作物需水量的计算方法与分析
- 格式:pdf
- 大小:475.36 KB
- 文档页数:26
作物需水量的计算方法与分析作物需水量是指作物在生长季节内所需的水分量,是作物生长发育及丰产的基本要求之一、准确计算作物需水量对于合理设计灌溉系统、使用水资源和提高农业生产具有重要意义。
本文将介绍一些常用的作物需水量计算方法和分析。
一、潜在蒸散量法潜在蒸散量是指在一定环境条件下,没有水分限制情况下,作物蒸散所需要的水分量。
潜在蒸散量法是计算作物需水量常用的方法之一,具体计算公式如下:潜在蒸散量可根据气象数据或设备测得数据计算得出,作物系数是根据作物特性、生长期和土壤属性等因素确定的。
二、重要发育期系数法重要发育期系数法是指根据作物的不同生长阶段和对水分需求的不同特点,将生育期划分为不同的发育期,并给予相应的系数。
具体计算公式如下:该方法相对于潜在蒸散量法更加精细,可以更好地反映不同生长期对水分的需求。
三、土壤水分平衡法土壤水分平衡法是根据土壤水平衡的原理来计算作物需水量,考虑了土壤水分的补充和蒸发散发等因素。
具体计算公式如下:其中,补给量可以通过降雨量和灌溉量来提供;蒸发散发量可以通过气象数据和土壤水分特征来计算;土壤水分储存量是指土壤中有效水分的量。
以上是一些常用的作物需水量计算方法,根据具体情况和数据的可得性,可以选择适合的计算方法。
在实际分析作物需水量时,还需要考虑以下几个因素:1.作物品种:不同作物的生长发育及水分需求有所不同,需要根据作物品种确定适合的作物系数。
2.生长期:不同生长期作物对水分的需求也有区别,特别是在重要发育期需求较大,需注意精确计算和合理供水。
3.气候条件:气候条件对作物需水量有重要影响,较为干燥炎热的气候条件下,作物需水量相对较大。
4.土壤性质:土壤的水分保持能力和渗透性等特性会影响作物需水量的计算结果,对土壤进行适当的水分保持和改良十分重要。
作物灌溉需水量计算公式作物灌溉需水量是指为了保证作物生长需要的水量,根据作物的生长期和生长阶段的需水量来确定的。
计算作物灌溉需水量的公式是非常重要的,它可以帮助农民合理安排灌溉,节约水资源,提高农作物的产量和质量。
作物灌溉需水量的计算公式一般是根据作物的生长期和生长阶段的需水量来确定的。
一般来说,作物的需水量主要包括作物蒸腾蒸发量和土壤蒸发蒸腾量两部分。
作物蒸腾蒸发量是指作物在生长期内蒸腾蒸发的水量,它与作物的生长期、气候条件、土壤水分状况等因素有关。
土壤蒸发蒸腾量是指土壤中水分的蒸发蒸腾量,它与土壤类型、土壤水分状况、气候条件等因素有关。
作物灌溉需水量的计算公式一般可以分为定量计算和定性计算两种方法。
定量计算是指根据作物的生长期和生长阶段的需水量来确定作物灌溉需水量的具体数值。
定性计算是指根据作物的生长期和生长阶段的需水量来确定作物灌溉需水量的大致范围。
在定量计算中,作物灌溉需水量的计算公式一般可以表示为:作物灌溉需水量 = 作物蒸腾蒸发量 + 土壤蒸发蒸腾量。
其中,作物蒸腾蒸发量可以根据作物的生长期和生长阶段的需水量来确定;土壤蒸发蒸腾量可以根据土壤类型、土壤水分状况、气候条件等因素来确定。
在定性计算中,作物灌溉需水量的计算公式一般可以表示为:作物灌溉需水量 = 作物蒸腾蒸发量×系数。
其中,系数可以根据作物的生长期和生长阶段的需水量来确定。
系数一般可以分为生育期系数和生长期系数两种。
生育期系数是指作物在不同生长期的需水量与全生育期需水量的比值;生长期系数是指作物在不同生长阶段的需水量与全生长期需水量的比值。
在实际应用中,作物灌溉需水量的计算公式一般是根据作物的生长期和生长阶段的需水量来确定的。
在确定作物的生长期和生长阶段的需水量时,一般可以根据作物的生长特性、气候条件、土壤水分状况等因素来确定。
在确定作物的生长期和生长阶段的需水量时,一般可以根据作物的生长特性、气候条件、土壤水分状况等因素来确定。
利用彭曼公式计算作物需水量作物需水量的计算方法很多,过去常采用经验公式,即采用主要气象因子与作物需水量的经验关系进行估算,误差较大.近年来,国内外采用较多的是利用彭曼公式计算作物需水量,即通过采用参考作物需水量ETO与作物系数KC的计算方法.彭曼公式理论基础可靠,计算精度较高,但计算较复杂.本文简要介绍利用彭曼公式计算作物需水量的方法和过程.一,计算参考作物需水量参考作物在供水充足条件下的需水量彭曼公式为:.一A.R+EEToF’式中各项的意义及确定方法如下:(一)FPo?A因子式中,P.为海平面标准大气压,kPa;P为计算地点的实际气压,kPa;A为饱和水汽压一温度曲线上的斜率;为湿度计常数,kPaFC.已知计算点的海拔高度及气温,便可方便地从农田水利学课本或有关规范的附表中查得?令.(二)净辐射因子RR为达到地表的净辐射,可以用辐射平衡表直接测量.没有直接测量数据时,可以用下式计算:尼=凡一尼o1.净短波辐射:凡=0.75(Ⅱ+6)几兄为大气外圈接收阳光的辐射,可根据计算点的纬度从地平面大气边缘太阳辐射表中查出不同月份的兄值.用H代表0.75(.+b等),N值为不同月份天文上可能出现的最大日平均日照时数,它决定于纬度的多少,n为当地实际日照时间,温带地区a值为0.18,b值为0.55.有了H值便可算得到达地表的净波辐射能量R:HR..2.净长波辐射损失:R:(0.56—0.079)在大气层和地表之间有长波辐射存在,通常从大气层向地表的长波辐射量小于从地表向大气层的长波辐射量,二者之差即为净长波损失掉的能量,其大小与黑体辐射量,实际水气压ed和n/N值有关.在黑体辐射量中,or为斯提芬一保勒斯曼常数,可取0.2,为绝对温度,=T+273.有了温度,可以计算或从黑体辐射量表中查得or值,以mm/d表示.实际水气压e,通常各气象站都有实测记录.如无实测记录,可间接计算而得.根据平均相对湿度Rh计算,即ed=eb×肋…其中e为饱和水气压,从饱合水气压与温度关系表中查得不同温度下的e值.(三)干燥力因子=0.26(1+Bu2)(et,一ed)式中前半部分谓之风函数,(u),F(Ⅱ)=0.26(1+Bu2)式中u:是离地面2m高处的风速,以m/s计.我国各气象站的风速值大多为风标高处的风速,需乘以0.75后改正为2m高处的风速”:.B为风速改正系数,在日最低气温平均值大于5qC且日最高气温与日最低气温之差的平均值大于12℃时,B=0.7一0.265,其余条件下,B=0.54.式中后半部分谓之饱和差,以d表示(d=e6一ed).有些气象站已有饱和差观测记录,可以直接利用;如无d值记录,可依据前面的方法分别求得e及e值,再算出d值.在分别得出譬?令,R及E,后,即可由E式计算出ETo值来.‘二,计算实际作物需水量参考作物蒸发蒸腾是相对于一定的参照面而言的,并不能代表实际农田的蒸发蒸腾量.通常把某一时段作物实际蒸发蒸腾(ETC)与参考蒸发蒸腾(ET.)之比称为作物系数(Kc).作物需水量的计算公式是:ETc=Kc×E.式中:ETo为参考作物蒸发蒸腾量;K为综合作物系数,与作物种类,品种,生育期和作物的群体叶面管良技术服务积指数等因素有关,是作物自身生物学特性的反映.K可由当地或邻近灌溉试验站取得,或从作物需水量等值线图中查得.30亩以上的灌区宜按下式计算:Kc=a+bLAI式中:a,b为经验系数,可取当地或邻近灌溉试验站试验资料, LAI为叶面积指数.?47?利用彭曼公式计算作物需水量口刘明。
第二章作物需水量与灌溉用水量§1 作物需水量一、作物田间水分的消耗(三种途径:叶面蒸腾、棵间蒸发和深层渗漏)叶面蒸腾:作物植株内水分通过叶面气孔散发到大气中的现象;棵间蒸发:植株间土壤或水面(水稻田)的水分蒸发;深层渗漏:土壤水分超过了田间持水率而向根系以下土层产生渗漏的现象。
解释:棵间蒸发能增加地面附近空气的湿度,对作物生长环境有利,但大部分是无益的消耗,因此在缺水地区或干旱季节应尽量采取措施,减少棵间蒸发(如滴灌<局部灌溉>、水田不建立水层)和地面覆盖等措施。
深层渗漏对旱田是无益的,会浪费水源,流失养分,地下水含盐较多的地区,易形成次生盐碱化。
但对水稻来说,适当的深层渗漏是有益的,可增加根部氧分,消除有毒物质,促进根系生长,常熟、沙河、涟水等灌溉试验站结果都表明:有渗漏的水稻产量比无渗漏的水稻产量高3.9% ~26.5%。
叶面蒸滕量+棵间蒸发量=腾发量=作物田间需水量水田:田间需水量+渗漏量=田间耗水量由于水田不同土壤渗漏量大小差别很大,为了使不同土质田块水稻需水具有可比性,因此水稻的田间需水量不包括渗漏量,如计入渗漏量,则称为田间耗水量。
二、作物需水规律(一)影响作物需水量的因素1、气象条件主要因素,气温高、日照时间长、空气湿度低、风速大、气压低等使需水量增加;2、土壤条件含水量大,砂性大,则需水量大(棵间蒸发大)3、作物条件水稻需水量较大,麦类、棉花需水量中等,高粱、薯类需水量较少;4、农业技术措施地面覆盖、采用滴灌、水稻控灌等能减少作物需水量。
(二)作物需水特性1、中间多,两头少;开花结实期需水量最大2、存在需水临界期需水临界期:在作物全生育期中,对缺水最敏感,影响产量最大的时期。
几种作物的需水临界期:水稻孕穗至开花期棉花开花至幼铃形成期小麦拨节至灌浆期了解作物需水临界期的意义:1、合理安排作物布局,使用水不至过分集中;2、在干旱情况下,优先灌溉正处需水临界期的作物。
作物需水量和灌溉制度讲解作物需水量是指水分需求与作物生长发育阶段、气候环境和土壤类型等因素相结合的结果。
农作物对水分有不同的需求,在其生命周期中分为不同的生长阶段,每个阶段对水分的需求量也不同。
在农业生产中,作物需水量的准确测定对农业灌溉具有重要意义。
1.土壤水分平衡法:通过测定作物生长期内土壤水分的变化,从而计算出作物需水量。
2.蒸散发法:通过测定作物蒸腾量和蒸发量,计算作物需水量。
3.植株生理法:通过测定作物的生理指标,如根系水势、叶片蒸腾速率等,计算出作物需水量。
4.气象数据法:根据气象数据和作物需水系数,计算出作物需水量。
作物需水量的测算结果,通常以作物耗水量(ETc)来表示。
作物耗水量包括作物蒸腾量和作物蒸发量两部分。
其中,作物蒸腾量是指作物根系经过气孔排出的水汽量,是作物所需的有效灌溉水量;作物蒸发量是指作物表面水分的排出量,主要受气温、相对湿度和风速等气象因素的影响。
灌溉制度是根据作物需水量的测算结果,制定的合理灌溉方案。
灌溉制度的主要目的是提高灌溉水的利用效率,减少水分的浪费。
其中,灌溉定额是灌溉制度的核心部分,指在一定的灌溉面积上,向作物供给的灌溉水量。
灌溉定额的制定应综合考虑作物需水量、土壤水分状况、水源供给能力等因素。
常用的灌溉制度有以下几种:1.定时定量灌溉制度:按照一定的时间和数量进行灌溉,如按照一周定时定量地进行灌溉。
2.枯水轮灌制度:根据土壤水分不足的程度,适时进行灌溉,以保证作物生长发育的需要。
3.土壤水分监测灌溉制度:通过监测土壤水分状况,根据不同的需水量进行灌溉,实现精确灌溉。
4.下垂管灌溉制度:采用下垂式输水管灌溉的方式,减少水分的蒸发和损失。
在具体实施灌溉制度时,还需要考虑水源供给能力、灌溉设施条件、作物的特性等因素,综合考虑灌溉的经济效益和环境保护的要求。
综上所述,作物需水量和灌溉制度是农业生产中重要的内容。
准确测定作物需水量,并制定合理的灌溉制度,可以提高灌溉效率,减少水资源的浪费,实现农业的可持续发展。
作物需水模比系数作物需水模比系数是衡量作物水分需求与实际供水量之间关系的的一个重要指标,它在农业生产中具有重要的应用价值。
了解作物需水模比系数,有助于我们更好地掌握作物对水分的需求,为农业生产提供科学依据。
一、作物需水模比系数的概念与意义作物需水模比系数是指作物蒸发量与作物实际供水量之间的比值。
这个系数可以帮助我们了解作物在不同水分条件下的生长状况,预测作物干旱风险,并为节水灌溉提供依据。
二、作物需水模比系数的计算方法作物需水模比系数的计算公式为:作物需水模比系数= 作物蒸发量/ 作物实际供水量。
其中,作物蒸发量可通过观测或模型计算获得,作物实际供水量可通过田间试验或遥感技术等手段获取。
三、作物需水模比系数在农业生产中的应用1.节水灌溉:根据作物需水模比系数,制定合理的灌溉制度,避免过度灌溉导致的资源浪费和环境污染。
2.干旱预警:通过监测作物需水模比系数,可以及时发现作物干旱风险,为抗旱保产采取措施提供依据。
3.水资源管理:结合作物需水模比系数,合理配置水资源,提高水资源利用效率。
四、提高作物水分利用效率的途径1.选用节水品种:选用需水量较低、水分利用效率较高的作物品种,降低作物对水分的需求。
2.改进灌溉方式:采用滴灌、喷灌等节水灌溉技术,减少水的浪费。
3.调整灌溉制度:根据作物需水规律,制定合理的灌溉制度,避免过度灌溉。
4.覆盖栽培:利用覆盖材料减少土壤水分蒸发,降低作物水分需求。
五、作物需水模比系数在节水灌溉中的作用作物需水模比系数可以反映作物水分需求与实际供水量的关系,为节水灌溉提供理论依据。
通过监测作物需水模比系数,可以根据作物实际需水情况调整灌溉水量,实现精准灌溉,提高水资源利用效率。
六、我国作物需水模比系数的研究现状与展望近年来,我国在作物需水模比系数研究方面取得了显著成果,建立了一系列计算模型,积累了大量的观测数据。
然而,由于作物种类繁多、生长环境各异,作物需水模比系数的研究仍有待进一步深入。
简述作物需水量的估算方法嘿,咱今儿个就来讲讲作物需水量的估算方法,这可真是个有意思的事儿呢!咱先来说说为啥要估算作物需水量呀。
这就好比咱人每天得喝一定量的水来保持健康,作物也一样呀,它们也得有足够的水才能茁壮成长呢!要是水给少了,那它们可能就长不好,产量就上不去啦,那咱农民伯伯不就白忙活啦!所以搞清楚它们到底需要多少水,那可太重要啦。
那怎么估算呢?有一种方法就像咱过日子得算计着花钱一样,得根据作物的生长阶段来算。
就像小孩长身体的时候吃得就多,作物在不同阶段对水的需求也不一样呀。
比如刚发芽的时候可能需要得少点,等长到开花结果的时候,那用水量可就蹭蹭往上涨啦!这就像咱跑步,刚开始跑的时候不怎么累,跑久了就大口喘气要喝水啦。
还有啊,天气也是个重要因素呢。
大热天的,太阳火辣辣的,那水分蒸发得快呀,作物就得多喝水来解渴。
就好比咱夏天在外面跑一圈,回来肯定得大口喝水。
要是赶上下雨天,那可能就不用浇那么多水啦,作物自己就能从雨水里吸收不少呢。
土壤也很关键哦!有的土壤就像海绵一样能存好多水,有的就不行,水一下就流走啦。
这就好像有的杯子大,能装好多水,有的杯子小,装一点就满了。
所以不同的土壤,给作物供水的情况也不一样呢。
咱再说说作物本身的种类吧。
有些作物就像“大胃王”,特别能喝水,比如水稻;有些就比较“节约”,像小麦啥的。
这就跟人一样,有的人爱喝水,有的人就不怎么爱喝。
那估算出来了,咱就得想办法满足作物的需求呀。
就像咱知道自己饿了,就得找吃的去。
浇水的时候也得注意,不能一股脑全倒下去,就跟人吃饭也不能一下子吃太多一样,得恰到好处。
哎呀,这作物需水量的估算方法真的挺重要呢!咱农民伯伯要是能掌握好,那就能种出更好的庄稼,有更好的收成啦!咱的饭碗也就更有保障啦!咱可得好好重视起来,可别小瞧了这些看似简单的方法哦!大家说是不是这个理儿呀!。
作物需水量计算方法嘿,咱今儿个就来唠唠作物需水量计算方法这档子事儿。
你想想啊,作物就跟咱人似的,得喝水才能长得好呀。
那怎么知道它们到底需要多少水呢?这可得好好琢磨琢磨。
咱先来说说直接测量法。
就好比咱直接去看看作物喝了多少水,这可是最直观的办法啦。
可以用一些专门的仪器设备,像什么蒸渗仪之类的,来精确地测量出作物到底消耗了多少水分。
这就好像咱每天记录自己喝了几杯水一样,清楚明白得很呢!还有一种叫经验公式法。
哎呀呀,这就有点像咱生活中的一些小窍门儿。
通过长期的观察和积累,总结出一些公式来估算作物需水量。
比如说根据作物的种类啦、生长阶段啦、气候条件啦等等因素,套进公式里就能算出个大概来。
就好像咱知道了自己的身高体重,能大概估摸出穿多大码的衣服一样。
再说说水量平衡法。
这就好比是一个大账本,把进来的水和出去的水都算得清清楚楚。
作物吸收的水,加上土壤蒸发掉的水,再加上其他一些损失的水,等于进来的水,比如降水、灌溉水这些。
这样一对比,不就知道作物大概需要多少水了嘛。
咱举个例子啊,种玉米的时候,要是不搞清楚它需要多少水,乱浇水或者浇少了水,那玉米能长得好吗?肯定不行呀!所以这计算方法可重要了呢。
那为啥要这么在意作物需水量的计算呢?这不是明摆着的嘛!水可是生命之源呀,作物没了合适的水,就跟咱人没饭吃一样,能有好气色吗?能茁壮成长吗?肯定不能呀!只有知道了它们需要多少水,咱才能更好地照顾它们,让它们结出又大又饱满的果实来。
而且呀,这计算方法还能帮咱节约用水呢!可别小瞧了这一点,水可不是取之不尽用之不竭的。
要是都乱浇水,浪费了多少水资源呀!通过准确计算,咱就能恰到好处地给作物供水,既不浪费水,又能让作物长得好好的。
总之呢,作物需水量计算方法可不是什么花架子,那是实实在在有用的东西。
咱种地的农民伯伯们可得好好掌握,这样才能种出好庄稼,有个好收成呀!这可不就是咱都希望看到的嘛!所以说呀,这作物需水量计算方法,咱可得重视起来,好好研究研究,让咱的土地变得更加肥沃,让咱们的生活因为这些丰收的果实而更加美好!。
曼法计算作物需水量"灌溉与排水工程设计规〔GB50288-99〕"附录中对曼法作了介绍,"规"推荐的是Penman-FAO方法,近年来Penman-Monteith方法得到重视,建议在计算时同时采用这两种方法,并作一比拟。
〔1〕计算参照作物需水量Penman-FAO方法计算参考作物需水量的根本公式如下:〔1〕式中,——标准大气压,=1013.25hPa;——计算地点平均气压,hPa;——平均气温时饱和水汽压与温度相关曲线的斜率,hPa/℃;——湿度计常数,=0.66hPa/℃;——太阳净辐射,以所能蒸发的水层深度计,mm/d;——枯燥力,mm/d。
可根据计算地点高程及气温从气象图表中查得,或按公式〔2〕直接计算数值:〔2〕式中,——计算地点海拔高程,m;——阶段平均气温,℃。
可按公式〔3〕或〔4〕,即气象学中的马格奴斯公式计算,即:〔3〕或〔4〕式中,饱和水汽压,hPa。
可按下式计算:〔5〕或〔6〕可按公式〔7〕计算:〔7〕式中,——大气顶层的太阳辐射,可由"喷灌工程设计手册"查得,mm/d;、——计算净辐射的经历系数,可由"喷灌工程设计手册"查得;——实际日照时数;——最大可能日照时数,可由"喷灌工程设计手册"查得;;——黑体辐射,mm/d;——斯蒂芬-博茨曼常数,可取2.01×10-9mm/℃4·d;——绝对温度,可取273+;——实际水汽压,可从当地气象站取得,或取饱和水汽压与相对湿度的乘积,hPa。
可按公式〔8〕计算:〔8〕式中,——地面以上2m处的风速(m/s),其它高度的风速应换算为2m高处风速;——风速修正系数。
如果利用气象站的地面以上10m处的风速资料时,需乘以(2/10)0.2,换算为2m高的风速。
在日最低气温平均值大于5℃且日最高气温与日最低气温之差的平均值大于12℃时,;其余条件下,。
作物需水量的计算方法
农作物需水量的计算是农业生产中很重要的一环,有利于更好地实现合理的灌溉管理,避免过量灌溉。
农作物需水量的计算具体方法如下:
1、从气象因子出发:计算农作物需水量时,首先分析当地的气象数据。
在农作物种植期内,需要计算种植期内可能出现的最高太阳辐射量、最大降水量、日照时间、空气湿度等各气象因子。
2、从作物特征出发:根据作物种植地、土质特性及土处理状况,得出土壤水分概念,对作物品种特性进行分析评价。
3、从土壤水利用量出发:根据作物品种的生长特性,可计算出每一植株的土壤水利用量。
4、根据种植密度及灌溉管理方案计算:根据作物的种植密度及灌溉管理方案计算出作物总的需水量。
总的来说,农作物需水量的计算需要从气象因子、作物特征、土壤水利用量及灌溉管控方案几个方面考虑,综合计算出农作物及作物种植地质况所需的水量,以更优的节水方式来灌溉农作物,是农业生产必不可少的技术保障。
二、通过计算参照作物需水量来计算实际作物需水量的方法近代需水量的理论研究表明,作物腾发耗水是通过土壤—植物—大气系统的连续传输过程,大气、土壤、作物三个组成部分中的任何一部分的有关因素都影响需水量的大小。
根据理论分析和试验结果,在土壤水分充分的条件下,大气因素是影响需水量的主要因素,其余因素的影响不显著。
在土壤水分不足的条件下,大气因素和其余因素对需水量都有重要影响。
目前对需水量的研究主要是研究在土壤水分充足条件下的各项大气因素与需水量之间的关系。
普遍采取的方法是通过计算参照作物的需水量来计算实际需水量。
相对来说理论上比较完善。
所谓参照作物需水量ET o 是指土壤水分充足、地面完全覆盖、生长正常、高矮整齐的开阔(地块的长度和宽度都大于200m )矮草地(草高8~15cm )上的蒸发量,一般是指在这种条件下的苜蓿草的需水量而言。
因为这种参照作物需水量主要受气象条件的影响,所以都是根据当地的气象条件分阶段(月和旬)计算。
有了参照作物需水量,然后再根据作物系数k c 对ET o 进行修正,即可求出作物的实际需水量ET ,作物实际需水量则可根据作物生育阶段分段计算。
(一)参照作物需水量的计算在国外,对于这一方法的研究较多,有多种理论和计算公式。
其中以能量平衡原理比较成熟、完整。
其基本思想是:将作物蒸发看作能量消耗的过程,通过平衡计算求出腾发所消耗的能量,然后再将能量折算为水量,即作物需水量。
作物腾发过程中,无论是体内液态水的输送,或是田间腾发面上水分的汽化和扩散,均需克服一定阻力。
这种阻力越大,需要消耗的能量也越大。
由此可见,作物需水量的大小,与腾发消耗能量有较密切的关系。
腾发过程中的能量消耗,主要是以热能形式进行的,例如气温为25℃时,每腾发1克重的水大约需消耗的能量。
如果能在农田中测算出腾发消耗的总热量,便能由此推算出相应的作物需水量数值。
作物腾发所需的热能,主要是由太阳辐射供给。
所以能量平衡原理,实际上是计算“土壤—作物—大气”连续系统中的热量平衡。
彭曼法计算作物需水量《灌溉与排水工程设计规范(GB50288-99)》附录中对彭曼法作了介绍,《规范》推荐的就是Penman-FAO方法,近年来Penman-Monteith 方法得到重视,建议在计算时同时采用这两种方法,并作一比较。
(1)计算参照作物需水量Penman-FAO方法计算参考作物需水量的基本公式如下:(1)式中,——标准大气压,=1013、25hPa;——计算地点平均气压,hPa;——平均气温时饱与水汽压与温度相关曲线的斜率,hPa/℃;——湿度计常数,=0、66hPa/℃;——太阳净辐射,以所能蒸发的水层深度计,mm/d;——干燥力,mm/d。
可根据计算地点高程及气温从气象图表中查得,或按公式(2)直接计算数值:(2) 式中,——计算地点海拔高程,m;——阶段平均气温,℃。
可按公式(3)或(4),即气象学中的马格奴斯公式计算,即:(3)或(4)式中,饱与水汽压,hPa。
可按下式计算:(5)或(6)可按公式(7)计算:(7)式中,——大气顶层的太阳辐射,可由《喷灌工程设计手册》查得,mm/d;、——计算净辐射的经验系数,可由《喷灌工程设计手册》查得;——实际日照时数;——最大可能日照时数,可由《喷灌工程设计手册》查得;;——黑体辐射,mm/d;——斯蒂芬-博茨曼常数,可取2、01×10-9mm/℃4·d;——绝对温度,可取273+;——实际水汽压,可从当地气象站取得,或取饱与水汽压与相对湿度的乘积,hPa。
可按公式(8)计算:(8)式中,——地面以上2m处的风速(m/s),其它高度的风速应换算为2m高处风速;——风速修正系数。
如果利用气象站的地面以上10m处的风速资料时,需乘以(2/10)0、2,换算为2m高的风速。
在日最低气温平均值大于5℃且日最高气温与日最低气温之差的平均值大于12℃时, ;其余条件下,。
(2)计算作物实际需水量作物实际需水量可由参考作物潜在腾发量与作物系数计算(9)式中:——作物潜在腾发量,mm / d ;——参照腾发量,mm/d;——作物系数。
彭曼法计算作物需水量
《灌溉与排水工程设计规范(GB50288-99)》附录中对彭曼法作了介绍,《规范》推荐的是Penman-FAO方法,近年来Penman-Monteith 方法得到重视,建议在计算时同时采用这两种方法,并作一比较。
(1)计算参照作物需水量
Penman-FAO方法计算参考作物需水量的基本公式如下:
(1)
式中,——标准大气压,
=1013.25hPa;
——计算地点平均气压,hPa;
——平均气温时饱和水汽压与温度相关曲线的斜率,hPa/℃;
——湿度计常数,=0.66hPa/℃;
——太阳净辐射,以所能蒸发的水层深度计,mm/d;
——干燥力,mm/d。
可根据计算地点高程及气温
从气象图表中查得,或按公式(2)直接计算
数值:
(2)式中,——计算地点海拔高程,m;
——阶段平均气温,℃。
可按公式(3)或(4),即气象学中的马格奴斯公式计算,即:
(3)
或
(4)
式中,饱和水汽压,hPa。
可按下式计算:
(5)
或
(6)
可按公式(7)计算:
(7)
式中,——大气顶层的太阳辐射,可由《喷灌工程设计手册》查得,mm/d;
、
——计算净辐射的经验系数,可由《喷灌工程设计手册》查得;
——实际日照时数;
——最大可能日照时数,可由《喷灌工程设计手册》查得;;
——黑体辐射,mm/d;
——斯蒂芬-博茨曼常数,可取2.01×10-9mm/℃4·d;
——绝对温度,可取273+;
——实际水汽压,可从当地
气象站取得,或取饱和水汽压与相对湿度的乘积,hPa。
可按公式(8)计算:
(8)
式中,——地面以上2m处的风速(m/s),其它高度的风速应换算为2m高处风速;
——风速修正系数。
如果利用气象站的地面以上10m处的风速资料时,需乘以
(2/10)0.2,换算为2m高的风速。
在日最低气温平均值大于5℃且日最高气温与日最低气温之差的平均值
大于12℃时,;其余条件下,。
(2)计算作物实际需水量
作物实际需水量可由参考作物潜在腾发量和作物系数计算
(9)
式中:——作物潜在腾发量,mm / d ;
——参照腾发量,mm/d;
——作物系数。
其中:
彭曼公式是国内外应用最普遍的综合法
公式,它引入干燥力的概念,经过简洁的推导,得到一个用普
通气象资料就可计算作物需水量的公式。
彭曼公式是统一标准计算方
法,无需进行地区率定和使用当地的风速函数,同时也不用改变任何参数即可适用于世界各地区,估值精度较高且具备良好的可比性,是最适宜的作物需水量计算方法。
研究方法研究涉及的气象因子包括:日最高温度、日最低温度、日
平均风速、太阳辐射量以及相对湿度即计算ET0需要四项气象因子的数据:气温(包括最高和最低气温)、湿度、风速、太阳辐射或日照。
经过大量的研究,国际上推荐采用
FAO56 Penman-Montieth公式计算参考作物的蒸散量我们亦采用
FAO56 Penman-Montieth公式的计算结果作为模型的预期输出值,同
时将模拟结果与Priestley-Talor、Hargreaves公式的计算结果进行对比。
FAO56 Penman-Monteith
公式的表达形式为:
Hargreaves
公式:
Priestley-Taylor
公式
4. 1 VB中的调用
打开VY 6. 0,新建一个工程,在“引用“对话框中加载“组件文件,即可创建对象,并进行赋值计算。
主要WRCCML"
代码如下:
4.2 EXCEL中的调用
新建一个EXCEL.工作薄文件,打开“Vi、二!Yasic编辑器”,在“引用”对话框中加载“W RCCMI.”组件文件,即可通过表单控件、自定义加载宏等方式创建对象,进行单元格调用,并
保存计算结果。
下面以表单命令按钮方式加以说明。
假如当前表单中 1 }- 8列中数据分别为日期、平均气温、最高气温、最低气温、平均相对湿度、最小相对湿度、平均风速、日照时数,第9列存放计算结果,第一行为标题,共一年的日气象
资料,其他参数同VY例。
在表单中建立一个
"CommandButtonl”命令按钮后,则代码如下:。