;如果买8个同样的足球,那么还差15元。
(专题精选)初中数学方程与不等式之分式方程难题汇编附解析一、选择题1.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.2.解分式方程11222x x x -+=--的结果是( ) A .x="2"B .x="3"C .x="4"D .无解【答案】D【解析】【分析】【详解】解:去分母得:1﹣x+2x ﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选D .考点:解分式方程.3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.5.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x个零件,根据题意可列方程为()A .60045025x x=- B .60045025x x =- C .60045025x x =+ D .60045025x x =+ 【答案】C【解析】【分析】 原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个, ∴60045025x x=+, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意是列方程的关键.6.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解 【答案】C【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:2x=(x ﹣2)2+4,分解因式得:(x ﹣2)[2﹣(x ﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选C .【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.7.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<<B .2k >-且1k ≠-C .2k >-D .2k <且1k ≠ 【答案】B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x-=--Q , 21x k x +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠,1k ∴≠-,0x Q >,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.8.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x=+ B .1101002x x =+ C .1101002x x =- D .1101002x x =- 【答案】A【解析】 设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x +=100x, 故选A .9.方程10020x +=6020x-的解为( ) A .x =10B .x =﹣10C .x =5D .x =﹣5 【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.方程31144xx x--=--的解是()A.-3 B.3 C.4 D.-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.故选:B.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.14.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为( ). A .3B.CD.【答案】D【解析】 解关于x 的方程2233x m x x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m =故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】 解分式方程26344ax x x -+=---得:x=43a -, 因为分式方程的解为正数, 所以43a ->0且43a-≠4, 解得:a <3且a≠2, 解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7, ∵不等式组有解,∴a+7>1,解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C .【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.16.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.18.八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )A .300300201.2x x -= B .300300201.260x x =- C .300300201.260x x x -=+ D .3002030060 1.2x x -= 【答案】D【解析】【分析】原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,原计划植300棵树可用时300x 小时,实际用了3001.2x 小时,根据关键语句“结果提前20分钟完成任务”可得方程.【详解】设原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,由题意得:3002030060 1.2x x-=, 故选:D .【点睛】 此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.19.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.20.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2, ∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】 此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.。
式与方程【夯实基础】一、填一填。
1.三个连续奇数中间的数是m,则m的前面和后面的奇数分别是()和()。
2.一个长方形的宽是a m,长是宽的4倍,这个长方形的周长是()m,面积是()m2。
3.工地运来水泥a车,每车14 t,可供施工队使用一周,14a÷7表示()。
当a=8时,上式的值是()。
4.如果3x-4=35,那么4x+3=()。
5.如果99-a是一个两位数,那么自然数a最大可以是()。
6.甲数除以乙数,商是0.35,甲数与乙数的最简整数比是()∶(),乙数与甲数的比值是()。
7.王老师身高1.65 m,她照了一张照片,照片上的她身高5 cm,这张照片拍摄的比例尺是()。
二、选一选。
(把正确答案的序号填在括号里)1.一幅地图的比例尺是1∶2000000,在地图上,1 cm的距离表示实际距离()km。
A.2 B.20 C.200 D.20002.能与0.24∶0.1组成比例的是()。
A.24∶1 B.12∶1 C.12∶5 D.5∶123.三角形的面积是S,底是a,这条底上的高是()。
A.2S÷a B.12S÷a C.S÷a4.圆的半径与圆的面积()。
A.成正比例B.成反比例C.不成比例5.下面各选项中阴影所占比例与长方形中阴影所占比例最接近的是()。
【思维拓展】三、古韵乐器行的一款葫芦丝售价为200元,售价的60%是进价,其余的是利润。
假期特惠促销,为保证一个葫芦丝赚的钱不少于50元,应该怎样确定折扣?【参考答案】一、1.m-2m+22.10a4a23.平均每天用水泥多少吨?164.555.896.72020 77.1∶33二、1.B 2.C 3.A 4.C 5.C三、解:设折扣应不低于x折。
200x-50=200×60%x=0.85。
人教版数学五年级上册数的运算、式与方程(1)一、填空。
1.根据36×4.8=172.8直接写出下面各式的结果。
3.6×4.8=( ) 36×0.4+8=( ) 0.36×4800=( )17.28÷0.36=( ) 1.728÷4.8=( ) 0.1728÷0.048=( )2.学校要给社团里的周老师和20位学生购买材料,每份材料的价格为20.5元,一共需支付( )元的材料费。
3.一辆拖拉机每次可运货a吨,一辆大货车每次的运货量比拖拉机的n倍少b吨。
大货车每次可运货( )吨。
4.循环小数••74.5保留两位小数是( ),保留三位小数是( ),保留四位小数是( ),将这四个数按从大到小的顺序排列为( )。
5.在( )里填上“>”“<”或“=”。
••17 2.64÷0.1( )2.64×0.1517( )•54.4.98.8×100.1( )98.8×100+9.88 8.3÷A( )8.3÷B(A>B且A、B均不为0)6.一种婴儿奶粉的冲泡方法是每30g水冲泡一勺奶粉(一勺为5g)。
照这种情况来看,在奶粉罐中还剩72g奶粉,最多还能装满( )勺,冲泡这几勺奶粉需要( )g水。
7.爸爸和小明今年的年龄和是57岁,去年爸爸的年龄是小明的4倍,明年小明( )岁。
8.一辆往返“上海↔杭州”的长途汽车共有59个座位(包括驾驶员的座位),这趟车的单程票价是110元。
如果你是某个旅游网站的VIP 客户,则能用票价的0.95倍购得车票。
这辆汽车单程坐满普通乘客时能卖出( )元的车票;假如某个旅游网站的VIP客户包下了这辆车,那么往返可以便宜( )元。
9.人走一万步大约能消耗掉280卡路里的热量,一包方便面的热量大约是728卡路里。
如果米朵每天大约走2000步,那么她大约需要( )天才能消耗掉一包方便面的热量。
式与方程练习题精选
1. 一件上衣95式与方程练习题宜x元,一条裤子( )元.
2. 如果等边三角形的周长为c,它的边长是( ).
3. 柳树a棵,比杨树多50棵,杨树()棵.
4. 修路队x天修2.4千米的公路,平均每天修( )千米.
5. 果园里有梨树X式与方程练习题精选的2倍多10棵.果园里有苹果树()
棵.
6. 五(2)班有学生a人,今天请假3人,今天出席()人.
7. 山羊X只,绵羊的只数是山羊的3倍.山羊和绵羊共()只.
8. 在()内填上>、<或=
252 ()25×25 4.3×2 ()4.32
0.52() 0.025 2x·x ()2x2
9. 用S表示三角形的面积,a和h分别表示底和高,三角形面积的计算公式是
().
10. x的15倍与17的差,列式为().
11. 小红今年a岁,她的妈妈比她大25岁,她的妈妈今年()岁.当小红
15岁时,她的妈妈()岁.
12. 方程2 x+3=5的解是().
二、解方程.
2.5x=1.75 2.4x-4.8=4.8
3x-7×1.2=10. 2 4x-1.5x=0.75
三、列方程解应用题.
1.冰箱厂今年生产冰箱78万台,比去年产量的2倍还多4万台,去年生产电冰箱多少万台?
2.买一副羽毛球拍和4只羽毛球,共用去59.2元,一副羽毛球拍48元,一只羽毛球多少元?
3.甲乙两地相距345千米,一辆客车和一辆货车同时从两地相对开出,3小时相遇.客车每小时行55千米,货车每小时行多少千米?
1 / 1。
六年级数学下册整理与复习《式与方程》(用字母表示数)综合训练姓名:__________ 班级:__________考号:__________一、填空题1.哥哥今年x岁,比弟弟大2岁,弟弟今年岁。
2.为加强自身体能,小明每天坚持跳绳训练,小明8分钟共计跳绳a个,平均每分钟跳绳个。
3.一支圆珠笔n元,一支钢笔的价格比它的3倍还多8元,一支钢笔的价钱是元.4.文具店进了50个文具盒,总价C元,单价是元。
5.绿水青山就是金山银山,为相应号召,某市今年道路绿化m平方米,公园绿化面积比道路绿化面积多500平方米,某市今年的绿化面积共计平方米。
6.少先队员表演团体操,每行有男生x人,女生y人,站成8行。
仅(x+y)×8表示;8x-8y表示。
7.6本相同的书叠在一起,请你根据这6本书情况,想一想,6x可以表示,按你的想法,x表示的是。
8.王伯伯种植a公顷青椒,每公顷大约能收获青椒15吨,已经采收b天,每天采收10吨,还未采摘的青椒吨数大约有。
9.一工地运进钢筋a吨,如果每天用去b吨,用了一周(7天),还剩吨。
10.客车每小时行akm,小轿车每小时行bkm。
两车分别从A、B两地同时出发,相向而行,经过2.5小时相遇。
两地间的距离是千米。
11.一本书共有x页,李明每天看5页,看了y天,还剩页没有看。
12.甲、乙两人同时从A、B两地开车相向而行,经过2小时在距中点21千米处相遇。
甲的平均速度为x千米/小时,乙比甲的34少6千米,乙的平均速度为千米/小时;已知x=60,那么A、B两地相距千米。
13.用含有字母的式子表示(如图)。
小齐家离学校米,小方家离小巧家米。
14.小明今年10岁,哥哥比他大x 岁,哥哥今年 岁.10年后,哥哥比小明大 岁。
15.妈妈买7朵百合花,付了100元,找回n 元,一朵百合花 元。
16.买8个茶杯付100元,找回m 元,一个茶杯 元。
17.山坡上有a 只猴子,兔子的数量是猴子的5倍,山坡上猴子和兔子共有 只。
式与方程的练习题解方程在数学中,式与方程是常见的概念,它们在各个领域的数学问题中都扮演着重要角色。
解方程是数学中的一个基础技能,它可以帮助我们求解各种问题并得到准确的答案。
本文将通过一些实例来介绍如何解方程,帮助读者提升解方程能力。
一、一元一次方程一元一次方程是最简单的方程形式,它的一般形式为:ax + b = 0,其中a和b是已知常数,x是未知数。
要求解方程,我们需要通过逆运算将x独立出来。
例题1:解方程2x - 5 = 9。
解答:首先,我们可以通过逆运算将常数项-5移到等号右边,变为2x = 9 + 5。
然后,我们可以继续通过逆运算将系数2除掉,得到最终的解x = 14/2 = 7。
例题2:解方程3(x - 2) = 12。
解答:首先,我们可以通过逆运算将括号内的表达式展开,得到3x - 6 = 12。
然后,我们将常数项-6移到等号右边,变为3x = 12 + 6。
继续通过逆运算将系数3除掉,得到最终的解x = 18/3 = 6。
二、一元二次方程一元二次方程是形如ax² + bx + c = 0的方程,其中a、b和c是已知常数,且a ≠ 0。
要求解一元二次方程,我们可以使用配方法、因式分解或求根公式等方法。
例题1:解方程2x² + 5x - 3 = 0。
解答:我们可以使用因式分解方法来解这个方程。
找到两个数的乘积等于ac,并且相加等于b,即-pq = ac,p + q = b。
在这个例子中,ac = -6,b = 5。
我们可以找到两个数2和-3,满足2 × -3 = -6,2 + (-3) = 5。
所以,2x² + 5x - 3可以分解为(2x - 1)(x + 3) = 0。
解得x = 1/2和x = -3。
例题2:解方程x² - 7x + 12 = 0。
解答:我们可以使用求根公式来解这个方程。
求根公式为x = (-b ±√(b² - 4ac)) / (2a)。
小学毕业总复习(三)
——式与方程知识试题精选
一、填空题。
1. 学校买来a 个足球,每个b 元;又买来9个篮球,每个45元。
ab 表示( );ab
+9×45表示( )。
2. 一本故事书有a 页,小华每天看8页,看了b 天,还剩( )页未看。
3. 如果a=3b (a 、b 都是不为0的自然数),那么a 和b 的最大公约数是( ),最小
公倍数是( )。
4. 摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n 个正方
形需要( )根小棒。
5. 小红比小刚多a 元,那么小红给小刚( )元,两人的钱数相等。
6. m 千克油菜子可以榨出n 千克菜子油,每榨出1千克菜子油需要( )千克油菜子,
1千克油菜子可以榨出( )千克菜子油。
7. 列式表示下面各数。
⑴比80大x 的数是( );
⑵一件衬衣a 元,一件毛衣的价格比它的3倍少b 元,毛衣的价格是( )元; ⑶b 的4倍与c 的和是( )。
8. M 与N 是两种相关联的量,a 、b 、c 、d (都不为0)是它们其中的两组相对应的值。
如下
表: M a b ……
N c d ……
⑴如果a:c=b:d ,那么M 、N 成( )比例;
⑵如果a ×c=b ×d ,那么M 、N 成( )比例。
9. 若a :b=2:3,b :c=1:2,且a +b +c=66,则a=( ),b=( )。
10. 用含字母的式子表示“比a 的2倍多8的数”是( )。
当a=1.2时,这个式子的
值是( )。
11. 如果y=x
8,那么x 和y 成( )比例,比值是( )。
12. 7.5:1.5化成最简整数比是( ),比值是( )。
13. 一个自然保护区天鹅和丹顶鹤数量的比是4:1。
已知丹顶鹤和天鹅共105只,天鹅有
( )只。
14. 五年级向希望工程捐款x 元,比四年级多45元,四年级和五年级共捐款多少元?列式为
( )。
15. 一堆化肥共6吨,按1:3:4分给甲、乙、丙三个村,甲村分得这堆化肥的)
() (,乙村分得( )吨。
16. 在地图上,如果用1厘米代表60千米的话,那么这幅地图的比例尺是( )。
17. 上虞市南北长约60千米,在比例尺是250000
1的地图上长度约是( )厘米。
在这幅地图上量得上虞市东西长18厘米,东西的实际距离大约是( )千米。
18. 250千克:0.5吨化成最简整数比是( ):( ),比值是( )。
19. 14:( )=30
) (=0。
7=7÷( )= ( )%。
20. 光明小学制作的“八荣八耻”展板长495厘米、宽330厘米,长和宽的最简整数比是( ),
比值是( )。
二、判断题
1、人的年龄与身高成正比例。
( )
2、圆的半径和面积成正比例。
( )
3、两种相关联的量不成正比例,就成反比例。
( )
4、甲数的6
1等于乙数的51,甲数与乙数的比是6:5。
( ) 5、如果a ÷b=5,那么a 一定被b 整除。
( )
6、如果数a 能够被2整除,则a +1必定是奇数。
( )
7、如果5x 是假分数,那么x
5一定是真分数。
( ) 8、在1
+y x 中,x 和y 可以表示任何自然数。
( ) 9、含有未知数等式是方程。
( )
10、解方程x 32=1的第一步是x =3
2÷1。
( ) 11、B A 1+1=50%,65=1+1+1C B A ,则3
1=1C 。
( ) 12、10x =0,这个方程没有解。
( )
13、比的前项和后项同时扩大20倍,比值也扩大20倍。
( )
三、选择题。
1. 甲车间的人数比乙车间的2倍多a 人,乙车间有40人,甲车间有( )人。
A 40+a
B 40-a
C (40-a)÷2
D 40×2+a
2. “小勇今年a 岁,爸爸今年b 岁,爸爸比小勇大k 岁。
m 年后,爸爸比小勇大多少岁?”
可列出等式( )。
A a -b =k
B b -a =k +m
C b -a =k
D b -a =m
3. 下面四个算式中,结果一定等于6
1的是( )。
(其中A=3B ,B ≠0) A (A +A )÷B B A ÷(B +B ) C B ×(A -A ) D B ÷(A +A )
4. a 、b 是两个不为0的自然数,a ÷b=6,a 和b 最小公倍数是( )。
A a
B b
C 6
5. 将逄式21×(a +4)改写成2
1×a +4,新算式的结果比原算式( )。
A 大了2
1 B 小了
2 C 大了2 D 大了4 6. 把一张长方形的图按1:18的比例放大后,长和宽的比( )。
A 不变
B 变了
C 是1:18
7. 下列选项中的两种量成正比例关系的是( )。
A 人的体重和身高
B 平行四边形面积一定,它的底和高
C 单价一定,总价和数量
D 今年订阅《小学教学》杂志的份数和钱数
8. 六(2)班某天的出勤率是90%,缺勤人数比出勤人数的比是( )。
A 1:9
B 9:1
C 1:10
D 10:1
9. 在一张比例尺是1:5000000的地图上,量得金华到杭州的距离为4厘米,则金华到杭州
的实际距离是( )。
A 2000米
B 200千米
C 2000千米
D 20000米
10. 把5千克盐溶解在100千克水里,盐和盐水的质量比是( )。
A 1:20
B 1:21 D 1:19
11. 当5
1×=31×y x 时,x :y:= ( )。
A 31:5
1 B 5:3 C 1:15 D 3:5 12. 已知32a=5
2b (a 、b 都不为0),下面比例( )不能成立。
A 32:52=b :a B a :b=32:52 C 52:a=32:b D 52:3
2=a :b 13. 第一小学共有教师120人,男教师人数是女教师人数的2
1。
求男教师有多少人? 解:设男教师有x 人。
下列方程正确有有哪些?( )
①x +2x =120 ②x +21x =120 ③120x =2+11 ④120x =2
1+11 A ①③ B ②④ C ①④ D ②③
14. 因为2:4=21,12.5%:41=21,所以2:4和12.5%:4
1可以组成比例,这是根据( )判断的。
A 比的意义
B 比的基本性质
C 比例的意义
D 比例的基本性质
四、解方程(比例)
2x -4=16 4x -2x =3×18 12(2+3x )=42 4(x +1)=3(x +2)
7x ―25=13.5 x ―0.2x =5.2 52x ―2=6 5
2x ―81=43
54x ―32x =24 x +97x =34 3
2x +0.5x =4.2 (125%0x =36
5x =20% x ―15%x =8.5 6.8―32%x =5
2 2:3=x :0.6
28x =1:4 41:12
1=16: x 2.45.12=25x 51:0.5=3: x。