实用文档之喇叭扬声器设计与制作分析
- 格式:doc
- 大小:24.51 KB
- 文档页数:27
扬声器设计指导书1. 扬声器常用国家标准GB/T9396-1996 《扬声器主要性能测试方法》GB/T9397-1996 《直接辐射式电动扬声器通用规范》GB9400-88 《直接辐射式扬声器尺寸》GB7313-87 《高保真扬声器系统最低性能要求及测量方法》GB12058-89 《扬声器听音试验》2. 扬声器T/S参数:磁力系数BL额定阻抗Z n om电气品质因数Qes机械品质因数Qms总品质因数Q ts等效容积V as共振频率 F o额定正弦功率P sin额定噪功率P nom长期最大功率P max额定频率范围F-F ho平均声压级SPL3. 扬声器主要零部件尺寸设计3.1扬声器口径扬声器口径必须符合客户要求,若客户没有具体要求,则优先采用国家标准GB9400 《直接辐射式扬声器尺寸》。
3.2支架支架外形尺寸及安装尺寸应能满足客户需要,除此之外还需考虑鼓纸、弹波、华司等寸选择与配合问题,一般大功率低频率的扬声器要求支架有效高、底高、弹波接着径华司铆接径等均较大。
3.3磁体磁体尺寸优选常用系列值,具体尺寸需按性能要求确定。
常用铁氧体尺寸:32*18*6,35*18*6,40*19*8,45*22*8,50*22*8,55*25*8,60*25*8,60*32*8,65*32*10,70*32*10,80*40*15,90*40*15,100*45*18,100*60*20,110*60*20120*60*230*60*20,140*62*20,145*75*20,156*80*20,180*95*20,220*110*20常用标准:SJ/T10410-93 《永磁铁氧体材料》3.4音圈音圈中孔尺寸优选常用系列值,具体尺寸(如卷宽、线径)需按性能要求确定,骨架高还需考虑到与鼓纸、支架的配合。
常用音圈中孔尺寸:13.3 14.3 14.7 15.4 16.3 18.4 19.4 20.4 25.5 25.9 30.5 35.538.644.5 49.5 50.5 65.5 75.5 80.0 100.0 127.03.各种零件的尺寸配支架、磁体、音圈等零件的主要尺寸确定后,其它零件的主要尺寸选择余就受到限制,因为各种零件的尺寸必须相互配合,同时其性能参数也要相配合3.5. 支架与鼓鼓纸外缘与支架胶合面一般需大2 mm微型扬声器不受此限制,鼓纸外径必须小于支架内1m 以上,鼓纸次外径不能小支架次外3mm 以上、也不能大于支架次外2 mm以上,鼓有效高必须小于支架有效0.5 mm以上3.5. 支架与弹弹波外缘与支架胶合面一般需大2mm,弹波外径必须小于支的弹波接着0.5 mm以上弹波有效高必须小于支架有效高与鼓有效高的差0.5 mm以上3.5. 支架与华配合尺寸主要取决于支架与华司的铆接工艺,总的要求铆接应牢固内铆支架尤其要注意材料厚度学资学习网3.5. 音圈与鼓鼓纸中孔尺寸一般要大于音圈骨架外0.0.9 mm小口径小圈取值小些3.5. 音圈与弹弹波中孔尺寸一般大于音圈骨架外0.0.4 mm太大会漏胶小难装配3.5. 音圈音圈中孔尺寸一般大铁中柱外0.0.6 mm小音圈取值相小些3.5. 音圈与华华司中孔尺内铆的为铆后尺一般要大于音圈最大外为绕部)0.0.6 mm间隙太小容易碰圈影响到装配合格率间隙大又会降低磁性能、从而导致灵敏度下降3.5. 鼓纸与弹鼓纸中孔与弹波中孔的距离,中小口径的扬声器0.2 mm为佳,距离大些定位效果会更好、更能承mm5大口径可以加大到.4. 扬声器关键零部件的性能设计4.1磁路4.1.1磁路设计的目的与方法磁路设计的目的主要有两种:一是给定磁体规格(已知材料性能和尺寸),设计出磁路纟构,使其工作气隙磁感应密度B值为最大,B值的大gg小对扬声器的灵敏度及电气品质数Q影响很大;二是给定B值,ges设计出磁路结构,使所用磁体尺寸为最小,从而达至约成本的目的。
扬声器系统设计与应用分析扬声器系统设计与应用分析扬声器不光起到扩声的作用,同时还能协调音质,达到完美和音的功能,为保证扬声器系统的正常使用,下面是由店铺为大家分享扬声器系统设计与应用分析,欢迎大家阅读浏览。
一、工程设计时考虑要周到扬声器系统要高质量的重放各种音乐节目,那么根据音乐信号的特点,动态范围达45dB以上,交响乐的动态范围甚至超过60dB,其频率范围从40Hz~15000Hz,谐波成分夫复杂,音乐丰富多采。
因此舞台上演出音乐时,就要注意使用的扩声设备能否保持其原有音色,要具有相应的宽频率和较小的谐波失真,更要有足够的功率余量,以表达和满足音乐高潮到来的气氛。
从保证音质这个角度来说,功放应在此动态范围内不发生任何限幅情况,即功放的最大输出功率应是扬声器额定功率的3倍~4倍,这样的功率配置音质故然很好,但其投资也会增加。
有鉴于此,在工程设计阶段,通常会把这个功率配比定在扬声器额定功率的1.5倍-3倍。
1、最低配比在一些技术要求不高,而资金不富裕的工程,功放的功率为音箱的额定功率的1倍。
但要非常注意保持声音不失真。
功放功率过小时,每留有功率余量,输入信号增大就容易产生过载削波失真,输出功率信号就会产生大量高次谐波和直流分量。
高次谐波较多时会造成高音单元的烧毁,直流分量较多时会损坏音箱的低音单元;2、中档配比一般工程建议功放的功率为扬声器的额定功率的1.5倍~2倍。
而低音部分还要更大些,这样才能获得足够的力量感;3、高档配比要求较高的场所,例如音乐厅、剧场等,功放功率至少应为音箱功率的2.5倍;4、选用带有保护功能的扬声器系统目前许多新型扬声器系统采取了多种保护性措施,这些措施可分为两种:一类是提高扬声器单元的.散热力,使其在过载时不发生过热损坏;另一类是在扬声器箱中安装限幅保护装置,当驱动功率和峰值电平超过扬声器的额定值时,限幅器把超过的功率电平用非线性电阻(灯泡)对音圈进行阻止。
这些措施,提高了扬声器抗过载的能力,但也影响了声音的动态范围,使音域不够宽广,音色感觉模糊和暗淡;5、使用压限制器此设备通常用于自动控制那些过高和突发的高电平信号,限制功放输入功率的突然增加,以避免对系统设备(如扬声器和功放)造成损害,同时也能减缓声音信号的大幅度失真。
扬声器的制作方法扬声器是一种能将电信号转化为音频信号的电子设备。
作为现代通讯和娱乐领域中必不可少的一种设备,扬声器的应用范围十分广泛,涵盖了音响和影音系统、手机和电视等等。
在本文中,我将为大家介绍一下扬声器的基本制作方法及注意事项。
1. 零部件准备扬声器的主要零部件包括振膜、音圈、磁铁、支撑架和固定螺钉等。
在制作扬声器前,首先需要准备好这些所需的零部件以及工具。
2. 安装振膜先要将振膜固定在一个合适的支撑上,接下来就可以把振膜放入扬声器的移动部分中,通常称为音圈。
振膜的大小要与音圈的尺寸一致。
3. 安装音圈现在需要将音圈安装在振膜上,确保它与振膜完全贴合。
这一步需要非常仔细,因为不良的贴合可能会导致扬声器的失真。
4. 安装磁铁内置磁铁的扬声器的磁力非常强,因此需要像金属板一样的强结构来支持它。
在安装磁铁之前,先要将扬声器的边缘侧结构固定好,这样磁铁与之间的空间就相应缩小了。
5. 安装支撑架和螺钉支撑架是用于固定磁铁的组件,而螺钉则用于固定支撑架和其他零部件。
在安装扬声器时,我们需要确保螺钉不仅适合结构,而且足够坚固,以确保所有零部件都固定在一起。
6. 聚焦调整安装完所有零部件后,需要进行细微的调整,以确保扬声器达到最佳的声音效果。
调整包括初始支架位置、磁铁的定位和方向等等。
总的来说,要制作一个优质的扬声器需要非常注意各种细节。
如果以上的步骤没有正确地完成,所制作的扬声器可能会存在大量的声音失真或其他问题。
此外,制作扬声器时还需要考虑关键的参数,例如尺寸、材料和结构等等。
正确地调整这些参数,才能使扬声器达到最佳的声音效果。
最后,要制作优质的扬声器需要具备专业的技术和经验。
大家可以在专业的音响领域里找到合适的制作方法和建议。
除了这些,良好的设计和细心的制作也是制作高品质扬声器的关键。
希望这篇文章对大家在制作扬声器时有所帮助。
简易扬声器制作方法引言扬声器是通过将电能转换为声能来放大和产生声音的设备。
它在各个领域都得到广泛应用,例如音响系统、电视、手机等。
在本文中,我们将介绍一种简易的扬声器制作方法,旨在帮助读者了解扬声器的基本原理以及如何制作一个简单的扬声器。
扬声器的原理扬声器的原理基于电磁感应:通过在磁场中放置一个电流通的线圈(线圈也称为扬声器的“音圈”),当音频电信号通过线圈时,会在磁场中产生变化。
这种变化会导致线圈周围的磁场发生变化,从而产生一个力,使得线圈振动,并通过与线圈相连的驱动盆(马达)传递声音。
材料准备在制作简易扬声器之前,我们需要准备以下材料:•一个塑料杯•一片薄塑料膜(如保鲜膜)•铜线•磁铁•纸板•双面胶•胶带•音频电源(如手机或音乐播放器)制作步骤步骤 1:准备音圈1.将薄塑料膜剪成一个正方形,边长稍大于塑料杯的直径。
2.将薄塑料膜固定在纸板上,使用双面胶和胶带使其紧贴于纸板上。
3.在薄塑料膜的四个角落切四个小孔。
4.将铜线通过薄塑料膜的一个小孔,并用胶带固定。
步骤 2:制作驱动盆1.将磁铁固定在塑料杯底部,使用胶带或双面胶将其固定在杯底。
2.在驱动盆的边缘切一些小孔,并将其中的一个孔与铜线连接。
步骤 3:组装扬声器1.将音圈轻轻放在塑料杯的边缘上,确保线圈与磁铁之间有一定的间隙。
2.使用胶带或胶水将音圈固定在塑料杯上,使其保持稳定。
步骤 4:连接音源1.将音源(如手机或音乐播放器)与线圈连接,确保连接稳固。
2.播放音乐或其他音频文件,并调整音量。
使用和注意事项•由于这是一个简易的扬声器制作方法,声音质量可能不如专业音响设备。
•在使用前,请确认线圈和音源的连接稳固,并避免使用过高的音量。
•请小心处理磁铁,避免损坏或吸铁物品。
•避免扬声器接触水或潮湿的环境。
结论通过本文,我们了解了简易扬声器的制作方法,并学习了扬声器的基本原理。
虽然这种简易扬声器可能无法与专业音响设备媲美,但它可以作为一个有趣的DIY项目,帮助我们更好地理解扬声器的工作原理。
声学和扬声器基础知识教学大纲一、要求:掌握音频声学的基础理论和电\磁\机械学中与喇叭有关的基本知识,了解扬声器测试的要求和T/S参数的计算的原理和方法.二、文化基础要求:高中三、内容与学时安排:第一章音频声学基础1.1 声波的产生1.2 描述声学的物理量1.3 声级,分贝及运算1.4 声波的传播特征第二章人耳听觉特征2.1 响度与频响曲线2.2 音调与倍频音程2.3 音色2.4 波的分解,付氏解析法2.5 失真与失真察觉2.6 哈斯效应2.7 屏蔽效应第三章电、磁、机械振动基础3.1 电学基础知识3.2 磁场与电磁感应3.3 交流电路中的电容3.4 交流电路中的电感3.5 复阻抗3.6 谐振电路3.7 机械振动3.8 电机类比第四章扬声器结构与参数测试4.1 喇叭结构,名称(磁场,间隙,短路环,音圈,锥盒,指向性,防尘帽,音架,弹波,边,磁流液)4.2 Thiele和Small参数测试类比电路图4.3 扬声器阻抗曲线及其物理解释4.4 阻抗测试4.5 质量测试4.6 BL测试,力顺测试4.7 品质因素Q的计算4.8 等效容积Vas 的计算4.9 效率与灵敏度的测试4.10 扬声器基本参数及T/S参数汇总4.11 基于PC的扬声器测试信号,相位,clio, Sound check,Klippel, LMS. 第五章音箱,分频器的设计计算5.1 音箱的设计5.2 无限平板上的喇叭负载5.3封闭音箱中的喇叭5.4 填充物的作用5.5 倒相音箱的设计和计算5.6分频器的种类与计算第一章音频声学的基础1.1波动和声波1.1.1波动的数学描述振动产生波,如绳子的振动能量以波的形式传播。
常用绳子多点的位移来描述绳子波的传动,一个波动可用正弦函数来表示。
正弦函数:y = A sin ϕA为最大振辐(m)ϕ为角度(相位角)。
在x-y 坐标系里,若x代表角度,y代表振幅,画出的波形图叫正弦曲线。
一般在电学、声学里,角度都用弧度表示:2π=360度,π/2 = 90度。
扬声器的结构设计扬声器是将电信号转化为声音信号的设备,其结构设计直接影响到声音的产生效果和音质的表现。
下面,将详细介绍扬声器的结构设计。
1.外壳设计:外壳是扬声器的外部保护结构,它的设计应该具有稳固性和吸音性能。
常见的扬声器外壳设计有封闭式、开放式和反射孔式。
封闭式外壳设计适用于低音扬声器,能够产生更浑厚的声音;开放式外壳设计适用于中高音扬声器,能够产生更明亮的声音;反射孔式外壳设计可增加低音的延展性。
2.振膜设计:振膜是扬声器的重要组成部分,它的设计直接决定了声音的发射效果。
振膜应该具有轻质、坚固和弹性,以便能够准确地模拟声音信号。
常见的振膜材料有纸质、塑胶、金属等,选择合适的振膜材料能够提高扬声器的音质表现。
3.音圈设计:音圈是扬声器的驱动器,它通过电磁感应原理将电信号转化为声音信号。
音圈的设计应注重提高磁场强度和线圈的响应能力,以实现更准确的音质表现。
通常,音圈由导线缠绕而成,导线的选择和缠绕技术都会对音圈的性能产生影响。
4.磁体设计:磁体是扬声器的重要组成部分,它产生的磁场能够驱动音圈振动,从而产生声音。
磁体应具有足够的磁场强度和稳定的磁场分布,以确保音频信号能够被准确地转化为声音信号。
常用的磁体材料有永磁铁、钕铁硼等,选择合适的磁体材料能够提高扬声器的灵敏度和音质表现。
5.阻尼器设计:阻尼器用于减震和减小音圈振动的过冲,以提高音频信号的准确性。
阻尼器的设计应注重提高耐高温性能和减震效果,以确保声音的稳定性和清晰性。
常见的阻尼器材料有橡胶、聚酯纤维等,选择合适的阻尼器材料能够改善扬声器的音质细节。
6.隔振设计:隔振设计旨在减少扬声器与外界的物理接触和共振效应。
通过合理的隔振设计,能够降低各个部件之间的干扰和失真,提高声音的纯净度和音质的表现。
常用的隔振材料有橡胶、泡沫、木材等。
综上所述,扬声器的结构设计对其声音的产生效果和音质的表现有着直接的影响。
合理选用各个部件的材料和设计,能够提高扬声器的音质细节、稳定性和清晰度,从而实现更好的声音效果。
制作简易扬声器范文材料:1.一个小纸盒2.铝箔纸或者其他导电材料3.一个小磁铁4.一根细铜线5.一个音频插头6.一根电线7.涂胶步骤:1.准备工作:-首先要确保你有一个小纸盒,它应该是足够坚固和稳定的,以确保扬声器的结构及稳定性。
-准备好铝箔纸或者其他导电材料,用来制作扬声器的振动膜。
-找一个小磁铁,最好是圆形的,并且能与纸盒的底面吸附在一起。
-准备好细铜线用于连接电缆与振动膜。
-找一个音频插头和连接线,用于将音频信号输入到扬声器中。
-最后,准备涂胶,用于固定和稳定各个组件。
2.制作振动膜:-将铝箔纸或者其他导电材料按照纸盒的底部的尺寸剪裁成合适的形状。
-在振动膜的中央位置放置一个小磁铁,确保它与振动膜紧密接触,并能够吸附在纸盒的底部上。
3.连接电线:-将细铜线的一端固定在振动膜的一侧。
-将电线的其他一端连接到音频插头上。
4.安装扬声器:-将振动膜放置在纸盒的底部,并确保它与纸盒的底部紧密接触。
-使用涂胶将振动膜固定在纸盒上。
5.连接音频信号:-将音频插头插入音频输出设备(如手机或电脑)的音频插孔。
-将另一端的连接线插入扬声器的音频插孔。
6.测试扬声器:-打开音频输出设备,并播放音频文件或音乐。
-应该能够听到从简易扬声器中传出的声音。
-在制作过程中要小心操作,确保安全,避免发生意外。
-确保连接线可靠,避免信号断裂或短路。
-振动膜要紧密贴合纸盒底部,否则可能会影响声音的输出效果。
总结:通过以上步骤,你可以制作一个简易的扬声器。
虽然它不具备高质量的音频输出,但对于一些简单的音频播放需求来说,它是一个有趣和有创意的DIY项目。
加入你的创意和个性,设计一个独特的外观,使你的简易扬声器更加动听和引人注目。
尽情享受音乐带来的愉悦吧!。
扬声器设计与优化研究扬声器是一种运用电信、电声、机械等学科知识,将电能转换成声能的电声装置,是现代通讯、音乐、影视、游戏等产业中不可或缺的部分。
然而,不同类型的扬声器在设计、制造、优化等方面会遇到不同的问题和挑战,本文将从材料、结构、特性等方面探讨扬声器的设计与优化研究。
一、材料的选用扬声器的材料种类繁多,常见的包括钢、铝、纸浆、聚酯等。
选择合适的材料,能够直接影响到扬声器音质的好坏。
首先要考虑材料的强度和刚度,因为扬声器需要在高音量下工作,如果材料不够强硬,则会崩溃甚至导致失效。
其次要考虑材料的密度、声速、阻尼等特性,因为这些参数会影响扬声器的频响特性和失真程度。
钢材是最常见的扬声器材料,因为它的刚度和强度都较高,而且对声音的变形和回弹时间都很短,使得频率响应特性比较平滑、失真较小。
但是相对而言,钢材的密度比较大,导致扬声器重量较大,不利于携带和安装。
而铝材则比较轻巧,但是刚度较低,需要加工复杂,价格也比较高。
纸浆材料适用于低频动圈和低音单元,在扬声器的低音响应和音质方面表现突出。
然而,纸浆材料对潮湿和高温、高湿度环境都比较敏感,需要注意材料的防水和防潮性。
而聚酯材料则比较适用于高频单元,因为其刚度和失压特性非常好,不易变形,对高频信号的能量损耗也很小。
综上所述,扬声器设计师在选择材料时,应该根据需要的频段响应、振动模式、音效特性等因素进行综合考虑。
二、结构的优化扬声器的结构优化包括动圈、磁路、振膜、辐射器、固定支架等,各个部分之间的协调和设计,会直接影响到扬声器的响应特性、功率压缩和失真程度等因素。
动圈是扬声器的核心部件,通常采用铝线圈或铜线圈制成,其大小、形状、重量等都是影响频率响应和失真度的关键因素。
较小的动圈能够精确地跟随音频信号的变化,但是其受力面积少,容易高温失压;而较大的动圈则有较好的功率承受能力,但是更易于产生失真。
而磁路则需要在强度、方向、均匀性等方面进行优化,以保证动圈的稳定性和较高的灵敏度。
实用文档之"喇叭设计-扬声器设计与制作分析"1. 扬声器常用国家标准GB/T9396-1996 《扬声器主要性能测试方法》GB/T9397-1996 《直接辐射式电动扬声器通用规范》GB9400-88 《直接辐射式扬声器尺寸》。
GB7313-87 《高保真扬声器系统最低性能要求及测量方法》GB12058-89 《扬声器听音试验》2. 扬声器主要电声特性额定阻抗Znom总品质因数Qts等效容积Vas共振频率Fo额定正弦功率Psin额定噪声功率Pnom长期最大功率Pmax额定频率范围Fo-Fh平均声压级SPL3. 扬声器主要零部件尺寸设计3.1 扬声器口径扬声器口径必须符合客户要求,若客户没有具体要求,则优先采用国家标准GB9400-88《直接辐射式扬声器尺寸》。
3.2 支架支架外形尺寸及安装尺寸应能满足客户需要,除此之外还需考虑鼓纸、弹波、华司等尺寸选择与配合问题,一般大功率低频率的扬声器要求支架有效高、底高、弹波接着径、华司铆接径等均较大。
3.3 磁体磁体尺寸优选常用系列值,具体尺寸需按性能要求确定。
常用铁氧体尺寸:32*18*6,35*18*6,40*19*8,45*22*8,50*22*8,55*25*8,60*25*8,60*32*8,65*32*10,70*32*10,80*40*15,90*40*15,100*45*18,100*60*20,110*60*20120*60*20,130*60* 20,140*62*20,145*75*20,156*80*20,180*95*20,220*110*20常用标准:SJ/T10410-93 《永磁铁氧体材料》3.4 音圈音圈中孔尺寸优选常用系列值,具体尺寸(如卷宽、线径)需按性能要求确定,骨架高度还需考虑到与鼓纸、支架的配合。
常用音圈中孔尺寸:13.3 14.3 14.7 15.4 16.3 18.4 19.4 20.4 25.5 25.9 30.5 35.5 38.6 44.5 49.5 50.5 65.5 75.5 80.0 100.0 127.03.5 各种零件的尺寸配合支架、磁体、音圈等零件的主要尺寸确定后,其他零件的主要尺寸选择余地就受到限制,因为各种零件的尺寸必须相互配合,同时其性能参数也要相互配合。
3.5.1 支架与鼓纸鼓纸外缘与支架胶合面一般需大于2 mm (微型扬声器不受此限制,下同),鼓纸外径必须小于支架内径1 mm以上,鼓纸次外径不能小于支架次外径 3 mm 以上、也不能大于支架次外径2 mm 以上,鼓纸有效高必须小于支架有效高0.5 mm 以上。
3.5.2 支架与弹波弹波外缘与支架胶合面一般需大于2 mm ,弹波外径必须小于支架的弹波接着径0.5 mm 以上,弹波有效高必须小于支架有效高与鼓纸有效高的差值0.5 mm 以上。
3.5.3 支架与华司配合尺寸主要取决于支架与华司的铆接工艺,总的要求铆接应牢固,内铆支架尤其要注意材料厚度。
3.5.4 音圈与鼓纸鼓纸中孔尺寸一般要大于音圈骨架外径0.2~0.9 mm ,小口径、小音圈取值小些。
3.5.5 音圈与弹波弹波中孔尺寸一般大于音圈骨架外径0.1~0.4 mm ,太大会漏胶、太小难装配。
3.5.6 音圈与T铁音圈中孔尺寸一般大于T铁中柱外径0.3~0.6 mm ,小音圈取值相应小些。
3.5.7 音圈与华司华司中孔尺寸(内铆的为铆后尺寸)一般要大于音圈最大外径(为绕线部位) 0.3~0.6 mm ,间隙太小容易碰圈、影响到装配合格率,间隙太大又会降低磁性能、从而导致灵敏度下降。
3.5.8 鼓纸与弹波鼓纸中孔与弹波中孔的距离,中小口径的扬声器以0.5~2 mm 为佳,大口径可以加大到2~5 mm ,距离大些定位效果会更好、更能承受大功率,只是鼓纸中心胶和弹波中心胶需分开打。
4. 扬声器关键零部件的性能设计4.1 磁路4.1.1 磁路设计的目的与方法磁路设计的目的主要有两种:一是给定磁体规格(已知材料性能和尺寸),设计出磁路结构,使其工作气隙磁感应密度Bg值为最大,Bg值的大小对扬声器的灵敏度及电气品质因数Qes影响很大;二是给定Bg值,设计出磁路结构,使所用磁体尺寸为最小,从而达到节约成本的目的。
磁路设计的方法有多种,这里采用的是经验公式法。
4.1.2 磁路设计基本公式Kf*Bg*Sg = Bd*Sm (1)Kr*Hg*Lg = Hd*Lm (2)相关说明如下:Bg: 工作气隙中的磁感应密度Bd: 磁体内部的磁感应密度Sg: 工作气隙截面积Sm: 磁体截面积Kf: 漏磁系数(总磁通与工作气隙磁通之比) Hg: 工作气隙中的磁场强度Hd: 磁体内部的磁场强度Lg: 工作气隙宽度Lm: 磁体高度Kr: 漏磁阻系数(总磁阻与工作气隙磁阻之比)这里所有单位均采用国际单位制,即千克、米、秒制。
4.1.3 一些参数的选取与设定对于内磁结构的磁路:Kr = 1.1~1.5Kf = 1.8~2.5导磁板厚度:Tp = 5*Lg导磁板直径:Dp = 4.1*Tp对于外磁结构的磁路:Kr = 1.1~1.5Kf = 2.0~4.0华司厚度:Tp = 5*Lg中柱外径:Dp = 4.3*Tp华司外径= 磁体外径-磁体厚度/2Sg =π*(Dp+Lg)*TpBg =o* Hg (3)o = 4π*10-7 H/m为真空磁导率.根据磁体材料退磁曲线和最大磁能积曲线,可以确定最佳工作点的Bd和Hd值,在此工作点,磁体体积最小(给定Bg值时),工作气隙中的磁感应密度最大(给定磁体尺寸时)。
Bg2 = (o*Sm*Lm*Bd*Hd)/(Kr*Kf*Sg*Lg) (4)4.1.4 磁路设计的验证选择了一种磁路结构后,验证很方便,只需将磁路充磁,测量其工作气隙中的磁感应密度Bg就行。
磁感应密度Bg的测量方法有两种:一是用带超薄霍尔探头的特斯拉计(高斯计)直接测量;二是用带标准线圈的韦伯表(磁通表)测量磁通φ,然后换算成磁感应密度, Bg =φ/S,这里的S为标准线圈在磁场中切割磁力线的有效面积。
4.2 音圈4.2.1 音圈主要参数设计音圈的直流电阻Re一般要预先设定,或按额定阻抗Znom确定:Znom =(1.05~1.10)* Re音圈的直径Dvc根据磁路结构确定,同时要考虑功率见大功率大口径扬声器的音圈卷宽及华司厚度均需较大。
根据导线的电阻率或电阻系数及所需直流电阻,可以很容易地算出音圈线长Lvc=Re/电阻系数,则绕线圈数n = Lvc/[π*(Dvc+2*骨架厚度+层数*线径)],卷宽Tvc=n*1.03*线径/层数,此处线径指导线的最大外径。
4.2.2 音圈材料性能与选择4.2.2.1音圈骨架材料常见的有牛皮纸(Kraft Paper)、杜拉铝(Aluminium Duralumin)、NOMEX、TIL、KAPTON等。
主要特性如下:牛皮纸(Kraft Paper)采用最高连续工作温度180 oC的电缆纸(牛皮纸),其特点为质轻、绝缘好、价格低廉。
其厚度有:0.03 0.05 0.07 0.10 0.13 0.17杜拉铝(Aluminium Duralumin)采用加以表面硬化及清洁处理的合金铝箔,最高连续工作温度200 oC,具有耐高温、强度高等特点。
铝箔有黑、白两种,黑色铝箔更具有绝缘性能佳、传热快等优点。
其厚度有:0.03 0.04 0.05 0.07 0.08 0.10 0.12NOMEX采用芳香族聚酰亚胺制成箔膜,最高工作温度300 oC,具有绝缘、质轻、耐高温、粘接力强等优点。
用它制成的扬声器音色柔和圆润、悦耳动听。
其厚度有:0.03 0.05 0.08 0.12TIL采用玻璃纤维为基材,上面加聚酰亚胺合成,最高连续工作温度230 oC,其特点为耐高温、材料强度高、刚性好、不易变形。
KAPTON采用聚酰亚胺箔膜,最高连续工作温度220 oC,具有绝缘、质轻、强度高、耐高温、不易燃烧等特点。
KAPTON有褐色、黑色两种,黑色KAPTON还有散热快、表面硬度高等优点。
4.2.2.2 导线材料常见的有LOCK线、SV线、CCAW(铜包铝线)、扁线等,其主要特性如下:LOCK线使用温度在140 oC,为溶剂型,一般用于小型低功率扬声器。
SV线使用温度在200 oC,为溶剂型,特点为固化后粘接性能很强,是音圈生产中最常用的线种之一。
CCAW(铜包铝线)比铜线质轻、比铝线导电率高且拉力强,其高频时阻抗与铜线相仿,用它制成的扬声器瞬态特性好、灵敏度高,是高灵敏度扬声器中常采用的材料。
扁线磁场利用率较圆线大(圆线磁场利用率为78%~91%,扁线为96%),特点为换能效率高,适于制作大功率扬声器,扁铝线更常用于专业扬声器(大功率、高灵敏度)。
4.3 鼓纸(振动板)鼓纸特性直接影响着扬声器各种电声参数、音质和使用寿命。
鼓纸的性能主要取决于使用材料、设计形状、制造工艺等。
鼓纸材料一般要求具有下述三种基本特性:1)质量要轻,即要求材料密度要小,这可以提高扬声器的效率、同时改善瞬态特性。
2)强度要高,即要求材料杨氏模量E要大,这可以改进扬声器的效率、瞬态特性,拓宽高频响应。
3)阻尼适当,即要求材料内部损耗适中,这可以有效地抑制分割振动,藉以降低高频共振的峰谷,使频率响应平坦、过渡特性良好,同时改善失真。
锥盆常用的鼓纸材料有纸、聚丙烯(PP)、杜拉铝、玻璃纤维、碳纤维等,球顶高音用振动板材料有丝、铝、钛、MYLAR、PEI等。
鼓纸的形状一般为锥形,球顶高音及中音则为半球形。
因材料所用不同,其制造工艺也各有不同。
纸盆工艺比较特殊,需经打浆、抄制、热压或烘干等各道工序,代表性的有紧压、半松压、非压等三种类型。
聚丙烯盆制作工艺有两种:吸塑成型、注塑成型。
MYLAR、PEI、丝膜等均为热压成型,丝膜还需预先上胶。
无论使用何种材料,或多或少均需添加其他材料,作增强或提高内部阻尼处理。
材料特性总的说来很复杂,很难定量描述,一般只有通过反复试验才能确认其是否满足使用要求。
鼓纸与电声特性直接相关的定量参数主要有重量、厚度、顺性、杨氏模量等,重量、顺性等决定了扬声器的低频特性,重量、厚度、锥顶角度、杨氏模量等则决定了高频特性。
对于锥型扬声器,低频共振频率Fo和高频上限频率Fh可由下列公式确定:(2πFo)2 = 1/(Mms*Cms) (5)(2πFh)2 = (Mm1*Mm2)/[(Mm1+Mm2)*Cmh] (6)相关说明如下:Mms为扬声器的等效振动质量,且有Mms =Mm1+Mm2+2Mmr,其中Mm1为音圈质量, Mm2为鼓纸等效质量, Mmr为辐射质量。
Mmr =2.67*ρo* a3,其中ρo=1.21kg/m3为空气密度, a为扬声器等效半径。