【K12教育学习资料】2018届高考物理二轮复习板块一专题突破复习专题三电场与磁场第三讲带电粒子在复
- 格式:doc
- 大小:1.07 MB
- 文档页数:21
第一讲电场及带电粒子在电场中的运动[答案] (1)电场强度三公式的异同及选择原则(2)电场力做功的计算方法①W AB=qU AB(普遍适用).②W=qEl cosθ(适用于匀强电场).③W AB=-ΔE p=E p A-E p B(从能量角度求解).④W电+W非电=ΔE k(由动能定理求解).(3)电势高低的判断方法考向一对电场性质的理解[归纳提炼]电场强度、电势、电势能的表达式及特点对比(多选)(2017·全国卷Ⅲ)一匀强电场的方向平行于xOy平面,平面内a、b、c 三点的位置如图所示,三点的电势分别为10 V、17 V、26 V.下列说法正确的是( )A.电场强度的大小为2.5 V/cmB.坐标原点处的电势为1 VC.电子在a点的电势能比在b点的低7 eVD.电子从b点运动到c点,电场力做功为9 eV[思路点拨] (1)匀强电场中电势的变化是均匀的.(2)求场强大小时可添加辅助线,利用几何关系求解.[解析] 解法一:巧妙运用匀强电场的电势分布特点求解.ab与Oc交点电势相等,且φa+φb2=φO+φc2,则可得φO=φa+φb-φc=1 V.这是突破本题第一个难点的简便方法.本题还有第二个难点:求出该匀强电场的场强大小.这需要添加辅助线,利用几何关系列式求解.如图1所示,过b 点作bd 垂直于Oc ,则由几何关系可得cd =185m故φc -φOx cO=φc -φd x cd,则d 点的电势为φd =17 V ,故bd 为等势面.从而得出电场线沿cO 方向,故E =φcOx cO=2.5 V/cm.至于选项C 、D ,学生均可根据电场力做功引起电势能变化列式求解,对大多数学生没有太大的难度.从a 到b 移动电子,电场力做功W =U ab (-e )=(-7)×(-e )=7 eV.电场力做正功,电势能减小,故电子在a 点电势比在b 点高7 eV ,故C 错误;从b 到c 移动电子,电场力做功W =-eU bc =9 eV ,故D 正确.解法二:利用假设法求解.设过c 点的一条电场线ck 与ac 间夹角为θ,场强为E ,如图2所示.过a 点做该电场线的垂线ad ,过b 点作垂线be ,由于ad 和be 为两条等势线,且U cd=16 V ,U ce =9 V ,根据匀强电场中电场强度的规律U =E ·d 可得U cd =E ×d cd =16 V ① U ce =E ×d ce =9 V ②根据tan θ=34可得θ=37°,则E =2.5 V/cm这种解法对数学基础要求较高,可是当求出场强大小后,坐标原点处的电势便可顺利求解.由以上分析可见电场线沿cO 方向.由d cO =10 cm 得U cO =E ·d cO =25 Vφ0=+1 V. [答案] ABD在平时的练习中不难发现,正确答案为三项的选择题,即使解题难度不大,也极易出错,正确率直线下降,更何况此题本身对学生的能力要求较高,所以得分率很低.导致失误的第二个原因,可能是平时解题习惯不好,作等势线图不用直尺,不严谨或不简洁,在图中找不出正确的几何关系.第三个原因,就是数学基础不扎实,几何运算不熟练等.这就提示我们,在平时要正确使用作图工具作图,切不可养成随手画图的不良习惯,没有规矩不成方圆.[熟练强化]1.(多选)(2017·长沙四县一市期中联考)如右图所示,质量和电荷量均相同的两个小球A 、B 分别套在光滑绝缘杆MN 、NP 上,两杆固定在一起,NP 水平且与MN 处于同一竖直平面内,∠MNP 为钝角.B 小球受一沿杆方向的水平推力F 1作用,A 、B 均处于静止状态,此时A 、B 两球间距为L 1.现缓慢推动B 球,A 球也缓慢移动,当B 球到达C 点时,水平推力大小为F 2,A 、B 两球间距为L 2,则( )A .F 1<F 2B .F 1>F 2C .L 1<L 2D .L 1>L 2[解析] 对A 球受力分析如图所示,A 球受到重力mg 、支持力F A 和库仑力F 库,根据平衡条件,可知重力mg 和库仑力F 库的合力F A ′,与支持力F A 等值反向,可以把重力mg 、支持力F A 和库仑力F 库之间的关系转变为mg 、F A ′、F 库′之间的三角形关系,如图所示.在B 球向C 移动的过程中,库仑力的方向在改变,即图中α角变小,由矢量三角形可知库仑力在变小,根据库仑定律F 库=k q 2L2,可知L 变大,即A 、B 之间的距离变大,选项C 正确,D错误;对B 球受力分析如图所示,B 球受到重力mg 、支持力F B 、库仑力F 库和推力F ,根据平衡条件,可知F =F 库cos β,在B 球向C 移动的过程中,库仑力的方向在改变,即β在变大,则cos β变小,库仑力也在减小,故推力F 变小,即F 1>F 2,选项A 错误,B 正确.[答案] BC2.(多选)(2017·河北唐山一模)如右图所示,匀强电场中的A 、B 、C 、D 点构成一位于纸面内的平行四边形,电场强度的方向与纸面平行.已知A 、B 两点的电势分别为φA =12 V 、φB =6 V ,则C 、D 两点的电势可能分别为( )A .9 V 、15 VB .9 V 、18 VC .0 V 、6 VD .6 V 、0 V[解析] 已知ABCD 为平行四边形,则AB 与CD 平行且等长,因为匀强电场的电场强度的方向与纸面平行,所以U AB =U DC =6 V ,分析各选项中数据可知,A 、C 正确,B 、D 错误.[答案] AC考向二平行板电容器问题[归纳提炼]1.两个电容公式的比较2.平行板电容器动态问题的分析思路(2016·天津卷)如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板间有一固定在P点的点电荷,以E表示两板间的电场强度,E p表示点电荷在P点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则( )A.θ增大,E增大B .θ增大,E p 不变C .θ减小,E p 增大D .θ减小,E 不变[思路点拨] 电容器与电源断开,电荷量不变,上极板向下移动一小段距离,C 变化,从而引起两极板间的电势差发生变化.极板间距离的变化不影响场强E ,结合A 点的位置可判断E p 的变化情况.[解析] 根据电容器定义式C =QU 得U =Q C ,因电量不变,则两板间的电场强度E =U d =Q Cd,又C =εS 4πkd ,则E =4πkQ εS ,当极板正对面积不变时,两极板之间的电场强度E 不变.保持下极板不动,将上极板向下移动一小段距离至题图中虚线位置,由U =Ed 可知,两极板之间的电势差减小,静电计指针的偏角θ减小,由于下极板接地(电势为零),两极板之间的电场强度不变,所以点电荷在P 点的电势能E p 不变.综上所述,选项D 正确,A 、B 、C 错误.[答案] D判断电容器中某点电势的变化时,一般是通过该点与某一极板的电势差的变化来判断.该题中因为上极板位置变化,下极板位置固定且接地,分析时应以A 点与下极板的距离为参考,若以A 点与上极板的距离为参考来分析容易出错.(1)电容器与电源连接时电势和电势能的分析如图所示,平行板电容器经开关S 保持与电源连接,a 处固定一带电荷量很小的正点电荷,现将电容器N 板向下移动一小段距离时,由于电压不变,根据E =Ud得场强减小,a 点和上极板M 的电势差U Ma =Ed Ma ,则U Ma 减小,又根据U Ma =φM -φa 知,因φM 不变,所以φa 升高,正电荷的电势能增大.静电计与电压表的使用:在静电实验中,由于带电体一般电压都比较高,容易超过电压表的量程,且物体所带电荷量少,如用电压表测电势差,物体所带电荷量就会很快通过电压表内部的通路放完.我们会发现电压表指针在接通瞬间偏转一下后,很快又回到零刻度.电压表虽可以既方便又准确地测量电势差,但在静电实验中,一般不能用来测量两个带电体如平行板电容器的电势差.[熟练强化]1.(2016·全国卷Ⅰ)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变[解析] 平行板电容器接在电压恒定的直流电源上,电容器两极板之间的电压U 不变.若将云母介质移出,电容C 减小,由C =Q /U 可知,电容器所带电荷量Q 减小,即电容器极板上的电荷量减小.由于U 不变,d 不变,由E =U /d 可知,极板间电场强度E 不变,选项D 正确,A 、B 、C 错误.[答案] D2.(2017·河南三市二模)如图所示,固定在绝缘支架上的平行板电容器充电后与电源断开,B 极板接地,A 极板与一个静电计相连.将B 极板向左水平移动一小段距离后,电容器的电容C 、静电计指针偏角θ和极板间电场强度E 的变化情况分别是( )A .C 变小,θ变大,E 不变B .C 不变,θ不变,E 变小 C .C 变小,θ不变,E 不变D .C 变小,θ变大,E 变小[解析] 电容器充好电后与电源断开,则电容器所带电荷量不变.当B 极板左移时,极板间距离增大,由C =εr S 4k πd 知电容C 减小,又C =QU ,则知两板间电压U 升高,则静电计指针偏角θ变大,再由E =U d =Q Cd =4k πQεr S可知电场强度不变,故A 正确.[答案] A3.如图所示,平行板电容器通过一滑动变阻器R与直流电源连接,G为一零刻度在表盘中央的灵敏电流计,闭合开关S后,下列说法正确的是( )A.若只在两极板间插入电介质,电容器的两极板间电压将增大B.若只在两极板间插入电介质,电容器的电容将保持不变C.若只将电容器下极板向下移动一小段距离,此过程电流计中有从a到b方向的电流D.若只将滑动变阻器滑片P向上移动,电容器储存的电荷量将增加[解析] 电容器两个极板间的电压等于滑动变阻器与电容器并联部分两端的电压,滑动变阻器滑片P不动,则电容器两极板间电压不变,选项A错误;根据C=εr S4πkd,插入电介质后,电容器的电容变大,选项B错误;根据C=εr S4πkd,增大d,电容器的电容变小,即Q =CU变小,电容器放电,电流方向应该是从b到a,选项C错误;将滑动变阻器滑片P向上移动,电容器两极板间的电压变大,即Q=CU变大,电容器存储的电荷量将增加,选项D 正确.[答案] D考向三带电粒子在电场中的运动[归纳提炼]带电体在电场中运动的处理思路及方法1.用能量的观点处理带电体在电场中的运动对受变力作用的带电体的运动,必须借助于能量的观点来处理,即使都是恒力作用的问题,用能量观点处理也常常显得简捷.2.用整体法处理多物体或多过程问题整体思想可对物理研究对象而言,亦可对粒子运动过程而言,其求解过程快捷.在运用此法处理带电粒子在电场中的平衡或加速运动问题时,应结合物体的平衡条件及动力学知识求解.3.正交分解法或化曲为直法处理这种运动的基本思想与处理偏转运动是类似的,可以将此复杂的运动分解为两个互相正交的比较简单的直线运动,而这两个直线运动的规律我们是可以掌握的,然后再按运动合成的观点去求出复杂运动的有关物理量.4.等效“重力”法将重力与电场力进行合成,如下图所示,则F 合等效于“重力”,g ′=F 合m等效于“重力加速度”,F 合的方向等效于“重力”的方向,即在重力场中的竖直向下方向.(2017·全国卷Ⅱ)如图,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场.自该区域上方的A 点将质量均为m 、电荷量分别为q 和-q (q >0)的带电小球M 、N 先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时动能的1.5倍.不计空气阻力,重力加速度大小为g .求(1)M 与N 在电场中沿水平方向的位移之比; (2)A 点距电场上边界的高度; (3)该电场的电场强度大小. [思路路线][解析] (1)设小球M 、N 在A 点水平射出时的初速度大小为v 0,则它们进入电场时的水平速度仍然为v 0.M 、N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2.由题给条件和运动学公式得v 0-at =0① s 1=v 0t +12at 2② s 2=v 0t -12at 2③联立①②③式得s 1s 2=3④ (2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式v 2y =2gh ⑤ H =v y t +12gt 2⑥M 进入电场后做直线运动,由几何关系知 v 0v y =s 1H⑦ 联立①②⑤⑥⑦式可得h =13H ⑧(3)设电场强度的大小为E ,小球M 进入电场后做直线运动,则v 0v y =qE mg⑨ 设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得E k1=12m (v 20+v 2y )+mgH +qEs 1⑩E k2=12m (v 20+v 2y )+mgH -qEs 2⑪由已知条件E k1=1.5E k2⑫联立④⑤⑦⑧⑨⑩⑪⑫式得E =mg2q⑬ [答案] (1)3 (2)H3 (3)mg2q本题为带电粒子在电场中的运动问题,对此类问题的分析主要包括以下几种情形:对于直线运动问题,可根据对粒子的受力分析与运动分析,重点掌握以下三种情况:①如果电场力为恒力,可由牛顿第二定律求出加速度,结合运动学公式确定带电体的速度、位移等.②如果是非匀强电场中的直线运动,一般利用动能定理或能量守恒研究带电体的速度、位移等.③对于带电粒子在交变电场中的直线运动,一般多以加速、减速交替出现的多运动过程的情境出现.对于曲线运动问题,可根据对粒子的受力分析与运动分析,重点掌握以下两种运动形式:①一般是类平抛运动模型,通常采用运动的合成与分解方法处理.通过对带电粒子的受力分析和运动规律分析,借助运动的合成与分解,寻找两个分运动,再应用牛顿运动定律或运动学方程求解.②粒子做加速圆周运动,注意电场力做功等于电场力与在电场力方向上位移的乘积. ③对于带电粒子在交变电场中的曲线运动,解决的方法仍然是应用运动的合成与分解的方法,把曲线运动分解为两个直线运动,然后分别应用直线运动规律加以解决.[熟练强化]迁移一 带电粒子在电场中的加速与偏转1.(2016·北京卷)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102V ,d =4.0×10-2m ,m =9.1×10-31kg ,e =1.6×10-19C ,g =10 m/s 2;(3)极板间既有静电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”φG 的概念,并简要说明电势和“重力势”的共同特点.[解析] (1)根据功和能的关系,有eU 0=12mv 20电子射入偏转电场的初速度v 0=2eU 0m在偏转电场中,电子的运动时间Δt =L v 0=L m2eU 0偏转距离Δy =12a (Δt )2=12·eU dm (Δt )2=UL 24U 0d(2)考虑电子所受重力和电场力的数量级,有 重力G =mg ≈10-29N 电场力F =eU d≈10-15N由于F ≫G ,因此不需要考虑电子所受重力.(3)电场中某点电势φ定义为电荷在该点的电势能E p 与其电荷量q 的比值,即φ=E pq由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能E G 与其质量m 的比值,叫做“重力势”,即φG =E G m电势φ和重力势φG 都是反映场的能的性质的物理量,仅由场自身的因素决定. [答案] (1) 2eU 0m UL 24U 0d(2)原因见解析 (3)见解析迁移二 带电粒子在交变电场中的运动2.(多选)(2017·山东五校联考)制造纳米薄膜装置的工作电极可简化为真空中间距为d 的两平行金属板,如图甲所示,加在A 、B 间的电压U AB 做周期性变化,其正向电压为U 0,反向电压为-kU 0(k ≥1),电压变化的周期为2T ,如图乙所示.在t =0时,有一个质量为m 、电荷量为e 的电子以初速度v 0垂直电场方向从两极板正中间射入电场,在运动过程中未与极板相撞,且不考虑重力的作用,则下列说法中正确的是( )A .若k =54且电子恰好在2T 时刻射出电场,则应满足的条件是d ≥9eU 0T25mB .若k =1且电子恰好在4T 时刻从A 板边缘射出电场,则其动能增加eU 02C .若k =54且电子恰好在2T 时刻射出电场,则射出时的速度为v 20+⎝⎛⎭⎪⎫5eU 0T 4md 2D .若k =1,则电子在射出电场的过程中,沿电场方向的分速度方向始终不变 [解析] 竖直方向,电子在0~T 时间内做匀加速运动,加速度的大小a 1=eU 0md,位移x 1=12a 1T 2,在T ~2T 时间内先做匀减速运动,后反向做匀加速运动,加速度的大小a 2=5eU 04md,初速度的大小v 1=a 1T ,匀减速运动阶段的位移x 2=v 212a 2,由题知12d ≥x 1+x 2,解得d ≥9eU 0T25m,A 正确;若k =1且电子恰好在4T 时刻从A 板边缘射出电场,电场力做功为零,动能不变,B 错误;若k =54且电子恰好在2T 时刻射出电场,垂直电场方向速度为v 0,射出时的速度为v 20+⎝ ⎛⎭⎪⎫eU 0T 4md 2,C 错误;若k =1,电子在射出电场的过程中,沿电场方向的分速度方向始终不变,D 正确.[答案] AD迁移三 “等效法”电场中的应用3.如图所示,绝缘光滑轨道AB 部分是倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一个质量为m 的带正电小球,电荷量为q =3mg3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?[解析] 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE2+mg2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的“等效最高点”(D 点)满足“等效重力”刚好提供向心力,即有:mg ′=mv 2DR,因θ=30°与斜面的倾角相等,由几何关系知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12mv 2D -12mv 2解得v 0=103gR3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR3.[答案] v ≥103gR3.高考高频考点强化——电场中的“两类”典型图象问题[考点归纳][真题归类]1.(多选)(2017·全国卷Ⅰ)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r的关系如图所示.电场中四个点a、b、c和d的电场强度大小分别为E a、E b、E c 和E d.点a到点电荷的距离r a与点a的电势φa已在图中用坐标(r a,φa)标出,其余类推.现将一带正电的试探电荷由a点依次经b、c点移动到d点,在相邻两点间移动的过程中,电场力所做的功分别为W ab、W bc和W cd.下列选项正确的是( )A .E a ∶E b =4∶1B .E c ∶E d =2∶1C .W ab ∶W bc =3∶1D .W bc ∶W cd =1∶3[解析] 结合图象可知U ab =3 V ,U bc =1 V ,U cd =1 V ,根据W =Uq 可得W ab ∶W bc =3∶1,W bc ∶W cd =1∶1,C 正确,D 错误;根据E =k Q r 2,r a r b =12,r c r d =36,故E a E b =E c E d =41,A 正确,B 错误.[答案] AC2.(多选)(2017·江苏卷)在x 轴上有两个点电荷q 1、q 2,其静电场的电势φ在x 轴上分布如图所示.下列说法正确的有( )A .q 1和q 2带有异种电荷B .x 1处的电场强度为零C .负电荷从x 1移到x 2,电势能减小D .负电荷从x 1移到x 2,受到的电场力增大[解析] 由题图可知,空间的电势有正有负,且只有一个极值,则两个点电荷必定为异种电荷,A 项正确;由E =ΔφΔx 可知,φ-x 图象的切线斜率表示电场强度,因此x 1处的电场强度不为零,B 项错误;负电荷从x 1移到x 2的过程中,电势升高,电场强度减小,由E p =q φ,F =qE 可知,电势能减小,受到的电场力减小,C 项正确,D 项错误.[答案] AC3.(多选)(2014·上海卷)静电场在x轴上的场强E随x的变化关系如右图所示,x轴正方向为场强正方向,带正电的点电荷沿x轴运动,则点电荷( )A.在x2和x4处电势能相等B.由x1运动到x3的过程中电势能增大C.由x1运动到x4的过程中电势能先减小后增大D.由x1运到到x4的过程中电场力先减小后增大[解析] x2~x4处场强方向沿x轴负方向,则从x2到x4处逆着电场线方向,电势升高,则正电荷在x4处电势能较大,故A错误;x1~x3处场强为x轴负方向,则从x1到x3处逆着电场线方向移动,电势升高,正电荷在x3处电势能较大,故B正确;由x1运动到x4的过程中,逆着电场线方向,电势升高,正电荷的电势能增大,故C错误;由x1运动到x4的过程中,电场强度的绝对值先增大后减小,故由F=qE知,电场力先增大后减小,故D错误.[答案] BE-x图象特点①反映了电场强度随位移变化的规律.②E>0表示场强沿x轴正方向;E<0表示场强沿x轴负方向.③图线与x轴围成的“面积”表示电势差,“面积”大小表示电势差大小,两点的电势高低根据电场方向判定.φ-x图象特点及应用①电场强度的大小等于φ-x图线的斜率大小,电场强度为零处,φ-x图线存在极值,其切线的斜率为零.②在φ-x图象中可以直接判断各点电势的大小,并可根据电势大小关系确定电场强度的方向.③在φ-x图象中分析电荷移动时电势能的变化,可用W AB=qU AB,进而分析W AB的正负,然后作出判断.[迁移训练]1.(多选)(2016·福建漳州三联)空间某一静电场的电势φ在x 轴上分布如图所示,x 轴上B 、C 点电场强度在x 方向上的分量分别是E Bx 、E Cx ,下列说法中正确的有( )A .E Bx 的大小大于E Cx 的大小B .E Bx 的方向沿x 轴正方向C .电荷在O 点受到的电场力在x 方向上的分量最大D .负电荷沿x 轴从B 移到C 的过程中,电场力先做正功,后做负功[解析] 在B 点和C 点附近分别取很小的一段(d ),由图象知B 点段对应的电势差大于C 点段对应的电势差,将此小段看作是匀强电场,再由E =U d =Δφd,可见E Bx >E Cx ,A 项正确;同理可知O 点场强为零,电荷在该点受到的电场力为零,C 项错误;因沿电场线方向电势逐渐降低,则由图可知在O 点左侧,电场方向在x 方向上的分量沿x 轴负方向,在O 点右侧,电场方向在x 方向上的分量沿x 轴正方向,则负电荷沿x 轴从B 移到C 的过程中,电场力先做正功,后做负功,所以B 项错误,D 项正确.[答案] AD2.(多选)(2016·肇庆三模)x 轴上O 点右侧各点的电场方向与x 轴方向一致,O 点左侧各点的电场方向与x 轴方向相反,若规定向右的方向为正方向,x 轴上各点的电场强度E 随x 变化的图象如图所示,该图象关于O 点对称,x 1和-x 1为x 轴上的两点.下列说法正确的是( )小初高试卷教案类K12小学初中高中 A .O 点的电势最低B .x 1和-x 1两点的电势相等C .电子在x 1处的电势能大于在-x 1处的电势能D .电子从x 1处由静止释放后,若向O 点运动,则到达O 点时速度最大[解析] 作出电场线,根据顺着电场线电势降低,则O 点电势最高,故A 错误;从图线看出,电场强度关于原点O 对称,则x 轴上关于O 点对称位置的电势相等,电子在x 1和-x 1两点处的电势能相等,故B 正确,C 错误;电子从x 1处由静止释放后,若向O 点运动,到达O 点时电场力做功最多,故动能最大,速度最大,故D 正确.[答案] BD3.(2017·江西六校联考)两个点电荷位于x 轴上,在它们形成的电场中,若取无限远处的电势为零,则在x 轴正半轴上各点的电势如图中曲线所示,当x →0时,电势φ→∞,当x →∞时,电势φ→0.电势为零的点的横坐标为x 1,电势为最小值-φ0的点的横坐标为x 2,根据图线提供的信息,下列判断正确的是()A .这两个点电荷一定是同种电荷B .这两个点电荷一定是等量的异种电荷C .在x 1处的电场强度为零D .在x 2处的电场强度为零[解析] 若这两个点电荷是同种电荷,则在x 1处的电势不可能为零,因此这两个点电荷一定是异种电荷,选项A 错误;当x →0时,电势φ→∞,可知在原点一定有正点电荷,负点电荷只能在x 轴负半轴上,且负点电荷所带电荷量的绝对值一定大于正点电荷所带电荷量,可知这两个点电荷必定是不等量的异种电荷,选项B 错误;根据电场强度与电势的关系可知E =ΔφΔx,故在x 2处的电场强度为零,在x 1处的电场强度不为零,选项D 正确、C 错误. [答案] D。
专题三电场与磁场[学前先做高考题] 高考题最经典,每做一次都有新发现1.(2015·江苏高考)静电现象在自然界中普遍存在,我国早在西汉末年已有对静电现象的记载,《春秋纬·考异邮》中有“玳瑁吸”之说,但下列不属于静电现象的是( ) A.梳过头发的塑料梳子吸起纸屑B.带电小球移至不带电金属球附近,两者相互吸引C.小线圈接近通电线圈过程中,小线圈中产生电流D.从干燥的地毯上走过,手碰到金属把手时有被电击的感觉解析:选C 用塑料梳子梳头发时相互摩擦,塑料梳子会带上电荷吸引纸屑,选项A属于静电现象;带电小球移至不带电金属球附近,由于静电感应,金属小球在靠近带电小球一端会感应出与带电小球异号的电荷,两者相互吸引,选项B属于静电现象;小线圈接近通电线圈过程中,由于电磁感应现象,小线圈中产生感应电流,选项C不属于静电现象;从干燥的地毯上走过,由于摩擦生电,当手碰到金属把手时瞬时产生较大电流,人有被电击的感觉,选项D属于静电现象。
2.(多选)(2015·江苏高考)两个相同的负电荷和一个正电荷附近的电场线分布如图所示。
c是两负电荷连线的中点,d点在正电荷的正上方,c、d到正电荷的距离相等,则( )A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低解析:选ACD 根据电场线的分布图,a、b两点中,a点的电场线较密,则a点的电场强度较大,选项A正确;沿电场线的方向电势降低,a点的电势低于b点的电势,选项B错误;由于c、d关于正电荷对称,正电荷在c、d两点产生的电场强度大小相等、方向相反;两负电荷在c点产生的电场强度为0,在d点产生的电场强度方向向下,根据电场的叠加原理,c点的电场强度比d点的大,选项C正确;c、d两点中c点离负电荷的距离更小,c点电势比d点低,选项D正确。
3.(2016·江苏高考)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示,容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是( )A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C .B 点的电场强度方向与该处内表面垂直D .将检验电荷从A 点沿不同路径移到B 点,电场力所做的功不同解析:选C 由题图知,B 点处的电场线比A 点处的密,则A 点的电场强度比B 点的小,选项A 错误;沿电场线方向电势降低,选项B 错误;电场强度的方向总是与等势面(容器内表面)垂直,选项C 正确;沿任意路径将检验电荷由A 点移动到B 点,电场力做功都为零,选项D 错误。
专题1“双基”篇所谓“双基”知识(基本概念、基本规律),就是能举一反三、以不变应万变的知识.只有掌握了“双基”,才谈得上能力的提高,才谈得上知识和能力的迁移.综合分析近几年的高考物理试卷不难看出,虽然高考命题已由“知识立意”向“能力立意”转变,但每年的试卷中总有一定数量的试题是着重考查学生的知识面的,试卷中多数试题是针对大多数考生设计的,其内容仍以基本概念、基本规律的内涵及外延的判断和应用为主.只要考生知道有关的物理知识,就不难得出正确的答案.以2003年我省高考物理试卷为例,属于对物理概念、规律的理解和简单应用考查的试题,就有15题,共90分,占满分的60%.如果考生的基本概念、基本规律掌握得好,把这90分拿到手,就已大大超过了省平均分.许多考生解题能力差,得分低,很大程度上与考生忽视对物理基础知识的理解和掌握有关,对基础知识掌握得不牢固或不全面,就会在解题时难以下手,使应得的分白白丢失. 如果说,我们要求学生高考时做到“该得的分一分不丢,难得的分每分必争”,那么,就要先从打好基础做起,抓好物理基本知识和规律的复习.复习中,首先要求学生掌握概念、规律的“内涵”(例如内容、条件、结论等),做到“理科文学”,对概念、规律的内容,该记该背的,还是要在理解的基础上熟记.其次,要掌握概念和规律的“外延”,例如,对机械能守恒定律,如果条件不满足,即重力或弹力以外的其他力做了功,系统的机械能将如何变化?等等.有一些情况我的感受特别深,一是有些试题看似综合性问题,而学生出错的原因实质是概念问题.二是老师以为很简单的一些概念问题,学生就是搞不清,要反复讲练.下面,就高中物理复习中常遇到的一些基本概念问题,谈谈我的看法.我想按照高中物理知识的五大板块来讲述.一些共同性的概念和规律:1.不能简单地从数学观点来理解用比值定义的物理量(一个物理量与另一个物理量成正比或反比的说法).2.图线切线的斜率.3.变加速运动中,合力为零时,速度最大或最小.一、力学●物体是否一定能大小不变地传力?例1:两物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示.对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于 ( B )A .112m F m m + B .212m F m m + C .F D .21m F m 拓展:如图,物体A 叠放在物体B 上,B 置于光滑水平面上.A 、B质量分别为m A =6kg ,m B =2kg ,A 、B 之间的动摩擦因数μ=0.2.开始时水平拉力F =10N ,此后逐渐增加,在增大到45N的过程中,则 ( D )A .只有当拉力F <12N 时,两物体才没有相对滑动B .两物体开始没有相对运动,当拉力超过12N 时,开始相对滑动C .两物体间从受力开始就有相对运动D .两物体间始终没有相对运动●力、加速度、速度间的关系——拓展至与机械能的关系例2:如图所示,轻弹簧一端固定,另一端自由伸长时恰好到达O 点.将质量为m (视为质点)的物体P 与弹簧连接,并将弹簧压缩到A 由静止释放物体后,物体将沿水平面运动并能到达B 点.若物体与水平面间的摩擦力不能忽略,则关于物体运动的下列说法正确的是 (BC )A .从A 到O 速度不断增大,从O 到B 速度不断减小B .从A 到O 速度先增大后减小,从O 到B 速度不断减小C .从A 到O 加速度先减小后增大,从O 到B 加速度不断增大D .从A 到O 加速度先减小后增大,从O 到B 加速度不断增大拓展1:(1991年)一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示.在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回.下列说法正确的是 ( C ) A .物体从A 下降到B 的过程中,动能不断变小B .物体从B 上升到A 的过程中,动能不断变大C .物体从A 下降到B ,以及从B 上升到A 的过程中,速率都是先增大,后减小D .物体在B 点时,所受合力为零●矢量的合成或分解 1.认真画平行四边形例3:三段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳 ( C )A .必定是OAB .必定是OBC .必定是OCD .可能是OB ,也可能是OA2.最小值问题例4:有一小船位于60m 宽的河边,从这里起在下游80m 处河流变成瀑布.假设河水流速为5m/s ,为了使小船能安全渡河,船相对于静水的速度不能小于多少?3.速度的分解——孰合孰分?例5:如图所示,水平面上有一物体A 通过定滑轮用细线与玩具汽车B 相连,汽车向右以速度v 作匀速运动,当细线OA 、OB 与水平方向的夹角分别为α、β时,物体A 移动的速度为 ( D )A .v sin αcos βB .v cos αcos βC .v cos α/cos βD .v cos β/cos α●同向运动的物体,距离最大(或最小)或恰好追上时,速度相等(但不一定为零). 例6:如图所示,在光滑水平桌面上放有长为L 的长木板C ,在C 上左端和距左端s 处各放有小物块A 和B ,A 、B 的体积大小可忽略不计,A 、B 与长木板C 间的动摩擦因数为μ,A 、B 、C 的质量均为m ,开始时,B 、C 静止,A 以某一初速度v 0向右做匀减速运动,设物体B 与板C 之间的最大静摩擦力等于滑动摩擦力.求:A OBAB(1)物体A 运动过程中,物块B 和木板C 间的摩擦力.(2)要使物块A 、B 相碰,物块A 的初速度v 0应满足的条件. ●匀变速运动的规律及其推论的应用——注意条件例7:已知做匀加速直线运动的物体,第5s 末的速度为10m/s ,则该物体 ( BD )A .加速度一定为2m/s 2B .前5s 内位移可能为25mC .前10s 内位移一定为100mD .前10s 内位移不一定为100m●匀速圆周运动、万有引力定律: 注意公式2r GMm F =①和r mv F 2=②中r 的含义. 例8:今年10月15日9时,中国自行研制的载人航天飞船“神舟”五号,从酒泉航天发射场升空,10分钟后进入预定轨道,绕地球沿椭圆轨道Ⅰ运行,如图.(1)当飞船进入第5圈后,在轨道Ⅰ上A 点加速,加速后进入半径为r 2的圆形轨道Ⅱ.已知飞船近地点B 距地心距离为r 1,飞船在该点速率为v 1,求:轨道Ⅱ处重力加速度大小.(2)飞船绕地球运行14圈后,返回舱与轨道舱分离,返回舱开始返回.当返回舱竖直向下接近距离地球表面高度h 时,返回舱速度约为9m/s ,为实现软着落(着地时速度不超过3m/s ),飞船向下喷出气体减速,该宇航员安全抗荷能力(对座位压力)为其体重的4倍,则飞船至少应从多高处开始竖直向下喷气?(g =10m/s 2)●惯性、离心运动和向心运动例9:如图(俯视图)所示,以速度v 匀速行驶的列车车厢内有一水平桌面,桌面上的A 处有一小球.若车厢中的旅客突然发现小球沿图中虚线从A 运动到B ,则由此可判断列车 ( A )A .减速行驶,向南转弯B .减速行驶,向北转弯C .加速行驶,向南转弯D .加速行驶,向北转弯 例10:卫星轨道速度的大小及变轨问题.●一对作用力和反作用力的冲量或功例11:关于一对作用力和反作用力,下列说法中正确的是 ( D )A .一对作用力和反作用力大小相等,方向相反,作用在同一直线上,是一对平衡力B .一对作用力和反作用力一定可以是不同种性质的力C .一对作用力和反作用力所做功的代数和一定为零D .一对作用力和反作用力的冲量的矢量和一定为零●对动量守恒定律的理解1.内涵——条件及结论2.对表达式的理解3.外延例12:对于由两个物体组成的系统,动量守恒定律可以表达为Δp 1=-Δp 2.对此表达式,沈飞同学的理解是:两个物体组成的系统动量守恒时,一个物体增加了多少动量,另一AB个物体就减少了多少动量.你同意沈飞同学的说法吗?说说你的判断和理由(可以举例说明).例13:总质量为M的小车,在光滑水平面上匀速行驶.现同时向前后水平抛出质量相等的两个小球,小球抛出时的初速度相等,则小车的速度将________(填“变大”、“变小”或“不变”).●对机械能守恒定律的理解1.内涵——条件及结论2.外延——重力(若涉及弹性势能,还包括弹力)以外的其它力做的功,等于系统机械能的增量.例14:如图所示,质量为M=1kg的小车静止在悬空固定的水平轨道上,小车与轨道间的摩擦力可忽略不计,在小车底Array部O点拴一根长L=0.4m的细绳,细绳另一端系一质量m=4kg的金属球,把小球拉到与悬点O在同一高度、细绳与轨道平行的位置由静止释放.小球运动到细绳与竖直方向成60°角位置时,突然撤去右边的挡板P,取g=10m/s2,求:(1)挡板P在撤去以前对小车的冲量;(2)小球释放后上升的最高点距悬点O的竖直高度;(3)撤去右边的挡板P后,小车运动的最大速度.●功和能、冲量和动量的关系1.合外力的功=动能的变化2.重力/弹力/分子力/电场力的功=重力势能/弹性势能/分子势能/电势能变化的负值3.重力(或弹簧弹力)以外的其它力的功=机械能的变化4.合外力的冲量=动量的变化5.合外力=动量的变化率例15:一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力所做的功等于( C )A.物体势能的增加量B.物体动能的增量C.物体动能的增加量加上物体势能的增加量D.物体动能的增加量加上重力所做的功例16:一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则(AC)A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能例17:在光滑斜面的底端静止一个物体,从某时刻开始有一个沿斜面向上的恒力F作用在物体上,使物体沿斜面向上滑去,经过一段时间突然撤去这个力,又经过4倍的时间又返回斜面的底端,且具有250J的动能,则恒力F对物体所做的功为J, 撤去F时物体具有J的动能.若该物体在撤去F后受摩擦力作用,当它的动能减少100J时,机械能损失了40J,则物体再从最高点返回到斜面底端时具有J的动能.例18:如图所示,分别用两个恒力F1和F2先后两次将质量为m的物体从静止开始,沿着同一个粗糙的固定斜面由底端推到顶端,第一次力F 1的方向沿斜面向上,第二次F 2的方向沿水平向右,两次所用时间相同.在这两个过程中 ( BD )A .F 1和F 2所做功相同B .物体的机械能变化相同C .F 1和F 2对物体的冲量大小相同D .物体的加速度相同例19:在光滑斜面的底端静止一个物体,从某时刻开始有一个沿斜面向上的恒力F 作用在物体上,使物体沿斜面向上滑去,经过一段时间突然撤去这个力,又经过4倍的时间又返回斜面的底端,且具有250J 的动能,则恒力F 对物体所做的功为 J, 撤去F 时物体具有 J 的动能。
第三讲 带电粒子在复合场中的运动[答案] (1)速度选择器(如下图)带电粒子束射入正交的匀强电场和匀强磁场组成的区域中,满足平衡条件qE =qvB 的带电粒子可以沿直线通过速度选择器.(2)电磁流量计原理:如上图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子)在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即qvB =qE =q U d ,所以v =U dB ,因此液体流量Q =Sv =πd 24·U Bd =πdU4B.(3)磁流体发电机原理:如下图所示,等离子气体喷入磁场,正、负离子在洛伦兹力作用下发生上下偏转而聚集到A 、B 板上,产生电势差.设A 、B 平行金属板的面积为S ,相距为l ,等离子气体的电阻率为ρ,喷入气体速度为v ,板间磁场的磁感应强度为B ,板外电阻为R .当等离子气体匀速通过A 、B 板间时,A 、B 板上聚集的电荷最多,板间电势差最大,即为电源电动势,此时,离子受力平衡:Eq =Bqv ,E =Bv ,电动势E =El =Blv ,电源内电阻r =ρlS,故R 中的电流I =E R +r =Blv R +ρl S=BlvS RS +ρl.考向一 带电粒子在“组合场”中的运动[归纳提炼] 1.组合场指电场、磁场、重力场有两种场同时存在,但各位于一定的区域内且并不重叠,且带电粒子在一个场中只受一种场力的作用.2.解题思路(1)带电粒子经过电场区域内利用动能定理或类平抛的知识分析; (2)带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理.(2017·天津卷)平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y 轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q 点以速度v 0沿x 轴正方向开始运动,Q 点到y 轴的距离为到x 轴距离的2倍.粒子从坐标原点O 离开电场进入磁场,最终从x 轴上的P 点射出磁场,P 点到y 轴距离与Q 点到y 轴距离相等.不计粒子重力,问:(1)粒子到达O 点时速度的大小和方向; (2)电场强度和磁感应强度的大小之比.[思路点拨] (1)注意粒子进入磁场时的速度不是v 0.(2)粒子在电场中做类平抛运动,求出粒子飞出电场时的速度是解题关键. [解析] 本题考查带电粒子在电场中的偏转及带电粒子在匀强磁场中的运动. (1)在电场中,粒子做类平抛运动,设Q 点到x 轴距离为L ,到y 轴距离为2L ,粒子的加速度为a ,运动时间为t ,有2L =v 0t ①L =12at 2②设粒子到达O 点时沿y 轴方向的分速度为v yv y =at ③设粒子到达O 点时速度方向与x 轴正方向夹角为α,有 tan α=v yv 0④ 联立①②③④式得 α=45°⑤即粒子到达O 点时速度方向与x 轴正方向成45°角斜向上 设粒子到达O 点时速度大小为v ,由运动的合成有v =v 20+v 2y ⑥联立①②③⑥式得v =2v 0⑦(2)设电场强度为E ,粒子电荷量为q ,质量为m ,粒子在电场中受到的电场力为F ,由牛顿第二定律可得F =ma ⑧设磁场的磁感应强度大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,所受的洛伦兹力提供向心力,有qvB =m v 2R⑩由几何关系可知R =2L ⑪联立①②⑦⑧⑨⑩⑪式得E B =v 02⑫ [答案] (1)2v 0 与x 轴正方向成45°角斜向上 (2)v 02带电粒子在组合场中运动的处理方法不论带电粒子是先后在匀强电场和匀强磁场中运动,还是先后在匀强磁场和匀强电场中运动.解决方法如下(1)分别研究带电粒子在不同场中的运动规律,在匀强磁场中做匀速圆周运动,在匀强电场中,若速度方向与电场方向在同一直线上,则做匀变速直线运动,若进入电场时的速度方向与电场方向垂直,则做类平抛运动.根据不同的运动规律分别求解.(2)带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理.(3)注意分析磁场和电场边界处或交接点位置粒子速度的大小和方向,把粒子在两种不同场中的运动规律有机地联系起来.迁移一 直线运动与圆周运动组合1.(2017·合肥质监)如图所示,在xOy 平面内,MN 与y 轴相互平行且间距为d ,其间有沿x 轴负方向的匀强电场.y 轴左侧有垂直纸面向外的匀强磁场,磁感应强度大小为B 1;MN 右侧空间有垂直纸面不随时间变化的匀强磁场.质量为m 、电荷量为q 的带负电粒子以速度v 0从坐标原点O 沿x 轴负方向射入磁场,经过一段时间后再次回到坐标原点,此过程中粒子两次通过电场,粒子在电场中运动的总时间为t 总=4d3v 0.粒子重力不计.求:(1)左侧磁场区域的最小宽度; (2)电场区域电场强度的大小;(3)右侧磁场区域宽度及磁感应强度大小应满足的条件.[解析] (1)粒子在左侧磁场中做圆周运动,qB 1v 0=m v 20R解得R =mv 0qB 1由几何知识可知,左侧磁场区域的最小宽度就是粒子做圆周运动的半径L min =R =mv 0qB 1. (2)粒子在电场中运动的总时间为t 总=4d 3v 0,带电粒子一次通过电场的时间为t =2d 3v 0.设粒子到达MN 边界的速度为v ,电场强度为Ed =v +v 02t所以v =2v 0v 2-v 20=2Eq md E =3mv 202qd.(3)因为粒子带负电,所以粒子开始时在左侧磁场中向下偏转,通过电场加速后进入右侧磁场,要使其能够回到原点,则粒子在右侧磁场中应向上偏转,所以MN 右侧空间的磁场垂直纸面向外,且偏转半径为R 或2R ,粒子通过电场加速后进入右侧磁场的速度为v =2v 0.设粒子在右侧磁场中的轨道半径为r ,磁感应强度为BqBv =m v 2r ,r =2mv 0qB ,R =mv 0qB 1粒子在右侧磁场中运动情况有两种,如图所示①当半径r =R 时,B =2mv 0qR=2B 1,右侧磁场的宽度应满足x min ≥mv 0qB 1②当半径r =2R 时,B =2mv 02qB =B 1,右侧磁场的宽度应满足x min ≥2mv 0qB 1.[答案] (1)mv 0qB 1 (2)3mv 22qd(3)①当半径r =R 时,x min ≥mv 0qB 1 ②当半径r =2R 时,x min ≥2mv 0qB 1迁移二 组合场中的多解问题2.如下图所示,在x 轴上方有一匀强磁场,磁感应强度为B ;x 轴下方有一匀强电场,电场强度为E .屏MN 与y 轴平行且相距L .一质量m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么:(1)电子释放位置与原点O 的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间? [解析] (1)在电场中,电子从A →O ,动能增加eEs =12mv 2在磁场中,电子偏转,半径为r =mv 0eB据题意,有(2n +1)r =L所以s =eL 2B 22Em 2n +2(n =0,1,2,3,…)(2)在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的运动时间t =(2n +1)2sa +T 4+n T 2,其中a =Ee m ,T =2πm eB. 整理后得t =BL E +(2n +1)πm2eB (n =0,1,2,3,…)[答案] (1)s =eL 2B 22Em 2n +2(n =0,1,2,3,…)(2)BL E +(2n +1)πm2eB(n =0,1,2,3,…)考向二带电粒子在“复合场”中的运动[归纳提炼]带电粒子在“复合场”中运动问题求解思路(2016·天津卷)如图所示,空间中存在着水平向右的匀强电场,电场强度大小E=5 3 N/C,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B =0.5 T.有一带正电的小球,质量m=1×10-6 kg,电荷量q=2×10-6 C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2.求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t.[思路路线][解析] (1)小球匀速直线运动时受力如图,其所受的三个力在同一平面内,合力为零,则qvB =q 2E 2+m 2g 2①代入数据解得v =20 m/s ②速度v 的方向斜向右上方,与电场E 的方向之间的夹角θ满足tan θ=qEmg③ 代入数据解得tan θ=3,θ=60°④(2)解法一:撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,设其加速度为a ,有a =q 2E 2+m 2g 2m⑤设撤掉磁场后小球在初速度方向上的分位移为x ,有x =vt ⑥ 设小球在重力与电场力的合力方向上分位移为y ,有y =12at 2⑦a 与mg 的夹角和v 与E 的夹角相同,均为θ,又tan θ=yx⑧联立④⑤⑥⑦⑧式,代入数据解得t =2 3 s≈3.5 s解法二:撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运动没有影响,以P 点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度为v y=v sin θ⑤若使小球再次经过P 点所在的电场线,仅需小球的竖直方向上分位移为零,则有v y t -12gt 2=0⑥联立④⑤⑥式,代入数据解得t =2 3 s≈3.5 s[答案] (1)20 m/s 斜向右上方与电场E 的方向之间的夹角为60° (2)3.5 s电场力、磁场力、重力并存时带电体的运动分析(1)若三力平衡,带电体做匀速直线运动. (2)若重力与电场力平衡,带电体做匀速圆周运动.(3)若合力不为零,带电体可能做复杂的曲线运动,可用能量守恒定律或动能定理求解. [熟练强化]迁移一 带电粒子在“复合场”中的一般曲线运动1.(多选)设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一带电粒子在电场力和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动的最低点,忽略粒子的重力,以下说法中正确的是( )A .此粒子必带正电荷B .A 点和B 点位于同一高度C .粒子在C 点时机械能最大D .粒子到达B 点后,将沿原曲线返回A 点[解析] 本题考查带电粒子在电场和磁场中的运动,意在考查学生的综合分析能力.粒子从静止开始运动的方向向下,电场强度方向也向下,所以粒子必带正电荷,A 正确;因为洛伦兹力不做功,只有静电力做功,A 、B 两点速度都为0,根据动能定理可知,粒子从A 点到B 点运动过程中,电场力不做功,故A 、B 点位于同一高度,B 正确;C 点是最低点,从A 点到C 点运动过程中电场力做正功最大,C 点电势能最小,由能量守恒定律可知C 点的机械能最大,C 正确;到达B 点时速度为零,将重复刚才ACB 的运动,向右运动,不会返回,故D 错误.[答案] ABC迁移二 带电粒子在“复合场”中的直线运动2.(2015·福建卷)如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v C ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v P .[解析] (1)小滑块沿MN 运动过程,水平方向受力满足qvB +N =qE小滑块在C 点离开MN 时N =0解得v C =EB(2)由动能定理mgh -W f =12mv 2C -0 解得W f =mgh -mE 22B2(3)如图,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤去磁场后小滑块将做类平抛运动,等效加速度为g ′g ′=⎝ ⎛⎭⎪⎫qE m 2+g 2 且v 2P =v 2D +g ′2t 2解得v P =v 2D +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫qE m 2+g 2t 2 [答案] (1)E B (2)mgh -mE 22B2(3)v 2D +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫qE m 2+g 2t 2 迁移三 带电粒子在复合场中的圆周运动3.(2017·大庆模拟)如图所示,空间区域Ⅰ、Ⅱ内存在匀强电场和匀强磁场,MN 、PQ 为磁场区域的理想边界,Ⅰ区域高度为d ,Ⅱ区域的高度足够大.匀强电场方向竖直向上;Ⅰ、Ⅱ区域磁场的磁感应强度大小均为B ,方向分别垂直纸面向里和向外.一个质量为m ,电荷量为q 的带电小球从磁场上方的O 点由静止开始下落,进入电磁场区域后,恰能做匀速圆周运动.已知重力加速度为g .(1)试判断小球的电性并求出电场强度E 的大小;(2)若带电小球运动一定时间后恰能回到O 点,在图中作出小球的运动轨迹;求出释放点距MN 的高度h ;并求出小球从开始释放到第一次回到O 点所经历的时间t ;(3)试讨论h 取不同值时,小球第一次穿出Ⅰ区域的过程中电场力所做的功W . [解析] (1)带电小球进入电磁场区域后,恰能做匀速圆周运动,则电场力与重力等大反向,小球带正电,有qE =mg得E =mg q.(2)带电小球在进入叠加场区域前做自由落体运动,有:mgh =12mv 2带电小球在叠加场中做匀速圆周运动,有:qvB =m v 2R由于带电小球在Ⅰ、Ⅱ两个区域运动过程中,q 、v 、B 、m 的大小不变,故三段轨迹圆弧的半径相同,以三个圆心为顶点的三角形为等边三角形,边长为2R ,轨迹如图(a)所示.由几何关系知:R =dsin60°解得:h =2q 2B 2d23m 2g从小球开始释放到回到O 点,运动时间由两部分组成,一部分为在叠加场区域外运动的时间,t 1=22hg;一部分为在叠加场区域内运动的时间,t 2=76×2πm qB =7πm 3qB总时间t =t 1+t 2=22h g +7πm 3qB =43qBd 3mg +7πm3qB. (3)当带电小球在Ⅰ区域做圆周运动的圆弧与PQ 相切时,运动轨迹如图(b)所示,小球做圆周运动的半径R ′=d解得对应高度:h 0=q 2B 2d 22m 2g讨论:①当h ≤h 0时,小球进入Ⅰ区域的速度较小,半径较小,不能进入Ⅱ区域,由边界MN 第一次穿出Ⅰ区域,此过程中电场力做功W =0;②当h >h 0时,小球进入Ⅰ区域后由边界PQ 第一次穿出磁场Ⅰ区域进入Ⅱ区域,此过程中电场力做功W =-qEd =-mgd .[答案] (1)带正电 mg q (2)轨迹见解析 2q 2B 2d 23m 2g 43qBd 3mg +7πm3qB(3)见解析高考题答题规范——电磁场技术的应用[考点归纳]带电粒子在复合场中运动的应用实例[高考示例](16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U 0的加速电场,其初速度几乎为0,经加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q ,质量分别为2m 和m ,图中虚线为经过狭缝左、右边界M 、N 的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N点的最小距离x;(2)在图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;(3)若考虑加速电压有波动,在(U0-ΔU)到(U0+ΔU)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.,[审题指导]第一步读题干—提信息[满分答案] (1)设甲种离子在磁场中的运动半径为r 1 电场加速qU 0=12×2mv 2(1分)且qvB =2m v 2r 1(1分)解得r 1=2BmU 0q(1分) 根据几何关系x =2r 1-L (1分) 解得x =4BmU 0q-L (1分) (2)如图所示(2分)最窄处位于过两虚线交点的垂线上d =r 1-r 21-⎝ ⎛⎭⎪⎫L 22(2分)解得d =2BmU 0q- 4mU 0qB 2-L24(2分) (3)设乙种离子在磁场中的运动半径为r 2r 1的最小半径r 1min =2Bm U 0-ΔUq(1分)r 2的最大半径r 2max =1B2mU 0+ΔUq (1分)由题意知2r 1min -2r 2max >L ,即4Bm U 0-ΔU q -2B2mU 0+ΔUq>L (2分)解得L <2Bm q [2U 0-ΔU -U 0+ΔU ](1分)[答案] (1)4BmU 0q-L (2)区域见解析 2BmU 0q - 4mU 0qB 2-L24(3)L <2Bm q[2U 0-ΔU -U 0+ΔU ]1规范解析书写过程,注意分步列式,对所列方程用序号标出,阅卷老师才好找到得分点;尽量不要列连等式,以防由于写综合方程,一处出错则全部没分.2保证结果计算正确本题较多的是数学表达式的推导,要提高计算能力,会做的题尽量做对,只要结果正确,前面书写的稍有不规范,阅卷老师也可能不在意,但一旦结果错误,阅卷老师再找得分点时,书写不规范或马虎往往就会吃亏.3只看对的,不看错的,对于不会做的题目,要把与本题相关的公式都写上,公式是主要得分点,阅卷时只看评分标准中给定的公式来给分,无用的如果写了,不给分也不扣分.[满分体验] (2016·浙江卷)为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”.在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转.扇形聚焦磁场分布的简化图如图所示,圆心为O 的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布.峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B ,谷区内没有磁场.质量为m ,电荷量为q 的正离子,以不变的速率v 旋转,其闭合平衡轨道如图中虚线所示.(1)求闭合平衡轨道在峰区内圆弧的半径r ,并判断离子旋转的方向是顺时针还是逆时针;(2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T ; (3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B ′,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B ′和B 的关系.已知:sin(α±β)=sin αcos β±cos αsin β,cos α=1-2sin2α2[解析] (1)峰区内圆弧半径r =mv qB旋转方向为逆时针(2)由对称性,峰区内圆弧的圆心角θ=2π3每个圆弧的长度l =2πr 3=2πmv3qB每段直线长度L =2r cos π6=3r =3mvqB周期T =l +L v代入得T =π+33mqB教育是最好的老师,小学初中高中资料汇集专注专业学习坚持不懈勇攀高峰21(3)谷区内的圆心角θ′=120°-90°=30° 谷区内的轨道圆弧半径r ′=mv qB ′由几何关系r sin θ2=r ′sin θ′2由三角关系sin 30°2=sin15°=6-24代入得B ′=3-12B [答案] (1)mv qB 逆时针 (2)2π3 π+33m qB (3)B ′=3-12B。